Knowledge (XXG)

The Magnificent Seven (neutron stars)

Source 📝

186:
field plays a fundamental role in their formation. Absorption features may then provide a powerful diagnostics for the strength of the surface field. At present, two main explanations for their origin have been suggested: either proton cyclotron resonances or atomic transitions in light elements. For the two sources in which a spin-down measure is available, the values of B obtained from spin-down assuming magnetodipolar braking are in reasonable agreement with those inferred from the line energy. Once the nature of the lines has been settled and if an independent measurement of the magnetic field is available (e.g. through spin-down), a measure of the gravitational redshift will be possible, paving the way to the simultaneous determination of both the star mass and radius.
128:. The continuous monitoring revealed however that the source underwent conspicuous changes in the period 2001–2003. In particular, while the total flux stayed more or less constant, the blackbody temperature steadily increased, going from about 86 to over 90 eV. This was accompanied by a change of the pulse profile, with an increase of the pulsed fraction. More recently this trend seems to have reversed. Starting from 2004, the temperature decreased, and there are hints that the overall evolution may be cyclic, with a period of about 10 years. 2005: 2065: 2089: 2015: 2041: 2077: 2053: 174:, a local group of stars with an age of about 30–50 million years formed by massive stars. Reconstruction of trajectories of neutron stars confirmed this conclusion. In the solar vicinity, these neutron stars outnumber radio pulsars of the same age. This means that the Magnificent Seven-like objects may be one of the most typical young 626:
Despite many attempts, no radio emission has been detected from these sources. The preliminary results from latest deep search with the GBT telescope are presented by Kondratiev et al. There are claims that some signal was detected at very low frequencies, but these results are not very certain and
111:
shapes are quasisinusoidal and single-peaked. However, RX J1308.6+2127 displays a double-peaked light curve, and in RX J0420.0-5022 there is some evidence for a skewness in the pulse profile, with a slower rise and faster decline. Rather counter-intuitively, the spectrum of both RX J0720.4-3125 and
185:
XMM-Newton's observations made it possible to detect wide absorption features in spectra of several of the Magnificent Seven. Although their origin is not clear yet (see Haberl (2006) for references and more detailed description of the results), it is almost certain that the stars' strong magnetic
166:
are known. The distance to the sources is about 161 parsecs. Similar data is obtained for the second brightest object RX J0720.4-3125. The distance is about 330 parsecs. Projected velocities are approximately 280 kilometers per second (km/s) and 115 km/s, respectively. These data allow
610:
can be determined by spectral analysis, the previous relation immediately yields the star radius. Reality is somewhat more complicated, but this oversimplified analysis captures the essence of what is needed in order to measure the neutron star radius: distance, flux and surface temperature.
428:
Data for the table were partly taken from Kaplan (2008), partly from a review by R. Turolla (2009), and partly from other sources. Temperature estimates vary slightly in different publications. The source RX J0720.4-3125 is variable in temperature and pulsed fraction.
611:
Observing the star thermal emission is therefore crucial. Among all thermally emitting neutrons stars the Magnificent Seven are the only ones with a purely blackbody spectrum. Their clean thermal emission, unmarred by contamination from
115:
A coherent timing solution has been recently obtained for RX J0720.4-3125 and RX J1308.6+2127. The periods are changing by 7 × 10 seconds per second and 10 s/s, respectively. The derived dipolar field is 2–3 × 10
441:(EOS) of matter at supra-nuclear densities. The most direct way of constraining the EOS is to measure simultaneously the neutron star mass and radius. If a neutron star emits blackbody radiation from its surface of radius 91:
All seven are recognized to be relatively close by (less than a few hundred parsecs), middle-age (several hundred thousand years) isolated neutron stars emitting soft X-rays due to cooling. The cooling is confirmed by the
123:
For a long time the Seven were considered to be steady sources, to the point that RX J0720.4-3125 was included among the calibration sources for the EPIC and RGS instruments on board the orbital X-ray telescope
565: 437:
The seven objects seem to be the best laboratory to study neutron star atmospheres and, probably, internal structure. The holy grail of neutron star astrophysics is the determination of the
1926: 104:); for comparison, the Sun's corona has a temperature of about 5 megakelvins). At least six out of the seven show spin periods in the range of approximately 3 to 12 seconds. 1511: 167:
astronomers to reconstruct the stars' trajectory and so identify the site of their birth. Distance estimates to other sources can be found in Posselt et al. (2007)
608: 588: 499: 479: 459: 75:. However, it was soon shown that MS 0317.7-6647 is, in fact, not a neutron star. Then in 2001 a new object fitting this classification was discovered: 1766: 890:
Hohle, M. M.; et al. (2009). "Spectral and temporal variations of the isolated neutron star RX J0720.4-3125: New XMM-Newton observations".
