Knowledge (XXG)

Therapeutic gene modulation

Source πŸ“

695:(RNAi). The primary problem with using RNAi in gene modulation is drug delivery to target cells. RNAi gene modulation has been successfully applied to mice toward the treatment of a mouse model for inflammatory bowel disease. This treatment utilized liposome-based beta-7 integrin-targeted, stabilized nanoparticles entrapping short interfering RNAs (siRNAs). There are several other forms of RNAi delivery, including: polyplex delivery, ligand-siRNA conjugates, naked delivery, inorganic particle deliver using gold nanoparticles, and site specific local delivery. 404: 384: 376: 286: 538: 546: 400:
to inhibit transcription of the downstream 5S RNA. In contrast, if the regulator is a repressor, this will increase transcriptional levels. As an example, SPA targeting to the host factor LSF, which represses expression of the human immunodeficiency virus (HIV) type 1 long terminal repeat (LTR), blocks binding of LSF and consequently de-represses expression of LTR .
311:. This occurs through hydrogen bonding within the minor groove of DNA. The amide pairs Py/Im, Py/Hp, Hp/Py, and Im/Py recognize the Watson-Crick base pairs C-G, A-T, T-A, and G-C, respectively (Table 1). See figure for a graphical representation of 5'-GTAC-3' recognition by a SPA. SPAs have low toxicity, but have not yet been used in human gene modulation. 636:
level - can influence the accessibility of sequences of DNA to transcription machinery, thereby influencing the rate at which it can be transcribed. If, instead of impacting the DNA strand directly, as described above, a designer zinc-finger protein instead affects epigenetic modification state for a
399:
SPAs may also modulate transcription by targeting a transcription regulator binding site. If the regulator is an activator of transcription, this will decrease transcriptional levels. As an example, SPA targeting to the binding site for the activating transcription factor TFIIIA has been demonstrated
618:
in that region will subsequently result. Transcription rates of genes so-affected will be reduced. Many of the effector domains function to modulate either the DNA directly - e.g. via methylation, cleaving, or recombination of the target DNA sequence - or by modulating its transcription rate - e.g.
366:
The major structural drawback to unmodified SPAs as gene modulators is that their recognition sequence cannot be extended beyond 5 Watson-Crick base pairings. The natural curvature of the DNA minor groove is too tight a turn for the hairpin structure to match. There are several groups with proposed
137: 631:
state and the ability of transcriptional machinery to access the affected genes. Epigenetic modification is a major theme in determining varying expression levels for genes, as explained by the idea that how tightly-wound the DNA strand is - from histones at the local level up to chromatin at the
243:
complexes are assembled on the targeted sequence, the DNA is repaired. Damage of the intramolecular recombination substrate can then be repaired and detected if resection goes far enough to produce compatible ends on both sides of the cleavage site and then 3' overhangs are ligated leading to the
416:
SPAs have not been shown to directly modify DNA or have activity other than direct blocking of other factors or processes. However, modifying agents can be bound to the tail ends of the hairpin structure. The specific binding of the SPA to DNA allows for site-specific targeting of the conjugated
420:
SPAs have been paired with the DNA-alkylating moieties cyclopropylpyrroloindole and chlorambucil that were able to damage and crosslink SV40 DNA. This effect inhibited cell cycling and growth. Chlorambucil, a chemotherapeutic agent, was more effective when conjugated to an SPA than without.
79:
variants. In contrast, traditional gene therapy typically introduces a gene which can express only one transcript, rather than a set of stoichiometrically-expressed spliced transcript variants. Additionally, virally-introduced genes can be targeted for gene silencing by methylation which can
424:
In 2012, SPAs were conjugated to SAHA, a potent histone deacetylase (HDAC) inhibitor. SPAs with conjugated SAHA were targeted to Oct-3/4 and Nanog which induced epigenetic remodeling and consequently increased expression of multiple pluripotency related genes in mouse embryonic fibroblasts.
247:
In model systems TFOs can inhibit gene expression at the DNA level as well as induce targeted mutagenesis in the model. TFO-induced inhibition of transcription elongation on endogenous targets have been tested on cell cultures with success. However, despite much
63:
level. The advantage to this approach over modulation at the mRNA or protein level is that every cell contains only a single gDNA copy. Thus the target copy number is significantly lower allowing the drugs to theoretically be administered at much lower doses.
27:
in that gene modulation seeks to alter the expression of an endogenous gene (perhaps through the introduction of a gene encoding a novel modulatory protein) whereas gene therapy concerns the introduction of a gene whose product aids the recipient directly.
2258:
Snowden, AW.; Zhang, L.; Urnov, F.; Dent, C.; Jouvenot, Y.; Zhong, X.; Rebar, EJ.; Jamieson, AC.; et al. (December 2003). "Repression of vascular endothelial growth factor A in glioblastoma cells using engineered zinc finger transcription factors".
