Knowledge

Taylor diagram

Source 📝

71:
standard deviation (which indicates that the pattern variations are of the right amplitude). In Figure 1 it can be seen that models A and C generally agree best with observations, each with about the same RMS error. Model A, however, has a slightly higher correlation with observations and has the same standard deviation as the observed, whereas model C has too little spatial variability (with a standard deviation of 2.3 mm/day compared to the observed value of 2.9 mm/day). Of the poorer performing models, model E has a low pattern correlation, while model D has variations that are much larger than observed, in both cases resulting in a relatively large (~3 mm/day) centered RMS error in the precipitation fields. Although models D and B have about the same correlation with observations, model B simulates the amplitude of the variations (i.e., the standard deviation) much better than model D, resulting in a smaller RMS error.
59:
reproduces observations. For each model, three statistics are plotted: the Pearson correlation coefficient (gauging similarity in pattern between the simulated and observed fields) is related to the azimuthal angle (blue contours); the centered RMS error in the simulated field is proportional to the distance from the point on the x-axis identified as “observed” (green contours); and the standard deviation of the simulated pattern is proportional to the radial distance from the origin (black contours). It is evident from this diagram, for example, that for Model F the correlation coefficient is about 0.65, the RMS error is about 2.6 mm/day and the standard deviation is about 3.3 mm/day. Model F's standard deviation is clearly greater than the standard deviation of the observed field (indicated by the dashed contour at radial distance 2.9 mm/day).
397: 63: 532:
normalization of dimensional quantities (dividing both the RMS difference and the standard deviation of the "test" field by the standard deviation of the observations) so that the "observed" point is plotted at unit distance from the origin along the x-axis, and statistics for different fields (with
26:
designed to graphically indicate which of several approximate representations (or models) of a system, process, or phenomenon is most realistic. This diagram, invented by Karl E. Taylor in 1994 (published in 2001) facilitates the comparative assessment of different models. It is used to quantify
58:
with which several global climate models simulate the spatial pattern of annual mean precipitation. Eight models, each represented by a different letter on the diagram, are compared, and the distance between each model and the point labeled “observed” is a measure of how realistically each model
79:
Taylor diagrams display statistics useful for assessing the similarity of a variable simulated by a model (more generally, the “test” field) to its observed counterpart (more generally, the “reference” field). Mathematically, the three statistics displayed on a Taylor diagram are related by the
70:
The relative merits of various models can be inferred from Figure 1. Simulated patterns that agree well with observations will lie nearest the point marked "observed" on the x-axis. These models have relatively high correlation and low RMS errors. Models lying on the dashed arc have the correct
818:
Lemon, Jim; Bolker, Ben; Oom, Sander; Klein, Eduardo; Rowlingson, Barry; Wickham, Hadley; Tyagi, Anupam; Eterradossi, Olivier; Grothendieck, Gabor; Toews, Michael; Kane, John; Turner, Rolf; Witthoft, Carl; Stander, Julian; Petzoldt, Thomas; Duursma, Remko; Biancotto, Elisa; Levy, Ofir; Dutang,
42:
Although Taylor diagrams have primarily been used to evaluate models designed to study climate and other aspects of Earth's environment, they can be used for purposes unrelated to environmental science (e.g., to quantify and visually display how well fusion energy models represent reality).
539:
use of an arrow to connect two related points on the diagram. For example, an arrow can be drawn from the point representing an older version of a model to a newer version, which makes it easier to indicate more clearly whether or not the model is moving toward "truth," as defined by
198: 544:
One of the main limitation of the Taylor diagram is the absence of explicit information about the prediction bias. A variant of the Taylor diagram that accounts for the prediction bias is provided by the solar diagram (see, Wadoux et al., 2022).
348: 90: 472: 435: 264: 237: 46:
Taylor diagrams can be constructed with a number of different open source and commercial software packages, including: GrADS, IDL, MATLAB, NCL, Python, R, and CDAT.
383: 499: 28: 66:
Fig. 1: Sample Taylor diagram displaying a statistical comparison with observations of eight model estimates of the global pattern of annual mean precipitation.
819:
Christophe; Solymos, Peter; Engelmann, Robby; Hecker, Michael; Steinbeck, Felix; Borchers, Hans; Singmann, Henrik; Toal, Ted; Ogle, Derek; Baral, Darshan;
873:
Wadoux, AMJ-C; Walvoort, DJJ; Brus, DJ (2022). "An integrated approach for the evaluation of quantitative soil maps through Taylor and solar diagrams".
509:
The means of the fields are subtracted out before computing their second-order statistics, so the diagram does not provide information about overall
911: 393:) provides the key to forming the geometrical relationship between the four quantities that underlie the Taylor diagram (shown in Figure 2). 794: 601: 730: 529:
extension to a second "quadrant" (to the left of the quadrant shown in Figure 1) to accommodate negative correlations;
276: 838: 479: 32: 400:
Fig. 2: Geometrical relationship between statistics plotted on Taylor diagrams according to the law of cosines.
193:{\displaystyle E^{\prime 2}=\sigma _{\Delta }^{2}=\sigma _{r}^{2}+\sigma _{t}^{2}-2\sigma _{r}\sigma _{t}\rho } 712: 212:′ is the centered RMS difference between the fields (with any difference in the means first removed), and 27:
the degree of correspondence between the modeled and observed behavior in terms of three statistics: the
619:
Terry, P.W.; et al. (2008). "Validation in fusion research: Towards guidelines and best practices".
640: 575: 23: 525:
Among the several minor variations on the diagram that have been suggested are (see, Taylor, 2001):
856: 444: 407: 630: 621: 242: 215: 36: 820: 84:
formula (which can be derived directly from the definition of the statistics appearing in it):
565:
Taylor, K.E. (2001). "Summarizing multiple aspects of model performance in a single diagram".
510: 81: 882: 648: 583: 567: 368: 644: 579: 748: 267: 55: 905: 694: 762: 536:
omission of the isolines on the diagram to make it easier to see the plotted points;
886: 396: 666: 266:
are the standard deviations of the reference and test fields, respectively. The
780: 54:
The sample Taylor diagram shown in Figure 1 provides a summary of the relative
514: 824: 680: 62: 587: 652: 208:
is the correlation coefficient between the test and reference fields,
635: 395: 61: 99: 517:), but solely characterizes the centered pattern error. 667:"Calculate statistics used in Taylor diagram in GrADS" 447: 410: 371: 279: 245: 218: 93: 466: 429: 377: 342: 258: 231: 192: 365:are the length of the sides of the triangle, and 343:{\displaystyle c^{2}=a^{2}+b^{2}-2ab\cos \phi ,} 533:different units) can be shown in a single plot; 404:The standard deviation of the observed field 8: 560: 558: 490:, and the cosine of the angle between sides 857:"Taylor diagram primer (2005), K.E. Taylor" 441:, the standard deviation of the test field 634: 455: 446: 418: 409: 370: 310: 297: 284: 278: 250: 244: 223: 217: 181: 171: 155: 150: 137: 132: 119: 114: 98: 92: 554: 823:; Venables, Bill (September 8, 2021). 783:. November 6, 2021 – via GitHub. 751:. October 27, 2021 – via GitHub. 825:"plotrix: Various Plotting Functions" 7: 731:"PeterRochford/SkillMetricsToolbox" 115: 14: 795:"geocat.viz.taylor.TaylorDiagram" 912:Statistical charts and diagrams 763:"NCL Graphics: Taylor Diagrams" 29:Pearson correlation coefficient 887:10.1016/j.geoderma.2021.115332 681:"Plot Taylor diagram in GrADS" 461: 448: 424: 411: 1: 467:{\displaystyle (\sigma _{t})} 430:{\displaystyle (\sigma _{r})} 695:"Creating a Taylor Diagram" 385:is the angle between sides 259:{\displaystyle \sigma _{t}} 232:{\displaystyle \sigma _{r}} 928: 799:geocat-viz.readthedocs.io 482:between the two fields ( 827:– via R-Packages. 521:Taylor diagram variants 500:correlation coefficient 781:"SkillMetrics Project" 468: 431: 401: 379: 344: 260: 233: 194: 67: 35:(RMSE) error, and the 33:root-mean-square error 749:"SkillMetricsToolbox" 469: 432: 399: 380: 378:{\displaystyle \phi } 345: 261: 234: 195: 65: 24:mathematical diagrams 588:10.1029/2000JD900719 445: 408: 369: 277: 243: 216: 91: 16:Mathematical diagram 645:2008PhPl...15f2503T 580:2001JGR...106.7183T 160: 142: 124: 606:scholar.google.com 464: 427: 402: 375: 340: 256: 229: 190: 146: 128: 110: 68: 37:standard deviation 839:"Taylor_Diagrams" 821:Groemping, Ulrike 735:www.mathworks.com 717:www.mathworks.com 699:www.idlcoyote.com 653:10.1063/1.2928909 82:error propagation 75:Theoretical basis 919: 891: 890: 870: 864: 863: 861: 853: 847: 846: 835: 829: 828: 815: 809: 808: 806: 805: 791: 785: 784: 777: 771: 770: 767:www.ncl.ucar.edu 759: 753: 752: 745: 739: 738: 727: 721: 720: 713:"Taylor Diagram" 709: 703: 702: 691: 685: 684: 677: 671: 670: 663: 657: 656: 638: 616: 610: 609: 602:"Google Scholar" 598: 592: 591: 568:J. Geophys. Res. 562: 473: 471: 470: 465: 460: 459: 436: 434: 433: 428: 423: 422: 384: 382: 381: 376: 349: 347: 346: 341: 315: 314: 302: 301: 289: 288: 265: 263: 262: 257: 255: 254: 238: 236: 235: 230: 228: 227: 199: 197: 196: 191: 186: 185: 176: 175: 159: 154: 141: 136: 123: 118: 106: 105: 927: 926: 922: 921: 920: 918: 917: 916: 902: 901: 900: 895: 894: 872: 871: 867: 859: 855: 854: 850: 837: 836: 832: 817: 816: 812: 803: 801: 793: 792: 788: 779: 778: 774: 761: 760: 756: 747: 746: 742: 729: 728: 724: 711: 710: 706: 693: 692: 688: 679: 678: 674: 665: 664: 660: 618: 617: 613: 600: 599: 595: 564: 563: 556: 551: 523: 478:, the centered 451: 443: 442: 414: 406: 405: 367: 366: 