1551: 1409: 1031:
Kaplan, D. L.; van Kerkwijk, M. H. (2005b). "A Coherent Timing Solution for the Nearby Isolated Neutron Star RX J1308.6+2127/RBS 1223".
2114: 507: 1949: 984:
Kaplan, D. L.; van Kerkwijk, M. H. (2005a). "A Coherent Timing Solution for the Nearby Isolated Neutron Star RX J0720.4-3125".
1117:
Kondratiev, V. I.; et al. (2008). "A Search for Pulsed and Bursty Radio Emission from X-ray Dim Isolated Neutron Stars".
1975: 1954: 2031: 937:
Kaplan, D. L.; van Kerkwijk, M. H.; Anderson, J. (2002). "The Parallax and Proper Motion of RX J1856.5-3754 Revisited".
1895: 1944: 1787: 76: 1741: 1544: 1959: 135:. There are other types of young isolated neutron stars which are different from standard radio pulsars, such as 131:
The Magnificent Seven represent a large class of young neutron stars with many properties different from normal
2018: 1756: 1726: 1615: 1574: 1512:"Physicists May Have Found Dark Matter: X-rays Surrounding "Magnificent 7" May Be Traces of Theorized Particle" 144: 1673: 1419:
Walter, Frederick M.; Wolk, Scott J.; Neuhäuser, Ralph (1996). "Discovery of a nearby isolated neutron star".
1456:
Zampieri, L.; et al. (2001). "1RXS J214303.7+065419/RBS 1774: A new Isolated Neutron Star candidate".
2109: 2008: 1605: 636: 159: 140: 1651: 1537: 843:
Haberl, Frank (2007). "The magnificent seven: Magnetic fields and surface temperature distributions".
1873: 1861: 1668: 1475: 1428: 1389: 1372: 1325: 1278: 1216: 1169: 1132: 1097: 1050: 1003: 956: 909: 862: 101: 68: 60: 72: 47:, which was discovered by Walter et al. in 1992, and confirmed as a neutron star in 1996. The term 2093: 1846: 1824: 1706: 1600: 136: 158:
Some of the seven have very weak optical counterparts. For the brightest one (RX J1856-3754), the
2081: 2069: 1890: 1868: 1716: 1658: 1491: 1465: 1444: 1362: 1341: 1315: 1294: 1268: 1245: 1232: 1206: 1185: 1148: 1122: 1087: 1066: 1040: 1019: 993: 972: 946: 925: 899: 878: 852: 152: 1980: 1819: 1746: 1405: 1306:
Potekhin, Alexander Y.; De Luca, Andrea; Pons, José (2015). "Neutron Stars—Thermal Emitters".
620: 438: 79:. Since 2001, no new good candidates have appeared. All seven sources were discovered by the 56: 52: 2045: 1792: 1694: 1483: 1479: 1436: 1397: 1333: 1286: 1282: 1224: 1220: 1177: 1173: 1140: 1105: 1058: 1011: 964: 917: 913: 870: 866: 1160:
Malofeev, V. M.; Malov, O. I.; Teplykh, D. A. (2007). "Radio emission from AXP and XDINS".
1711: 1701: 1663: 1353:
Treves, A.; et al. (2001). "The Magnificent Seven: Close-by Cooling Neutron Stars?".
64: 44: 1432: 1393: 1376: 1329: 1136: 1101: 1054: 1007: 960: 1731: 1721: 593: 573: 484: 464: 444: 148: 1197:
Popov, S. B.; et al. (2003). "Young isolated neutron stars from the Gould Belt".