609:
Effector domains bound to the zinc-finger can also have comparable effects. It is the function of these effector domains which are arguably the most important with respect to the use of designer zinc-finger proteins for therapeutic gene modulation. If a
281:
of DNA. They can exert an effect either directly, by binding a regulatory region or transcribed region of a gene to modify transcription, or indirectly, by designed conjugation with another agent that makes alterations around the DNA target site.
259:
by targeting transcription initiation or elongation, arresting at the triplex binding sites, or introducing permanent changes in a target sequence via stimulating a cell's inherent repair pathways. These applications can be relevant in creating
104:
in duplex DNA which creates a third strand or a triple helix. The binding occurs at polypurine or polypyrimidine regions via Hoogsteen hydrogen bonds to the purine (A / G) bases on the double stranded DNA that is already in the form of the
486: 371:
which relaxes the structure. Another approach to extending the recognition length is to use several short hairpins in succession. This approach has increased the recognition length to up to eleven Watson-Crick base pairs.
2096:
Urnov, FD.; Miller, JC.; Lee, YL.; Beausejour, CM.; Rock, JM.; Augustus, S.; Jamieson, AC.; Porteus, MH.; et al. (June 2005). "Highly efficient endogenous human gene correction using designed zinc-finger nucleases".
298:
Specific bases in the minor groove of DNA can be recognized and bound by small synthetic polyamides (SPAs). DNA-binding SPAs have been engineered to contain three polyamide amino acid components: hydroxypyrrole (Hp),
678:
were able to demonstrate that their engineered protein could block transcription of the oncogene in vivo. Leukemia cells became dependent on regular growth factors, bringing the cell cycle back under the control of
264:
that inhibit gene expression at the DNA level. Since aberrant gene expression is a hallmark of cancer, modulating these endogenous genes' expression levels could potentially act as a therapy for multiple
289:
Cartoon representation of a synthetic polyamide to DNA sequence recognition. The DNA sequence 5'-GTAC-3' is recognized by the amino acid pairs Py/Im, Py/Hp, Hp/Py, and Im/Py. See for chemical structure
133:(A / G), or mixed purine and pyrimidine bind to the same purine-rich strand via reverse Hoogsteen bonds in an anti-parallel fashion. TFO's can recognize purine-rich target strands for duplex DNA. 172:
gene target sites to polypurine-polypyrimidine stretches in duplex DNA. If a method to also allow TFOs to bind to pyrimidine bases was generated, this would enable TFOs to target any part of the
239:. If a target sequence is located between two inactive copies of a gene, DNA ligands, such as TFOs, can bind to the target site and would be recognized as DNA lesions. To fix these lesions, 307:(Py). Chains of these amino acids loop back on themselves in a hairpin structure. The amino acids on either side of the hairpin form a pair which can specifically recognize both sides of a 619:
inhibiting transcription via repressor domains that block transcriptional machinery, promoting transcription with activation domains that recruit transcriptional machinery to the site, or
121:
orientation to target polypurine or polypyrimidine regions. Since the DNA-recognition codes are different for the parallel and the anti-parallel fashion of TFO binding, TFOs composed of
2481:"Identifier NCT00080392.Modulation of Vascular Endothelial Growth Factor (VEGF) Using an Engineered Zinc-Finger Transcription Factor to Treat Lower Limb Intermittent Claudication" 478:
atom, which serves to stabilize the protein domain as a whole. This stabilization particularly benefits the Ξ±-helix in its function as the DNA-recognition and -binding domain.
396:
SPAs may inhibit transcription through binding within a transcribed region of a target gene. This inhibition occurs through blocking of elongation by an RNA polymerase.
100:
Triplex-forming oligonucleotides (TFO) are one potential method to achieve therapeutic gene modulation. TFOs are approximately 10-40 base pairs long and can bind in the
522:), thereby ensuring that the protein motif is highly selective of its target. In engineering a designer zinc-finger protein, researchers can utilize techniques such as 83:
There are three major categories of agents that act as transcriptional gene modulators: triplex-forming oligonucleotides (TFOs), synthetic polyamides (SPAs), and
195:
and specificity, in vivo stability, and uptake into cells. Researchers are attempting to overcome these limitations by improving TFO characteristics through
948:
Simon, P.; Cannata, F.; Concordet, JP.; Giovannangeli, C. (August 2008). "Targeting DNA with triplex-forming oligonucleotides to modify gene sequence".
80:
counteract the effect of traditional gene therapy. This is not anticipated to be a problem for transcriptional modulation as it acts on endogenous DNA.
203:
between the TFO and the DNA duplex. Also due to their high molecular weight, uptake into cells is limited and some strategies to overcome this include
590:- the binding site for naturally-occurring transcription factors will be obscured, leading to a corresponding decrease or increase, respectively, in 2337:
Dykxhoorn, DM.; Lieberman, J. (2006). "Running interference: prospects and obstacles to using small interfering RNAs as small molecule drugs".
1791: 2554: 1298:
Lown JW (1988). "Lexitropsins: rational design of DNA sequence reading agents as novel anti-cancer agents and potential cellular probes".