306: 293: 280: 275: 274: 246: 241: 240: 219: 214: 213: 177: 167: 94: 89: 88: 77: 52: 20:Taylor diagrams 17: 12: 11: 5: 925: 923: 915: 914: 904: 903: 899: 898:External links 896: 893: 892: 865: 848: 830: 810: 786: 772: 754: 740: 722: 704: 686: 672: 658: 611: 593: 553: 552: 550: 547: 542: 541: 537: 534: 530: 522: 519: 480:RMS difference 463: 458: 454: 450: 426: 421: 417: 413: 374: 351: 350: 339: 336: 333: 330: 327: 324: 321: 318: 313: 309: 305: 300: 296: 292: 287: 283: 268:law of cosines 253: 249: 226: 222: 202: 201: 189: 184: 180: 174: 170: 166: 163: 158: 153: 149: 145: 140: 135: 131: 127: 122: 117: 113: 109: 104: 101: 97: 76: 73: 51: 50:Sample diagram 48: 15: 13: 10: 9: 6: 4: 3: 2: 924: 913: 910: 909: 907: 897: 888: 884: 880: 876: 869: 866: 858: 852: 849: 844: 843:cdat.llnl.gov 840: 834: 831: 826: 822: 814: 811: 800: 796: 790: 787: 782: 776: 773: 768: 764: 758: 755: 750: 744: 741: 736: 732: 726: 723: 718: 714: 708: 705: 700: 696: 690: 687: 682: 676: 673: 668: 662: 659: 654: 650: 646: 642: 637: 632: 628: 624: 623: 622:Phys. Plasmas 615: 612: 607: 603: 597: 594: 589: 585: 581: 577: 574:: 7183–7192. 573: 570: 569: 561: 559: 555: 548: 546: 540:observations. 538: 535: 531: 528: 527: 526: 520: 518: 516: 512: 507: 505: 501: 497: 493: 489: 485: 481: 477: 456: 452: 440: 419: 415: 398: 394: 392: 388: 372: 364: 360: 356: 337: 334: 331: 328: 325: 322: 319: 316: 311: 307: 303: 298: 294: 290: 285: 281: 273: 272: 271: 269: 251: 247: 224: 220: 211: 207: 187: 182: 178: 172: 168: 164: 161: 156: 151: 147: 143: 138: 133: 129: 125: 120: 111: 107: 102: 95: 87: 86: 85: 83: 74: 72: 64: 60: 57: 49: 47: 44: 40: 38: 34: 30: 25: 21: 878: 874: 868: 851: 842: 833: 813: 802:. Retrieved 798: 789: 775: 766: 757: 743: 734: 725: 716: 707: 698: 689: 675: 661: 626: 620: 614: 605: 596: 571: 566: 543: 524: 508: 503: 495: 491: 487: 483: 475: 438: 403: 390: 386: 362: 358: 354: 352: 209: 205: 203: 78: 69: 53: 45: 41: 19: 18: 486:′) is side 881:: 115332. 804:2023-11-16 549:References 515:mean error 636:0801.2787 453:σ 416:σ 373:ϕ 335:ϕ 332:⁡ 317:− 248:σ 221:σ 188:ρ 179:σ 169:σ 162:− 148:σ 130:σ 116:Δ 112:σ 100:′ 906:Category 875:Geoderma 474:is side 437:is side 641:Bibcode 576:Bibcode 498:is the 353:(where 511:biases 361:, and 204:where 31:, the 860:(PDF) 631:arXiv 56:skill 494:and 389:and 239:and 22:are 883:doi 879:405 649:doi 584:doi 572:106 506:). 329:cos 908:: 877:. 841:. 797:. 765:. 733:. 715:. 697:. 647:. 639:. 629:. 627:15 625:. 604:. 582:. 557:^ 357:, 270:, 39:. 889:. 885:: 862:. 845:. 807:. 769:. 737:. 719:. 701:. 683:. 669:. 655:. 651:: 643:: 633:: 608:. 590:. 586:: 578:: 513:( 504:ρ 502:( 496:b 492:a 488:c 484:E 476:b 462:) 457:t 449:( 439:a 425:) 420:r 412:( 391:b 387:a 363:c 359:b 355:a 338:, 326:b 323:a 320:2 312:2 308:b 304:+ 299:2 295:a 291:= 286:2 282:c 252:t 225:r 210:E 206:ρ 200:, 183:t 173:r 165:2 157:2 152:t 144:+ 139:2 134:r 126:= 121:2 108:= 103:2 96:E

Index

mathematical diagrams
Pearson correlation coefficient
root-mean-square error
standard deviation
skill

error propagation
law of cosines

RMS difference
correlation coefficient
biases
mean error


J. Geophys. Res.
Bibcode
2001JGR...106.7183T
doi
10.1029/2000JD900719
"Google Scholar"
Phys. Plasmas
arXiv
0801.2787
Bibcode
2008PhPl...15f2503T
doi
10.1063/1.2928909
"Calculate statistics used in Taylor diagram in GrADS"
"Plot Taylor diagram in GrADS"

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.