2103: 1921: 1916: 1885: 1646: 1631: 1189: 612: 179: 175: 163: 132: 97: 1495: 1345: 1298: 1236: 1152: 1070: 1023: 976: 882: 2057: 1797: 1771: 1641: 1636: 1560: 1448: 929: 117: 20: 1078:
Kaplan, David L.; et al. (2008). "Nearby, Thermally Emitting Neutron Stars".
921: 1487: 1228: 1856: 1841: 1807: 1736: 1401: 1384:
Turolla, Roberto (2009). "Isolated Neutron Stars: The Challenge of Simplicity".
170:
Population synthesis studies show that the Magnificent Seven are related to the
108: 1259:
Posselt, B.; et al. (2007). "The Magnificent Seven in the dusty prairie".
1985: 1900: 1880: 1851: 1802: 1751: 1337: 1290: 1181: 874: 171: 125: 93: 1831: 1814: 1388:. Astrophysics and Space Science Library. Vol. 357. pp. 141–163. 1836: 1595: 1470: 1367: 1273: 1250: 1211: 1045: 998: 951: 857: 1689: 1144: 1109: 1761: 1579: 1440: 616: 24: 2052: 1062: 1015: 968: 1320: 1127: 1092: 904: 816: 80: 703: 1533: 1529: 96:
shapes of their spectra. Typical temperatures are about 50–100
560:{\displaystyle F=\sigma T^{4}\left({\tfrac {R}{D}}\right)^{2}} 1121:. AIP Conference Series. Vol. 983. pp. 348–350. 761: 19:
is the informal name of a group of isolated young cooling
783: 772: 692: 27:
from Earth. These objects are also known under the names
155:. Some of them can be related to the Magnificent Seven. 1927:
Timeline of white dwarfs, neutron stars, and supernovae
739: 623:, makes these sources ideal targets for such a study. 536: 178:
with a galactic birth rate larger than that of normal
51:
was initially applied to the sources RX J1856.5-3754,
2029: 596: 576: 510: 487: 467: 447: 827: 120:
and the spin-down ages are 2 and 1.5 million years.
1968: 1935: 1909: 1780: 1682: 1624: 1588: 1567: 725: 714: 681: 670: 602: 582: 559: 493: 473: 453: 1244:Popov, S. B. (2006). "The Zoo of Neutron Stars". 112:RX J1308.6+2127 becomes harder at pulse minimum. 655: 653: 651: 735: 733: 659: 1545: 31:(X-ray Dim Isolated Neutron Stars) or simply 8: 1552: 1538: 1530: 193: 1469: 1366: 1319: 1272: 1249: 1210: 1126: 1091: 1044: 997: 950: 903: 856: 595: 575: 551: 535: 524: 509: 486: 466: 446: 407:−50° 22′ 48.1″ 379:−41° 22′ 30.9″ 351:+06° 54′ 17.0″ 321:+21° 27′ 06.8″ 291:+32° 49′ 18.1″ 261:−31° 25′ 50.2″ 233:−37° 54′ 30.5″ 43:The first to fit this classification was 1119:40 Years of Pulsars: Millisecond Pulsars 762:Kaplan, van Kerkwijk & Anderson 2002 2036: 805: 647: 794: 750: 7: 2014: 828:Malofeev, Malov & Teplykh 2007 14: 682:Walter, Wolk & Neuhäuser 1996 671:Potekhin, De Luca & Pons 2015 2087: 2075: 2063: 2051: 2039: 2013: 2004: 2003: 1767:Tolman–Oppenheimer–Volkoff limit 481:, the received flux at distance 1950:Fermi Gamma-ray Space Telescope 1080:Astrophysics of Compact Objects 726:Kaplan & van Kerkwijk 2005b 715:Kaplan & van Kerkwijk 2005a 1261:Astrophysics and Space Science 1162:Astrophysics and Space Science 845:Astrophysics and Space Science 77:1RXS