59:
An approach to therapeutic modulation utilizes agents that modulate endogenous transcription by specifically targeting those genes at the
562:
in a number of ways. Ultimately, two factors are primarily responsible for the result on expression: whether the targeted sequence is a
180:
of TFO to bind to a target DNA region. An approach to overcome this limitation is to develop TFOs with modified nucleotides that act as
2207:
Lara, H.; Wang, Y.; Beltran, AS.; JuΓ‘rez-Moreno, K.; Yuan, X.; Kato, S.; Leisewitz, AV.; Cuello Fredes, M.; et al. (August 2012).
117:
TFOs can be either polypurine or polypyrimidine molecules and bind to one of the two strands in the double helix in either parallel or
788:"Chimeric retroviral helper virus and picornavirus IRES sequence to eliminate DNA methylation for improved retroviral packaging cells" 223:
and much of this revolves around their potential applications in antigene therapy. In particular they have been used as inducers of
614:
domain is bound to the designer zinc-finger protein, when the zinc-finger protein binds to the target DNA sequence an increase in
739:
have been completed which identify this zinc-finger protein as a promising and safe potential therapeutic agent for treatment of
36: 752: 983:
Zhou, Y.; Kierzek, E.; Loo, ZP.; Antonio, M.; Yau, YH.; Chuah, YW.; Geifman-Shochat, S.; Kierzek, R.; Chen, G. (July 2013).
1035:
Guntaka, RV.; Varma, BR.; Weber, KT. (January 2003). "Triplex-forming oligonucleotides as modulators of gene expression".
674:
with the tri-domain zinc-finger protein in order to facilitate binding of the protein to genomic DNA in the nucleus, Choo
261: 232: 732: 659: 1541:"Targeted derepression of the human immunodeficiency virus type 1 long terminal repeat by pyrrole-imidazole polyamides" 1070:
Faria, M.; Wood, CD.; Perrouault, L.; Nelson, JS.; Winter, A.; White, MR.; Helene, C.; Giovannangeli, C. (April 2000).
740: 736: 671: 177: 118: 1488:
Gottesfeld JM, Neely L, Trauger JW, Baird EE, Dervan PB (1997). "Regulation of gene expression by small molecules".
244:
formation of a single active copy of the gene and the loss of all the sequences between the two copies of the gene.
640:
In the first case to successfully demonstrate the use of designer zinc-finger proteins to modulate gene expression
1742:
Papworth, M.; Kolasinska, P.; Minczuk, M. (January 2006). "Designer zinc-finger proteins and their applications".
2564: 2559: 1809:"Use of a zinc-finger consensus sequence framework and specificity rules to design specific DNA binding proteins" 1325:
Trauger JW, Baird EE, Dervan PB (1996). "Recognition of DNA by designed ligands at subnanomolar concentrations".
523: 224: 106: 44: 591: 168:
Another limitation is that TFOs can only bind to purine-rich target strands and this would limit the choice of
32: 1680:"A synthetic small molecule for rapid induction of multiple pluripotency genes in mouse embryonic fibroblasts" 367:
workarounds to this problem. SPAs can be made to better follow the curvature of the minor groove by inserting
252:
success, there has been limited achievement in cellular applications potentially due to target accessibility.
1132:
Reddy BS, Sharma SK, Lown JW (2001). "Recent developments in sequence selective minor groove DNA effectors".
185: 1868:"A rapid, generally applicable method to engineer zinc fingers illustrated by targeting the HIV-1 promoter" 2346: 531: 680: 192: 1072:"Targeted inhibition of transcription elongation in cells mediated by triplex-forming oligonucleotides" 846:"Therapeutic modulation of endogenous gene function by agents with designed DNA-sequence specificities" 2161: 2106: 2050: 1936: 1820: 1691: 1497: 1334: 1263:
Dervan PB, Edelson BS (2003). "Recognition of the DNA minor groove by pyrrole-imidazole polyamides".
1221: 1083: 2351: 1206: 723:
that prompts the patient to produce an engineered transcription factor, the target of which is the
708: 648:
designed a protein consisting of three zinc-finger domains that targeted a specific sequence on a
579: 447: 403: 383: 375: 181: 141: 126: 84: 1922:"In vivo repression by a site-specific DNA-binding protein designed against an oncogenic sequence" 534:
of motifs with known target specificity to produce a library of sequence-specific final proteins.
