Knowledge (XXG)

Tetrahedron packing

Source 📝

85:(with one particle per repeating unit such that each particle has a common orientation). These packing constructions almost doubled the optimal Bravais-lattice-packing fraction 36.73% obtained by Hoylman. In 2007 and 2010, Chaikin and coworkers experimentally showed that tetrahedron-like dice can randomly pack in a finite container up to a packing fraction between 75% and 76%. In 2008, Chen was the first to propose a packing of hard, regular tetrahedra that packed more densely than spheres, demonstrating numerically a packing fraction of 77.86%. A further improvement was made in 2009 by Torquato and Jiao, who compressed Chen's structure using a computer algorithm to a packing fraction of 78.2021%. 67: 35: 99:
In late 2009, a new, much simpler family of packings with a packing fraction of 85.47% was discovered by Kallus, Elser, and Gravel. These packings were also the basis of a slightly improved packing obtained by Torquato and Jiao at the end of 2009 with a packing fraction of 85.55%, and by Chen, Engel,
84:
and Torquato showed that a packing fraction about 72% can be obtained by constructing a non-Bravais lattice packing of tetrahedra (with multiple particles with generally different orientations per repeating unit), and thus they showed that the best tetrahedron packing cannot be a lattice packing
96:, which can be compressed to 83.24%. They also reported a glassy, disordered packing at densities exceeding 78%. For a periodic approximant to a quasicrystal with an 82-tetrahedron unit cell, they obtained a packing density as high as 85.03%. 100:
and Glotzer in early 2010 with a packing fraction of 85.63%. The Chen, Engel and Glotzer result currently stands as the densest known packing of hard, regular tetrahedra. Surprisingly, the square-triangle tiling packs denser than this
678:
Haji-Akbari, Amir; Engel, Michael; Keys, Aaron S.; Zheng, Xiaoyu; Petschek, Rolfe G.; Palffy-Muhoray, Peter; Glotzer, Sharon C. (2009). "Disordered, quasicrystalline and crystalline phases of densely packed tetrahedra".
353: 966: 414: 92:
simulations of initially random systems that at packing densities >50% an equilibrium fluid of hard tetrahedra spontaneously transforms to a dodecagonal
912: 962: 157: 112:
of a tetrahedron and a sphere), making the 82-tetrahedron crystal the largest unit cell for a densest packing of identical particles to date.
744: 514: 266: 187: 884: 146: 1099: 789:
Torquato, S.; Jiao, Y. (2009). "Analytical Constructions of a Family of Dense Tetrahedron Packings and the Role of Symmetry".
1031: 905: 185:
Chen, Elizabeth R.; Engel, Michael; Glotzer, Sharon C. (2010). "Dense crystalline dimer packings of regular tetrahedra".
1120: 1026: 264:
Simon Gravel; Veit Elser; Yoav Kallus (2010). "Upper bound on the packing density of regular tetrahedra and octahedra".
132:
is smaller than that for any other convex body. However, the more recent results have shown that this is not the case.
125: 237: 742:
Kallus, Yoav; Elser, Veit; Gravel, Simon (2010). "Dense Periodic Packings of Tetrahedra with Small Repeating Units".