J214303.7+065419/RBS 1774 1: 1976:X-ray pulsar-based navigation 1955:Compton Gamma Ray Observatory 23:at a distance of 120 to 500 1945:Rossi X-ray Timing Explorer 1788:Gamma-ray burst progenitors 1402:10.1007/978-3-540-76965-1_7 922:10.1051/0004-6361/200810812 461:at homogeneous temperature 100:(57.5–115 kilokelvins (see 2131: 1742:Quasi-periodic oscillation 1488:10.1051/0004-6361:20011151 1458:Astronomy and Astrophysics 1229:10.1051/0004-6361:20030680 1199:Astronomy and Astrophysics 892:Astronomy and Astrophysics 2115:Radio-quiet neutron stars 1999: 1960:Chandra X-ray Observatory 1386:Neutron Stars and Pulsars 1338:10.1007/s11214-014-0102-2 1291:10.1007/s10509-007-9344-8 1182:10.1007/s10509-007-9341-y 1033:The Astrophysical Journal 986:The Astrophysical Journal 939:The Astrophysical Journal 875:10.1007/s10509-007-9342-x 145:rotating radio transients 1727:Neutron-star oscillation 1616:Rotating radio transient 615:activity, a surrounding 190:Physical characteristics 1480:2001A&A...378L...5Z 1283:2007Ap&SS.308..171P 1221:2003A&A...406..111P 1174:2007Ap&SS.308..211M 914:2009A&A...498..811H 867:2007Ap&SS.308..181H 141:anomalous X-ray pulsars 1981:Tempo software program 817:Kondratiev et al. 2008 637:Calvera (X-ray source) 627:require confirmation. 604: 584: 561: 495: 475: 455: 160:trigonometric parallax 1991:The Magnificent Seven 1308:Space Science Reviews 605: 585: 562: 496: 476: 456: 17:The Magnificent Seven 1896:Thorne–Żytkow object 1355:X-Ray Astronomy 2000 704:Zampieri et al. 2001 594: 574: 508: 485: 465: 445: 220:Age (million years) 137:soft gamma repeaters 102:Electron temperature 1847:Neutron star merger 1707:Chandrasekhar limit 1674:Hulse–Taylor pulsar 1601:Soft gamma repeater 1433:1996Natur.379..233W 1394:2009ASSL..357..141T 1377:2001ASPC..234..225T 1330:2015SSRv..191..171P 1137:2008AIPC..983..348K 1102:2008AIPC..968..129K 1055:2005ApJ...635L..65K 1008:2005ApJ...628L..45K 961:2002ApJ...571..447K 773:Posselt et al. 2007 1891:Pulsar wind nebula 1869:Stellar black hole 693:Treves et al. 2001 660:Kaplan et al. 2008 600: 580: 557: 545: 491: 471: 451: 153:supernova remnants 2027: 2026: 1820:Supernova remnant 1610:Ultra-long period 1518:. 15 January 2021 1427:(6562): 233–235. 1411:978-3-540-76964-4 1145:10.1063/1.2900180 1110:10.1063/1.2840384 784:Popov et al. 2003 740:Hohle et al. 2009 621:supernova remnant 603:{\displaystyle T} 583:{\displaystyle D} 544: 494:{\displaystyle D} 474:{\displaystyle T} 454:{\displaystyle R} 439:equation of state 426: 425: 49:Magnificent Seven 2122: 2092: 2091: 2090: 2080: 2079: 2078: 2068: 2067: 2066: 2056: 2055: 2044: 2043: 2042: 2035: 2017: 2016: 2007: 2006: 1793:Asteroseismology 1695:Fast radio burst 1554: 1547: 1540: 1531: 1526: 1524: 1523: 1499: 1473: 1471:astro-ph/0108456 1452: 1441:10.1038/379233a0 1415: 1380: 1370: 1368:astro-ph/0011564 1349: 1323: 1314:(1–4): 171–206. 