176:. Also the human genome is rich in polypurine and polypyrimidine sequences which could affect the 2130: 1970: 1921: 1521: 1358: 1245: 716: 228: 220: 235:. One such gene sequence modification method is through the targeting DNA with TFOs to active a 2384:"Systemic leukocyte-directed siRNA delivery revealing cyclin D1 as an anti-inflammatory target" 1639:"Cell-free and cellular activities of a DNA sequence selective hairpin polyamide-CBI conjugate" 2529: 2462: 2413: 2364: 2319: 2268: 2240: 2189: 2122: 2078: 2019: 1962: 1897: 1848: 1787: 1759: 1717: 1660: 1619: 1570: 1513: 1470: 1447: 1428: 1393: 1350: 1307: 1280: 1237: 1207:"Recognition of the four Watson-Crick base pairs in the DNA minor groove by synthetic ligands" 1184: 1149: 1111: 1052: 1014: 965: 927: 875: 817: 757: 563: 285: 2519: 2452: 2444: 2403: 2395: 2356: 2309: 2299: 2230: 2220: 2209:"Targeting serous epithelial ovarian cancer with designer zinc finger transcription factors" 2179: 2169: 2114: 2068: 2058: 2009: 2001: 1952: 1944: 1887: 1879: 1838: 1828: 1751: 1707: 1699: 1650: 1609: 1601: 1560: 1552: 1505: 1462: 1420: 1385: 1342: 1272: 1229: 1176: 1141: 1101: 1091: 1044: 1004: 996: 957: 917: 909: 865: 857: 807: 799: 767: 707:. The efficacy and safety of EW-A-401, an engineered zinc-finger transcription factor, as a 692: 575: 571: 527: 510:
on the Ξ±-helix gives the motif its target sequence specificity. The domain binds to a seven-
507: 204: 48: 2360: 606:
transcription complexes, resulting in a truncated or otherwise nonfunctional gene product.
277:
Synthetic polyamides are a set of small molecules that form specific hydrogen bonds to the
615: 587: 559: 519: 515: 379:
Synthetic polyamide blocking of RNA transcription by binding within the transcribed region
196: 20: 719:
ailment, has been investigated in clinical trials. The protein consists of an engineered
23:
at one of various stages, with a view to alleviate some form of ailment. It differs from
2165: 2150:"Positive and negative regulation of endogenous genes by designed transcription factors" 2110: 2054: 1990:"Site-selective in vivo targeting of cytosine-5 DNA methylation by zinc-finger proteins" 1940: 1824: 1695: 1590:"DNA crosslinking and biological activity of a hairpin polyamide-chlorambucil conjugate" 1501: 1411:
Kers I, Dervan PB (2002). "Search for the optimal linker in tandem hairpin polyamides".
1338: 1225: 1087: 537: 2457: 2432: 2408: 2383: 2314: 2287: 2235: 2208: 1892: 1867: 1712: 1679: 1556: 1009: 984: 922: 897: 704: 652: 603: 256: 236: 200: 40: 2014: 1989: 1614: 1589: 1565: 1540: 1424: 1276: 1180: 1048: 870: 845: 812: 787: 545: 2548: 2184: 2149: 2073: 2038: 1843: 1808: 1389: 1249: 1106: 1071: 985:"Recognition of RNA duplexes by chemically modified triplex-forming oligonucleotides" 803: 567: 154: 1974: 898:"Oligo/polynucleotide-based gene modification: strategies and therapeutic potential" 703:
Designer zinc-finger proteins, on the other hand, have undergone some trials in the
140:
Triple Stranded DNA: TFOs bind in a similar fashion to the double stranded DNA as a
2134: 1588:
Wang YD, Dziegielewski J, Wurtz NR, Dziegielewska B, Dervan PB, Beerman TA (2003).
1525: 1362: 762: 728: 712: 368: 76: 68: 24: 2480: 637:
target DNA region, modulation of gene expression could similarly be accomplished.
961: 2304: 1678:
Pandian NG, Nakano Y, Sato S, Morinaga H, Bando T, Nagase H, Sugiyama H (2012).
624: 463: 451: 208: 158: 2382:
Peer, D.; Park, EJ.; Morishita, Y.; Carman, CV.; Shimaoka, M. (February 2008).
1755: 458:. In both designer and natural zinc-finger motifs, the protein consists of two 666:
cells to proliferate in the absence of specific growth factors, a hallmark of
633: 574:
are bound to the zinc-finger domain. If the target sequence for an engineered
511: 503: 459: 240: 122: 1145: 2399: 2225: 628: 611: 583: 467: 308: 300: 2533: 2466: 2417: 2368: 2323: 2272: 2244: 2193: 2174: 2126: 2063: 2023: 1901: 1833: 1763: 1721: 1664: 1655: 1638: 1623: 1574: 1474: 1432: 1397: 1284: 1188: 1153: 1115: 1096: 1056: 1018: 969: 931: 879: 821: 2082: 2039:"Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain" 1966: 1852: 1517: 1354: 1311: 1241: 913: 2005: 1605: 1000: 861: 663: 655: 471: 439: 249: 169: 72: 2448: 2118: 485: 482:
is an example of a naturally-occurring protein with zinc-finger motifs.
2524: 2507: 720: 649: 641: 620: 304: 2508:"VEGF gene therapy: therapeutic angiogenesis in the clinic and beyond" 1957: 1703: 1539:
Coull JJ, He G, Melander C, Rucker VC, Dervan PB, Margolis DM (2002).