1016: 970: 958: 1125: 1006: 898: 1021: 459: 980: 1011: 66: 34: 823: 700: 633: 570: 468: 362: 105: 43: 333: 1130: 935: 812:"Evolution of the dense packings of spherotetrahedral particles: from ideal tetrahedra to spheres" 790: 771: 753: 724: 690: 657: 623: 594: 541: 523: 293: 275: 214: 196: 89: 81: 1078: 975: 851: 716: 649: 586: 494: 390: 921: 841: 831: 763: 708: 681: 641: 614: 578: 561: 533: 484: 476: 433: 423: 380: 370: 311: 285: 246: 206: 878: 250: 232: 161: 141: 51: 31:
throughout three-dimensional space so as to fill the maximum possible fraction of space.
872: 827: 704: 637: 612:
Torquato, S.; Jiao, Y. (2009). "Dense packings of the Platonic and Archimedean solids".
574: 472: 366: 120:
Because the earliest lower bound known for packings of tetrahedra was less than that of
1057: 1036: 998: 985: 950: 846: 811: 385: 348: 129: 121: 101: 39: 315: 1114: 1094: 1041: 109: 775: 661: 545: 428: 409: 297: 218: 728: 598: 480: 93: 55: 58:
space, and an upper bound below 100% (namely, 1 − (2.6...)·10) has been reported.
453:
Jaoshvili, Alexander; Esakia, Andria; Porrati, Massimo; Chaikin, Paul M. (2010).
940: 28: 767: 537: 289: 210: 375: 150: 124:, it was suggested that the regular tetrahedra might be a counterexample to 74: 855: 720: 653: 590: 498: 394: 38:
The currently densest known packing structure for regular tetrahedra is a
20: 712: 645: 438: 489: 836: 582: 512:
Chen, Elizabeth R. (2008). "A Dense Packing of Regular Tetrahedra".
890: 454: 795: 758: 695: 628: 528: 334:"Jeffrey Lagarias and Chuanming Zong to receive 2015 Conant Prize" 280: 201: 65: 33: 894: 559:
Cohn, Henry (2009). "Mathematical physics: A tight squeeze".
50:
Currently, the best lower bound achieved on the optimal
455:"Experiments on the Random Packing of Tetrahedral Dice" 810:
Jin, Weiwei; Lu, Peng; Li, Shuixiang (December 2015).
873:
Packing Tetrahedrons, and Closing in on a Perfect Fit
77:
claimed that tetrahedra could fill space completely.
1087: 1066: 1050: 997: 949: 928: 54:of regular tetrahedra is 85.63%. Tetrahedra do not 673: 671: 354:Proceedings of the National Academy of Sciences 349:"Packing, tiling, and covering with tetrahedra" 27:is the problem of arranging identical regular 906: 415:Bulletin of the American Mathematical Society 235:(1925). "Het probleem 'De Impletione Loci'". 88:In mid-2009 Haji-Akbari et al. showed, using 8: 410:"The densest lattice packing of tetrahedra" 153:packing of irregular tetrahedra in 3-space. 913: 899: 891: 180: 178: 108:when tetrahedra are slightly rounded (the 845: 835: 794: 757: 694: 627: 527: 488: 437: 427: 384: 374: 316:"Mysteries in Packing Regular Tetrahedra" 279: 200: 885:Pyramids are the best shape for packing 174: 158:triakis truncated tetrahedral honeycomb 116:Relationship to other packing problems 745:Discrete & Computational Geometry 515:Discrete & Computational Geometry 267:Discrete & Computational Geometry 188:Discrete & Computational Geometry 16:Concept in three-dimensional geometry 7: 164:and based on a regular tetrahedron. 14: 314:and Chuanming Zong (2012-12-04). 147:Disphenoid tetrahedral honeycomb 429:10.1090/S0002-9904-1970-12400-4 1042:Sphere-packing (Hamming) bound 481:10.1103/PhysRevLett.104.185501 1: 128:that the optimal density for 408:Hoylman, Douglas J. (1970). 332:News Release (2014-12-03). 238:Nieuw Archief voor Wiskunde 1147: 768:10.1007/s00454-010-9254-3 538:10.1007/s00454-008-9101-y 290:10.1007/s00454-010-9304-x 211:10.1007/s00454-010-9273-0 130:packing congruent spheres 46:and fills 85.63% of space 967:isosceles right triangle 460:Physical Review Letters 376:10.1073/pnas.0601389103 981:Circle packing theorem 347:Conway, J. H. (2006). 