1302: 1276: 1274:astro-ph/0609275 1267:(1–4): 171–179. 1255: 1253: 1251:astro-ph/0610593 1240: 1214: 1212:astro-ph/0304141 1193: 1168:(1–4): 211–216. 1156: 1130: 1113: 1095: 1074: 1048: 1046:astro-ph/0511084 1027: 1001: 999:astro-ph/0506419 980: 954: 952:astro-ph/0111174 933: 907: 886: 860: 858:astro-ph/0609066 851:(1–4): 181–190. 830: 825: 819: 814: 808: 803: 797: 792: 786: 781: 775: 770: 764: 759: 753: 748: 742: 737: 728: 723: 717: 712: 706: 701: 695: 690: 684: 679: 673: 668: 662: 657: 609: 607: 606: 601: 589: 587: 586: 581: 570:So, if distance 566: 564: 563: 558: 556: 555: 550: 546: 537: 529: 528: 500: 498: 497: 492: 480: 478: 477: 472: 460: 458: 457: 452: 404: 376: 348: 318: 288: 258: 230: 194: 2130: 2129: 2125: 2124: 2123: 2121: 2120: 2119: 2100: 2099: 2098: 2088: 2086: 2076: 2074: 2064: 2062: 2050: 2040: 2038: 2030: 2028: 2023: 1995: 1964: 1937: 1931: 1905: 1776: 1712:Gamma-ray burst 1702:Bondi accretion 1678: 1620: 1606:Anomalous X-ray 1584: 1563: 1558: 1521: 1519: 1510: 1507: 1505:Further reading 1502: 1455: 1418: 1412: 1383: 1352: 1305: 1258: 1243: 1196: 1159: 1116: 1077: 1030: 983: 936: 889: 842: 838: 833: 826: 822: 815: 811: 804: 800: 793: 789: 782: 778: 771: 767: 760: 756: 749: 745: 738: 731: 724: 720: 713: 709: 702: 698: 691: 687: 680: 676: 669: 665: 658: 649: 645: 633: 592: 591: 572: 571: 531: 530: 520: 506: 505: 483: 482: 463: 462: 443: 442: 435: 402: 374: 346: 342: 316: 312: 286: 282: 256: 228: 217:line energy, eV 216: 212:Temperature, eV 206:Spin Periods, s 200:Right Ascension 192: 149:compact objects 89: 87:Characteristics 69:RX J0420.0-5022 65:RX J0720.4-3125 61:RX J0806.4-4132 45:RX J1856.5-3754 41: 12: 11: 5: 2128: 2126: 2118: 2117: 2112: 2102: 2101: 2097: 2096: 2084: 2072: 2060: 2048: 2025: 2024: 2022: 2021: 2011: 2000: 1997: 1996: 1994: 1993: 1988: 1983: 1978: 1972: 1970: 1966: 1965: 1963: 1962: 1957: 1952: 1947: 1941: 1939: 1933: 1932: 1930: 1929: 1924: 1919: 1913: 1911: 1907: 1906: 1904: 1903: 1898: 1893: 1888: 1883: 1878: 1877: 1876: 1866: 1865: 1864: 1854: 1849: 1844: 1839: 1834: 1829: 1828: 1827: 1822: 1812: 1811: 1810: 1805: 1795: 1790: 1784: 1782: 1778: 1777: 1775: 1774: 1769: 1764: 1759: 1754: 1749: 1744: 1739: 1734: 1729: 1724: 1722:Neutron matter 1719: 1714: 1709: 1704: 1699: 1698: 1697: 1686: 1684: 1680: 1679: 1677: 1676: 1671: 1666: 1661: 1656: 1655: 1654: 1649: 1644: 1634: 1628: 1626: 1625:Binary pulsars 1622: 1621: 1619: 1618: 1613: 1612: 1611: 1608: 1603: 1592: 1590: 1589:Single pulsars 1586: 1585: 1583: 1582: 1577: 1571: 1569: 1565: 1564: 1559: 1557: 1556: 1549: 1542: 1534: 1528: 1527: 1506: 1503: 1501: 1500: 1453: 1416: 1410: 1381: 1350: 1303: 1256: 1241: 1194: 1157: 1114: 1075: 1063:10.1086/499241 1028: 1016:10.1086/432536 981: 969:10.1086/339879 934: 887: 839: 837: 834: 832: 831: 820: 809: 798: 787: 776: 765: 754: 743: 729: 718: 707: 696: 685: 674: 663: 646: 644: 641: 