1466: 157:, the nitrogen atom at position 3 on the cytosine residue needs to be 125:(C / T) bind to the purine-rich strand of the target double helix via 1948: 1509: 1448:"Recognition of ten base pairs of DNA by head-to-head hairpin dimers" 1376:
Wemmer DE (2000). "Designed sequence-specific minor groove ligands".
1346: 1167:
Dervan PB (2001). "Molecular Recognition of DNA by Small Molecules".
724: 667: 479: 455: 266: 173: 130: 60: 1883: 1637:
Wang YD, Dziegielewski J, Chang AY, Dervan PB, Beerman TA (2002).
1233: 691:
The major approach to post-transcriptional gene modulation is via
219:
Scientists are still refining the technology to turn TFOs into a
153:
In order for TFO motifs to bind in a parallel fashion and create
599: 595: 475: 136: 499: 443: 278: 101: 67:
This approach also offers several advantages over traditional
31:
Modulation of gene expression can be mediated at the level of
1205:
White S, Szewcxyk JW, Turner JM, Baird EE, Dervan PB (1998).
162: 602:, the designer zinc-finger will obscure the sequence from 75:
transcription should yield correct relative expression of
1786:. San Francisco: Pearson/Benjamin Cummings. p. 595. 315:
Table 1. Amide pair to nucleotide pair recognition code.
47:. It may also be mediated post-transcriptionally through 1920:
Choo, Y.; SΓ‘nchez-GarcΓ­a, I.; Klug, A. (December 1994).
165:
levels it is not, which could prevent parallel binding.
2037:
Kim, YG.; Cha, J.; Chandrasegaran, S. (February 1996).
129:
hydrogen bonds in a parallel fashion. TFOs composed of
2487:. U.S. National Institutes of Health. 30 December 2011 2148:
Beerli, RR.; Dreier, B.; Barbas, CF. (February 2000).
1988:
Carvin, CD.; Parr, RD.; Kladde, MP. (November 2003).
387:
Synthetic polyamide blocking of transcription factors
731:development. Although not yet approved by the U.S. 313: 207:, coupling of the TFO to hydrophobic residues like 454:domains to modulate specific target areas of the 407:Synthetic polyamide conjugated to modifying agent 1737: 1735: 1733: 1731: 199:, such as modifying the TFO backbone to reduce 1777: 1775: 1773: 1030: 1028: 891: 889: 514:sequence of DNA (positions 1 through 6 on the 1200: 1198: 896:Sargent, RG.; Kim, S.; Gruenert, DC. (2011). 725:vascular endothelial growth factor-A (VEGF-A) 438:Designer zinc-finger proteins are engineered 227:, reagents that selectively and specifically 191:Other limitations include concerns regarding 8: 1915: 1913: 1911: 1866:Isalan, M.; Klug, A.; Choo, Y. (July 2001). 1127: 1125: 943: 941: 558:Designer zinc-finger proteins can modulate 2433:"Progress toward in vivo use of siRNAs-II" 839: 837: 835: 833: 831: 658:. This specific oncogene is implicated in 598:. Similarly, if the target sequence is an 188:of the TFO for specific target sequences. 2523: 2456: 2407: 2350: 2313: 2303: 2234: 2224: 2183: 2173: 2072: 2062: 2013: 1956: 1891: 1842: 1832: 1807:Desjarlais, JR.; Berg, JM. (March 1993). 1711: 1654: 1613: 1564: 1105: 1095: 1008: 921: 869: 811: 474:residues on the Ξ²-sheets are bonded to a 2288:"Progress towards in vivo use of siRNAs" 544: 536: 484: 402: 382: 374: 284: 135: 2506:Giacca, M.; Zacchigna, S. (June 2012). 2431:Rettig, GR.; Behlke, MA. (March 2012). 778: 19:refers to the practice of altering the 2361:10.1146/annurev.bioeng.8.061505.095848 570:of DNA, and whether and what types of 554:Effects and impacts on gene modulation 518:of DNA, plus positions 0 and 3 on the 7: 687:Post-transcriptional gene modulation 35:by DNA-binding agents (which may be 844:Uil TG, Haisma HJ, Rots MG (2003). 446:. These proteins capitalize on the 255:TFOs have the potential to silence 211:, or cell permeabilization agents. 