71: 47: 106:triangular bipyramids 70:Tetrahedral packaging 69: 44:triangular bipyramids 37: 963:equilateral triangle 1121:History of geometry 1100:Slothouber–Graatsma 828:2015NatSR...515640J 713:10.1038/nature08641 705:2009Natur.462..773H 646:10.1038/nature08239 638:2009Natur.460..876T 575:2009Natur.460..801C 473:2010PhRvL.104r5501J 367:2006PNAS..10310612C 361:(28): 10612–10617. 25:tetrahedron packing 816:Scientific Reports 72: 62:Historical results 48: 1108: 1107: 1067:Other 3-D packing 1051:Other 2-D packing 976:Apollonian gasket 837:10.1038/srep15640 689:(7274): 773–777. 622:(7257): 876–879. 569:(7257): 801–802. 126:Ulam's conjecture 1138: 1126:Packing problems 989: 929:Abstract packing 922:Packing problems 915: 908: 901: 892: 879:Efficient shapes 860: 859: 849: 839: 807: 801: 800: 798: 786: 780: 779: 761: 739: 733: 732: 698: 675: 666: 665: 631: 609: 603: 602: 556: 550: 549: 531: 509: 503: 502: 492: 450: 444: 443: 441: 431: 405: 399: 398: 388: 378: 344: 338: 337: 329: 323: 322: 320: 312:Jeffrey Lagarias 308: 302: 301: 283: 261: 255: 254: 229: 223: 222: 204: 182: 52:packing fraction 1146: 1145: 1141: 1140: 1139: 1137: 1136: 1135: 1111: 1110: 1109: 1104: 1083: 1062: 1046: 993: 987: 986:Tammes problem 945: 924: 919: 887:, New Scientist 881:, The Economist 869: 864: 863: 809: 808: 804: 788: 787: 783: 741: 740: 736: 677: 676: 669: 611: 610: 606: 583:10.1038/460801a 558: 557: 553: 511: 510: 506: 452: 451: 447: 407: 406: 402: 346: 345: 341: 331: 330: 326: 318: 310: 309: 305: 263: 262: 258: 231: 230: 226: 184: 183: 176: 171: 162:cell-transitive 142:Packing problem 138: 118: 64: 17: 12: 11: 5: 1144: 1142: 1134: 1133: 1128: 1123: 1113: 1112: 1106: 1105: 1103: 1102: 1097: 1091: 1089: 1085: 1084: 1082: 1081: 1076: 1070: 1068: 1064: 1063: 1061: 1060: 1058:Square packing 1054: 1052: 1048: 1047: 1045: 1044: 1039: 1037:Kissing number 1034: 1029: 1024: 1019: 1014: 1009: 1003: 1001: 999:Sphere packing 995: 994: 992: 991: 983: 978: 973: 955: 953: 951:Circle packing 947: 946: 944: 943: 938: 932: 930: 926: 925: 920: 918: 917: 910: 903: 895: 889: 888: 882: 876: 868: 867:External links 865: 862: 861: 802: 781: 752:(2): 245–252. 734: 667: 604: 551: 522:(2): 214–240. 504: 467:(18): 185501. 445: 400: 339: 324: 303: 274:(4): 799–818. 256: 224: 195:(2): 253–280. 173: 172: 170: 167: 166: 165: 154: 144: 137: 134: 117: 114: 102:double lattice 63: 60: 40:double lattice 15: 13: 10: 9: 6: 4: 3: 2: 1143: 1132: 1129: 1127: 1124: 1122: 1119: 1118: 1116: 1101: 1098: 1096: 1093: 1092: 1090: 1086: 1080: 1077: 1075: 1072: 1071: 1069: 1065: 1059: 1056: 1055: 1053: 1049: 1043: 1040: 1038: 1035: 1033: 1032:Close-packing 1030: 1028: 1027:In a cylinder 1025: 1023: 1020: 1018: 1015: 1013: 1010: 1008: 1005: 1004: 1002: 1000: 996: 990: 984: 982: 979: 977: 974: 972: 968: 964: 960: 957: 956: 954: 952: 948: 942: 939: 937: 934: 933: 931: 927: 923: 916: 911: 909: 904: 902: 897: 896: 893: 886: 883: 880: 877: 874: 871: 870: 866: 857: 853: 848: 843: 838: 833: 829: 825: 821: 817: 813: 806: 803: 797: 792: 785: 782: 777: 773: 769: 765: 760: 755: 751: 747: 746: 738: 735: 730: 726: 722: 718: 714: 710: 706: 702: 697: 692: 688: 684: 683: 674: 672: 668: 663: 659: 655: 651: 647: 643: 639: 635: 630: 625: 621: 617: 616: 608: 605: 600: 596: 592: 588: 584: 580: 576: 572: 568: 564: 563: 555: 552: 