640: 639: 632: 629: 613:magnetospheric 599: 579: 568: 567: 554: 549: 543: 540: 534: 527: 523: 519: 516: 513: 490: 470: 450: 434: 431: 424: 423: 420: 417: 414: 411: 408: 405: 400: 396: 395: 392: 389: 386: 383: 380: 377: 372: 368: 367: 364: 361: 358: 355: 352: 349: 344: 338: 337: 334: 331: 328: 325: 322: 319: 314: 308: 307: 304: 301: 298: 295: 292: 289: 284: 278: 277: 274: 271: 268: 265: 262: 259: 254: 250: 249: 246: 243: 240: 237: 234: 231: 226: 222: 221: 218: 213: 210: 207: 204: 201: 198: 191: 188: 147:, and central 88: 85: 73:MS 0317.7-6647 40: 37: 13: 10: 9: 6: 4: 3: 2: 2127: 2116: 2113: 2111: 2110:Neutron stars 2108: 2107: 2105: 2095: 2085: 2083: 2073: 2071: 2061: 2059: 2054: 2049: 2047: 2037: 2033: 2020: 2012: 2010: 2002: 2001: 1998: 1992: 1989: 1987: 1984: 1982: 1979: 1977: 1974: 1973: 1971: 1967: 1961: 1958: 1956: 1953: 1951: 1948: 1946: 1943: 1942: 1940: 1938:investigation 1934: 1928: 1925: 1923: 1922:Centaurus X-3 1920: 1918: 1915: 1914: 1912: 1908: 1902: 1899: 1897: 1894: 1892: 1889: 1887: 1886:Pulsar planet 1884: 1882: 1879: 1875: 1874:Related links 1872: 1871: 1870: 1867: 1863: 1862:Related links 1860: 1859: 1858: 1855: 1853: 1850: 1848: 1845: 1843: 1840: 1838: 1835: 1833: 1830: 1826: 1825:Related links 1823: 1821: 1818: 1817: 1816: 1813: 1809: 1806: 1804: 1801: 1800: 1799: 1796: 1794: 1791: 1789: 1786: 1785: 1783: 1779: 1773: 1770: 1768: 1765: 1763: 1760: 1758: 1755: 1753: 1750: 1748: 1745: 1743: 1740: 1738: 1735: 1733: 1730: 1728: 1725: 1723: 1720: 1718: 1715: 1713: 1710: 1708: 1705: 1703: 1700: 1696: 1693: 1692: 1691: 1688: 1687: 1685: 1681: 1675: 1672: 1670: 1667: 1665: 1662: 1660: 1657: 1653: 1650: 1648: 1647:X-ray burster 1645: 1643: 1640: 1639: 1638: 1635: 1633: 1630: 1629: 1627: 1623: 1617: 1614: 1609: 1607: 1604: 1602: 1599: 1598: 1597: 1594: 1593: 1591: 1587: 1581: 1578: 1576: 1573: 1572: 1570: 1566: 1562: 1555: 1550: 1548: 1543: 1541: 1536: 1535: 1532: 1517: 1513: 1509: 1508: 1504: 1497: 1493: 1489: 1485: 1481: 1477: 1472: 1467: 1463: 1459: 1454: 1450: 1446: 1442: 1438: 1434: 1430: 1426: 1422: 1417: 1413: 1407: 1403: 1399: 1395: 1391: 1387: 1382: 1378: 1374: 1369: 1364: 1360: 1356: 1351: 1347: 1343: 1339: 1335: 1331: 1327: 1322: 1317: 1313: 1309: 1304: 1300: 1296: 1292: 1288: 1284: 1280: 1275: 1270: 1266: 1262: 1257: 1252: 1247: 1242: 1238: 1234: 1230: 1226: 1222: 1218: 1213: 1208: 1204: 1200: 1195: 1191: 1187: 1183: 1179: 1175: 1171: 1167: 1163: 1158: 1154: 1150: 1146: 1142: 1138: 1134: 1129: 1124: 1120: 1115: 1111: 1107: 1103: 1099: 1094: 1089: 1085: 1081: 1076: 1072: 1068: 1064: 1060: 1056: 1052: 1047: 1042: 1038: 1034: 1029: 1025: 1021: 1017: 1013: 1009: 1005: 1000: 995: 991: 987: 982: 978: 974: 970: 966: 962: 958: 953: 948: 944: 940: 935: 931: 927: 923: 919: 915: 911: 906: 901: 897: 893: 888: 884: 880: 876: 872: 868: 864: 859: 854: 850: 846: 841: 840: 835: 829: 824: 821: 818: 813: 