1557:10.1128/jvi.76.23.12349-12354.2002 1378:Annu. Rev. Biophys. Biomol. Struct 727:gene, which positively influences 627:-modification domains that affect 14: 662:. The oncogene typically enables 578:is a regulatory domain - e.g., a 498:Zinc-finger motifs bind into the 442:used to target specific areas of 231:target DNA, and as modulators of 1390:10.1146/annurev.biophys.29.1.439 804:10.1128/JVI.74.11.5242-5249.2000 541:Zinc fingers binding a DNA helix 470:residues on the Ξ±-helix and two 91:Triplex-forming oligonucleotides 37:artificial transcription factors 1446:Weyermann P, Dervan PB (2002). 753:Artificial transcription factor 55:Transcriptional gene modulation 1: 1784:Molecular biology of the gene 1425:10.1016/s0968-0896(02)00221-3 1277:10.1016/s0959-440x(03)00081-2 1181:10.1016/s0968-0896(01)00262-0 1049:10.1016/s1357-2725(02)00165-6 530:for binding capacity, or the 489:Example of zinc-finger motifs 429:Designer zinc-finger proteins 149:Complications and limitations 962:10.1016/j.biochi.2008.04.004 733:Food and Drug Administration 660:acute lymphoblastic leukemia 2555:Therapeutic gene modulation 2305:10.1016/j.ymthe.2006.01.001 741:peripheral arterial disease 672:nuclear localization signal 480:Transcription factor TFIIIA 362:Limitations and workarounds 142:triplex helix configuration 17:Therapeutic gene modulation 2581: 2286:Behlke, MA. (April 2006). 1756:10.1016/j.gene.2005.09.011 786:Young WB, Link CJ (2000). 502:of helical DNA, where the 45:synthetic oligonucleotides 1782:Watson, James D. (2008). 524:site-directed mutagenesis 2154:Proc Natl Acad Sci U S A 2043:Proc Natl Acad Sci U S A 1813:Proc Natl Acad Sci U S A 1265:Curr. Opin. Struct. Biol 1146:10.2174/0929867003373292 1076:Proc Natl Acad Sci U S A 737:Phase I clinical studies 616:methylation state of DNA 201:electrostatic repulsions 2400:10.1126/science.1149859 2226:10.1074/jbc.M112.360768 1037:Int J Biochem Cell Biol 434:What they are/structure 225:site-specific mutations 2175:10.1073/pnas.040552697 2064:10.1073/pnas.93.3.1156 1834:10.1073/pnas.90.6.2256 1656:10.1074/jbc.M207179200 1594:Nucleic Acids Research 1097:10.1073/pnas.97.8.3862 850:Nucleic Acids Research 550: 542: 532:in vitro recombination 490: 408: 388: 380: 309:Watson-Crick base pair 290: 197:chemical modifications 145: 914:10.1089/oli.2010.0273 699:Clinical significance 549:Epigenetic mechanisms 548: 540: 488: 406: 386: 378: 288: 205:DNA condensing agents 139: 71:. Directly targeting 520:complementary strand 450:capacity of natural 412:Conjugate modulation 273:Synthetic polyamides 182:locked nucleic acids 85:DNA binding proteins 21:expression of a gene 2449:10.1038/mt.2011.263 2339:Annu Rev Biomed Eng 2166:2000PNAS...97.1495B 2119:10.1038/nature03556 2111:2005Natur.435..646U 2055:1996PNAS...93.1156K 1941:1994Natur.372..642C 1825:1993PNAS...90.2256D 1696:2012NatSR...2E.544P 1649:(45): 42431–42437. 1551:(23): 12349–12354. 1502:1997Natur.387..202G 1339:1996Natur.382..559T 1300:Anticancer Drug Des 1226:1998Natur.391..468W 1088:2000PNAS...97.3862F 792:Journal of Virology 709:pharmacologic agent 594:for the associated 316: 221:therapeutic product 2525:10.1038/gt.2012.17 2485:ClinicalTrials.gov 2006:10.1093/nar/gkg853 1684:Scientific Reports 1606:10.1093/nar/gkg215 1001:10.1093/nar/gkt352 862:10.1093/nar/gkg815 551: 543: 491: 409: 389: 381: 314: 291: 146: 107:Watson-Crick helix 1994:Nucleic Acids Res 1793:978-0-8053-9592-1 1704:10.1038/srep00544 1600:(21): 1208–1215. 1496:(6629): 202–205. 1467:10.1021/ja020258k 1461:(24): 6872–6878. 1419:(10): 3339–3349. 