547: 543: 539: 535: 530: 525: 521: 517: 516: 508: 505: 500: 496: 491: 486: 482: 478: 474: 470: 466: 462: 461: 456: 449: 446: 440: 435: 430: 425: 421: 417: 416: 411: 404: 401: 396: 392: 387: 382: 377: 372: 368: 364: 360: 356: 355: 350: 343: 340: 335: 328: 325: 317: 313: 307: 304: 299: 295: 291: 287: 282: 277: 273: 269: 268: 260: 257: 252: 248: 244: 240: 239: 234: 233:Struik, D. J. 228: 225: 220: 216: 212: 208: 203: 198: 194: 190: 189: 181: 179: 175: 168: 163: 159: 155: 152: 148: 145: 143: 140: 139: 135: 133: 131: 127: 123: 115: 113: 111: 110:Minkowski sum 107: 103: 97: 95: 91: 86: 83: 78: 76: 68: 61: 59: 57: 53: 45: 41: 36: 32: 30: 26: 22: 1073: 969: / 965: / 961: / 822:(1): 15640. 819: 815: 805: 784: 749: 743: 737: 686: 680: 619: 613: 607: 566: 560: 554: 519: 513: 507: 464: 458: 448: 439:10150/288016 419: 413: 403: 358: 352: 342: 327: 306: 271: 265: 259: 242: 236: 227: 192: 186: 119: 98: 94:quasicrystal 87: 79: 73: 49: 24: 18: 1074:Tetrahedron 1017:In a sphere 988:(on sphere) 959:In a circle 490:10919/24495 422:: 135–138. 245:: 121–134. 241:. 2nd ser. 1131:Tetrahedra 1115:Categories 1007:Apollonian 251:52.0002.04 169:References 29:tetrahedra 1079:Ellipsoid 1022:In a cube 875:, NYTimes 796:0912.4210 759:0910.5226 696:1012.5138 629:0908.4107 529:0908.1884 281:1008.2830 202:1001.0586 151:isohedral 80:In 2006, 75:Aristotle 856:26490670 776:13385357 721:20010683 662:52819935 654:19675649 591:19675632 546:32166668 499:20482187 395:16818891 298:18908213 219:18523116 136:See also 21:geometry 1088:Puzzles 847:4614866 824:Bibcode 729:4412674 701:Bibcode 634:Bibcode 599:5157975 571:Bibcode 469:Bibcode 386:1502280 363:Bibcode 122:spheres 1095:Conway 1012:Finite 971:square 854:  844:  774:  727:  719:  682:Nature 660:  652:  615:Nature 597:  589:  562:Nature 544:  497:  393:  383:  296:  249:  217:  82:Conway 791:arXiv 772:S2CID 754:arXiv 725:S2CID 691:arXiv 658:S2CID 624:arXiv 595:S2CID 542:S2CID 524:arXiv 319:(PDF) 294:S2CID 276:arXiv 215:S2CID 197:arXiv 149:- an 852:PMID 717:PMID 650:PMID 587:PMID 495:PMID 391:PMID 156:The 56:tile 941:Set 936:Bin 842:PMC 832:doi 764:doi 709:doi 687:462 642:doi 620:460 579:doi 567:460 534:doi 485:hdl 477:doi 465:104 434:hdl 424:doi 381:PMC 371:doi 359:103 286:doi 247:JFM 207:doi 160:is 104:of 42:of 19:In 1117:: 850:. 840:. 830:. 818:. 814:. 770:. 762:. 750:44 748:. 723:. 715:. 707:. 699:. 685:. 670:^ 656:. 648:. 640:. 632:. 618:. 593:. 585:. 577:. 565:. 540:. 532:. 520:40 518:. 493:. 483:. 475:. 463:. 457:. 432:. 420:76 418:. 412:. 389:. 379:. 369:. 357:. 351:. 292:. 284:. 272:46 270:. 243:15 213:. 205:. 193:44 191:. 177:^ 90:MC 23:, 914:e 907:t 900:v 858:. 834:: 826:: 820:5 799:. 793:: 778:. 766:: 756:: 731:. 711:: 703:: 693:: 664:. 644:: 636:: 626:: 601:. 581:: 573:: 548:. 536:: 526:: 501:. 487:: 479:: 471:: 442:. 436:: 426:: 397:. 373:: 365:: 336:. 321:. 300:. 288:: 278:: 253:. 221:. 209:: 199::

Index

geometry
tetrahedra

double lattice
triangular bipyramids
packing fraction
tile

Aristotle
Conway
MC
quasicrystal
double lattice
triangular bipyramids
Minkowski sum
spheres
Ulam's conjecture
packing congruent spheres
Packing problem
Disphenoid tetrahedral honeycomb
isohedral
triakis truncated tetrahedral honeycomb
cell-transitive


Discrete & Computational Geometry
arXiv
1001.0586
doi
10.1007/s00454-010-9273-0

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.