810: 807: 802: 799: 796: 791: 788: 785: 780: 777: 774: 769: 766: 763: 758: 755: 752: 747: 744: 741: 736: 734: 730: 727: 722: 719: 716: 711: 708: 705: 700: 697: 694: 689: 686: 683: 678: 675: 672: 667: 664: 661: 656: 654: 652: 648: 642: 638: 635: 634: 630: 628: 624: 622: 618: 614: 597: 590:is known and 577: 552: 547: 541: 538: 532: 525: 521: 517: 514: 511: 504: 503: 502: 488: 468: 448: 440: 432: 430: 421: 418: 415: 412: 409: 406: 401: 398: 397: 393: 390: 387: 384: 381: 378: 373: 370: 369: 365: 362: 359: 356: 353: 350: 345: 340: 339: 335: 332: 329: 326: 323: 320: 315: 310: 309: 305: 302: 299: 296: 293: 290: 285: 280: 279: 275: 272: 269: 266: 263: 260: 255: 252: 251: 247: 244: 241: 238: 235: 232: 227: 224: 223: 219: 214: 211: 208: 205: 202: 199: 196: 195: 189: 187: 183: 181: 180:radio pulsars 177: 176:neutron stars 173: 168: 165: 164:proper motion 161: 156: 154: 150: 146: 142: 138: 134: 133:radio pulsars 129: 127: 121: 119: 113: 110: 105: 103: 99: 98:electronvolts 95: 86: 84: 82: 78: 74: 70: 66: 62: 58: 54: 50: 46: 38: 36: 34: 30: 26: 22: 21:neutron stars 18: 2094:Solar System 1990: 1798:Compact star 1772:Urca process 1762:Timing noise 1747:Relativistic 1642:X-ray binary 1637:X-ray pulsar 1561:Neutron star 1520:. Retrieved 1516:SciTechDaily 1515: 1461: 1457: 1424: 1420: 1385: 1358: 1354: 1311: 1307: 1264: 1260: 1202: 1198: 1165: 1161: 1118: 1083: 1079: 1036: 1032: 989: 985: 942: 938: 895: 891: 848: 844: 823: 812: 806:Turolla 2009 801: 790: 779: 768: 757: 746: 721: 710: 699: 688: 677: 666: 625: 569: 436: 427: 197:Source, RX J 184: 169: 157: 130: 122: 114: 106: 90: 48: 42: 32: 28: 16: 15: 2082:Outer space 2070:Spaceflight 1857:White dwarf 1842:Microquasar 1808:Exotic star 1737:Pulsar kick 1659:Millisecond 1575:Radio-quiet 1205:: 111–117. 1086:: 129–136. 795:Haberl 2007 403:04 20 01.95 399:0420.0–5022 375:08 06 23.40 371:0806.4−4123 347:21 43 03.30 341:2143.0+0654 317:13 08 48.27 311:1308.6+2127 287:16 05 18.52 281:1605.3+3249 257:07 20 24.96 253:0720.4−3125 229:18 56 35.11 225:1856.5−3754 209:Amplitude/2 203:Declination 109:light curve 83:satellite. 2104:Categories 1986:Astropulse 1901:QCD matter 1881:Radio star 1852:Quark-nova 1803:Quark star 1752:Rp-process 1683:Properties 1522:2021-01-27 1039:(1): L65. 992:(1): L45. 945:(1): 447. 898:(3): 811. 751:Popov 2006 643:References 343:(RBS 1774) 313:(RBS 1223) 283:(RBS 1556) 215:Absorption 172:Gould Belt 126:XMM-Newton 94:black body 2046:Astronomy 1936:Satellite 1910:Discovery 1832:Hypernova 1815:Supernova 1757:Starquake 1464:: L5–L9. 1321:1409.7666 1190:120490290 1128:0710.1648 1093:0801.1143 905:0810.5319 518:σ 2009:Category 1837:Kilonova 1664:Be/X-ray 1596:Magnetar 1496:16572677 1346:53365097 1299:16718273 1237:16094637 1153:15026449 1071:14439352 1024:16973889 977:10718657 883:15013359 631:See also 433:Research 2032:Portals 2019:Commons 1781:Related 1732:Optical 1690:Blitzar 1669:Spin-up 1476:Bibcode 1449:4313699 1429:Bibcode 1390:Bibcode 1373:Bibcode 1361:: 225. 