1413:Bioorg. Med. Chem 1333:(6591): 559–561. 1220:(6666): 468–471. 1169:Bioorg. Med. Chem 989:Nucleic Acids Res 856:(21): 6064–6078. 798:(11): 5242–5249. 758:Antisense therapy 681:normal regulation 670:. By including a 564:regulatory region 560:genome expression 528:randomized trials 417:modifying agent. 392:Direct modulation 359: 358: 2572: 2565:Applied genetics 2560:Medical genetics 2538: 2537: 2527: 2503: 2497: 2496: 2494: 2492: 2477: 2471: 2470: 2460: 2428: 2422: 2421: 2411: 2394:(5863): 627–30. 2379: 2373: 2372: 2354: 2334: 2328: 2327: 2317: 2307: 2283: 2277: 2276: 2255: 2249: 2248: 2238: 2228: 2219:(35): 29873–86. 2204: 2198: 2197: 2187: 2177: 2145: 2139: 2138: 2105:(7042): 646–51. 2093: 2087: 2086: 2076: 2066: 2034: 2028: 2027: 2017: 2000:(22): 6493–501. 1985: 1979: 1978: 1960: 1949:10.1038/372642a0 1926: 1917: 1906: 1905: 1895: 1863: 1857: 1856: 1846: 1836: 1804: 1798: 1797: 1779: 1768: 1767: 1739: 1726: 1725: 1715: 1675: 1669: 1668: 1658: 1634: 1628: 1627: 1617: 1585: 1579: 1578: 1568: 1536: 1530: 1529: 1510:10.1038/387202a0 1485: 1479: 1478: 1455:J. Am. Chem. Soc 1452: 1443: 1437: 1436: 1408: 1402: 1401: 1373: 1367: 1366: 1347:10.1038/382559a0 1322: 1316: 1315: 1295: 1289: 1288: 1260: 1254: 1253: 1211: 1202: 1193: 1192: 1175:(9): 2215–2235. 1164: 1158: 1157: 1129: 1120: 1119: 1109: 1099: 1067: 1061: 1060: 1032: 1023: 1022: 1012: 980: 974: 973: 945: 936: 935: 925: 902:Oligonucleotides 893: 884: 883: 873: 841: 826: 825: 815: 783: 768:RNA interference 693:RNA interference 576:designer protein 572:effector domains 323:Nucleotide Pair 317: 262:cancer therapies 215:What can they do 193:binding affinity 184:to increase the 163:physiological pH 49:RNA interference 2580: 2579: 2575: 2574: 2573: 2571: 2570: 2569: 2545: 2544: 2541: 2505: 2504: 2500: 2490: 2488: 2479: 2478: 2474: 2430: 2429: 2425: 2381: 2380: 2376: 2336: 2335: 2331: 2285: 2284: 2280: 2267:(24): 8968–76. 2257: 2256: 2252: 2206: 2205: 2201: 2160:(4): 1495–500. 2147: 2146: 2142: 2095: 2094: 2090: 2036: 2035: 2031: 1987: 1986: 1982: 1935:(6507): 642–5. 1924: 1919: 1918: 1909: 1865: 1864: 1860: 1806: 1805: 1801: 1794: 1781: 1780: 1771: 1741: 1740: 1729: 1677: 1676: 1672: 1636: 1635: 1631: 1587: 1586: 1582: 1538: 1537: 1533: 1487: 1486: 1482: 1450: 1445: 1444: 1440: 1410: 1409: 1405: 1375: 1374: 1370: 1324: 1323: 1319: 1297: 1296: 1292: 1262: 1261: 1257: 1209: 1204: 1203: 1196: 1166: 1165: 1161: 1134:Curr. Med. Chem 1131: 1130: 1123: 1069: 1068: 1064: 1034: 1033: 1026: 995:(13): 6664–73. 982: 981: 977: 947: 946: 939: 895: 894: 887: 843: 842: 829: 785: 784: 780: 776: 749: 701: 689: 556: 496: 436: 431: 414: 394: 364: 296: 275: 233:gene expression 217: 151: 115: 98: 93: 57: 41:small molecules 12: 11: 5: 2578: 2576: 2568: 2567: 2562: 2557: 2547: 2546: 2540: 2539: 2498: 2472: 2443:(3): 483–512. 2423: 2374: 2352:10.1.1.418.758 2329: 2278: 2250: 2199: 2140: 2088: 2049:(3): 1156–60. 2029: 1980: 1907: 1872:Nat Biotechnol 1858: 1819:(6): 2256–60. 1799: 1792: 1769: 1727: 1670: 1629: 1580: 1531: 1480: 1438: 1403: 1368: 1317: 1290: 1271:(3): 284–299. 1255: 1194: 1159: 1140:(5): 475–508. 1121: 1062: 1024: 975: 956:(8): 1109–16. 937: 885: 827: 777: 775: 772: 771: 770: 765: 760: 755: 748: 745: 717:cardiovascular 705:clinical arena 700: 697: 688: 685: 604:RNA polymerase 555: 552: 516:primary strand 495: 492: 435: 432: 430: 427: 413: 410: 393: 390: 363: 360: 357: 356: 353: 349: 348: 345: 341: 340: 337: 333: 332: 329: 325: 324: 321: 295: 292: 274: 271: 216: 213: 155:hydrogen bonds 150: 147: 114: 111: 97: 94: 92: 89: 56: 53: 13: 10: 9: 6: 4: 3: 2: 2577: 2566: 2563: 2561: 2558: 2556: 2553: 2552: 2550: 2543: 2535: 2531: 2526: 2521: 2517: 2513: 2509: 2502: 2499: 2486: 2482: 2476: 2473: 2468: 2464: 2459: 2454: 2450: 2446: 2442: 2438: 2434: 2427: 2424: 2419: 2415: 2410: 2405: 2401: 2397: 2393: 2389: 2385: 2378: 2375: 2370: 2366: 2362: 2358: 2353: 2348: 2344: 2340: 2333: 2330: 2325: 2321: 2316: 2311: 2306: 2301: 2298:(4): 644–70. 