1326:Bibcode 1279:Bibcode 1217:Bibcode 1170:Bibcode 1133:Bibcode 1098:Bibcode 1051:Bibcode 1004:Bibcode 957:Bibcode 930:1808233 910:Bibcode 863:Bibcode 836:Sources 360:102–104 57:RBS1223 53:RBS1556 39:History 25:parsecs 1717:Glitch 1632:Binary 1580:Pulsar 1494:  1447:  1421:Nature 1408:  1344:  1297:  1235:  1188:  1151:  1069:  1022:  975:  928:  881:  617:nebula 2058:Stars 1969:Other 1917:LGM-1 1568:Types 1492:S2CID 1466:arXiv 1445:S2CID 1363:arXiv 1342:S2CID 1316:arXiv 1295:S2CID 1269:arXiv 1246:arXiv 1233:S2CID 1207:arXiv 1186:S2CID 1149:S2CID 1123:arXiv 1088:arXiv 1067:S2CID 1041:arXiv 1020:S2CID 994:arXiv 973:S2CID 947:arXiv 926:S2CID 900:arXiv 879:S2CID 853:arXiv 422:1.98 394:3.24 382:11.37 366:3.65 336:1.46 324:10.31 300:93–96 276:1.90 270:85–87 248:3.76 242:60–62 118:Gauss 81:ROSAT 29:XDINS 1652:List 1406:ISBN 501:is: 410:3.45 354:9.44 264:8.39 239:1.5% 236:7.06 162:and 107:The 71:and 33:XINS 1484:doi 1462:378 1437:doi 1425:379 1398:doi 1359:234 1334:doi 1312:191 1287:doi 1265:308 1225:doi 1203:406 1178:doi 1166:308 1141:doi 1106:doi 1084:968 1059:doi 1037:635 1012:doi 990:628 965:doi 943:571 918:doi 896:498 871:doi 849:308 619:or 419:330 413:13% 391:460 363:700 333:300 330:102 327:18% 303:450 294:??? 273:270 267:11% 151:in 2106:: 1514:. 1490:. 1482:. 1474:. 1460:. 1443:. 1435:. 1423:. 1404:. 1396:. 1371:. 1357:. 1340:. 1332:. 1324:. 1310:. 1293:. 1285:. 1277:. 1263:. 1231:. 1223:. 1215:. 1201:. 1184:. 1176:. 1164:. 1147:. 1139:. 1131:. 1104:. 1096:. 1082:. 1065:. 1057:. 1049:. 1035:. 1018:. 1010:. 1002:. 988:. 971:. 963:. 955:. 941:. 924:. 916:. 908:. 894:. 877:. 869:. 861:. 847:. 732:^ 650:^ 416:45 388:92 385:6% 357:4% 306:? 245:no 182:. 143:, 139:, 67:, 63:, 59:, 55:, 35:. 2034:: 1553:e 1546:t 1539:v 1525:. 1498:. 1486:: 1478:: 1468:: 1451:. 1439:: 1431:: 1414:. 1400:: 1392:: 1379:. 1375:: 1365:: 1348:. 1336:: 1328:: 1318:: 1301:. 1289:: 1281:: 1271:: 1254:. 1248:: 1239:. 1227:: 1219:: 1209:: 1192:. 1180:: 1172:: 1155:. 1143:: 1135:: 1125:: 1112:. 1108:: 1100:: 1090:: 1073:. 1061:: 1053:: 1043:: 1026:. 1014:: 1006:: 996:: 979:. 967:: 959:: 949:: 932:. 920:: 912:: 902:: 885:. 873:: 865:: 855:: 598:T 578:D 553:2 548:) 542:D 539:R 533:( 526:4 522:T 515:= 512:F 489:D 469:T 449:R 297:–

Index

neutron stars
parsecs
RX J1856.5-3754
RBS1556
RBS1223
RX J0806.4-4132
RX J0720.4-3125
RX J0420.0-5022
MS 0317.7-6647
1RXS J214303.7+065419/RBS 1774
ROSAT
black body
electronvolts
Electron temperature
light curve
Gauss
XMM-Newton
radio pulsars
soft gamma repeaters
anomalous X-ray pulsars
rotating radio transients
compact objects
supernova remnants
trigonometric parallax
proper motion
Gould Belt
neutron stars
radio pulsars
equation of state
magnetospheric

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.