2297: 2293: 2289: 2282: 2279: 2274: 2270: 2266: 2262: 2254: 2251: 2246: 2242: 2237: 2232: 2227: 2222: 2218: 2214: 2210: 2203: 2200: 2195: 2191: 2186: 2181: 2176: 2171: 2167: 2163: 2159: 2155: 2151: 2144: 2141: 2136: 2132: 2128: 2124: 2120: 2116: 2112: 2108: 2104: 2100: 2092: 2089: 2084: 2080: 2075: 2070: 2065: 2060: 2056: 2052: 2048: 2044: 2040: 2033: 2030: 2025: 2021: 2016: 2011: 2007: 2003: 1999: 1995: 1991: 1984: 1981: 1976: 1972: 1968: 1964: 1959: 1954: 1950: 1946: 1942: 1938: 1934: 1930: 1923: 1916: 1914: 1912: 1908: 1903: 1899: 1894: 1889: 1885: 1884:10.1038/90264 1881: 1878:(7): 656–60. 1877: 1873: 1869: 1862: 1859: 1854: 1850: 1845: 1840: 1835: 1830: 1826: 1822: 1818: 1814: 1810: 1803: 1800: 1795: 1789: 1785: 1778: 1776: 1774: 1770: 1765: 1761: 1757: 1753: 1749: 1745: 1738: 1736: 1734: 1732: 1728: 1723: 1719: 1714: 1709: 1705: 1701: 1697: 1693: 1689: 1685: 1681: 1674: 1671: 1666: 1662: 1657: 1652: 1648: 1644: 1643:J. Biol. Chem 1640: 1633: 1630: 1625: 1621: 1616: 1611: 1607: 1603: 1599: 1595: 1591: 1584: 1581: 1576: 1572: 1567: 1562: 1558: 1554: 1550: 1546: 1542: 1535: 1532: 1527: 1523: 1519: 1515: 1511: 1507: 1503: 1499: 1495: 1491: 1484: 1481: 1476: 1472: 1468: 1464: 1460: 1456: 1449: 1442: 1439: 1434: 1430: 1426: 1422: 1418: 1414: 1407: 1404: 1399: 1395: 1391: 1387: 1383: 1379: 1372: 1369: 1364: 1360: 1356: 1352: 1348: 1344: 1340: 1336: 1332: 1328: 1321: 1318: 1313: 1309: 1305: 1301: 1294: 1291: 1286: 1282: 1278: 1274: 1270: 1266: 1259: 1256: 1251: 1247: 1243: 1239: 1235: 1234:10.1038/35106 1231: 1227: 1223: 1219: 1215: 1208: 1201: 1199: 1195: 1190: 1186: 1182: 1178: 1174: 1170: 1163: 1160: 1155: 1151: 1147: 1143: 1139: 1135: 1128: 1126: 1122: 1117: 1113: 1108: 1103: 1098: 1093: 1089: 1085: 1082:(8): 3862–7. 1081: 1077: 1073: 1066: 1063: 1058: 1054: 1050: 1046: 1042: 1038: 1031: 1029: 1025: 1020: 1016: 1011: 1006: 1002: 998: 994: 990: 986: 979: 976: 971: 967: 963: 959: 955: 951: 944: 942: 938: 933: 929: 924: 919: 915: 911: 907: 903: 899: 892: 890: 886: 881: 877: 872: 867: 863: 859: 855: 851: 847: 840: 838: 836: 834: 832: 828: 823: 819: 814: 809: 805: 801: 797: 793: 789: 782: 779: 773: 769: 766: 764: 761: 759: 756: 754: 751: 750: 746: 744: 742: 738: 734: 730: 726: 722: 718: 714: 711:for treating 710: 706: 698: 696: 694: 686: 684: 682: 677: 673: 669: 665: 661: 657: 654: 651: 647: 643: 638: 635: 630: 626: 622: 617: 613: 607: 605: 601: 597: 593: 592:transcription 589: 585: 581: 577: 573: 569: 568:coding region 565: 561: 553: 547: 539: 535: 533: 529: 525: 521: 517: 513: 509: 505: 501: 494:How they work 493: 487: 483: 481: 477: 473: 469: 465: 461: 457: 453: 449: 445: 441: 433: 428: 426: 422: 418: 411: 405: 401: 397: 391: 385: 377: 373: 370: 361: 354: 351: 350: 346: 343: 342: 338: 335: 334: 330: 327: 326: 322: 319: 318: 312: 310: 306: 302: 293: 287: 283: 280: 272: 270: 268: 263: 258: 253: 251: 245: 242: 238: 234: 230: 226: 222: 214: 212: 210: 206: 202: 198: 194: 189: 187: 183: 179: 175: 171: 166: 164: 160: 156: 148: 143: 138: 134: 132: 128: 124: 120: 113:How they work 112: 110: 108: 103: 96:What are they 95: 90: 88: 86: 81: 78: 74: 70: 65: 62: 54: 52: 50: 46: 42: 38: 34: 33:transcription 29: 26: 22: 18: 2542: 2518:(6): 622–9. 2515: 2511: 2501: 2489:. Retrieved 2484: 2475: 2440: 2436: 2426: 2391: 2387: 2377: 2342: 2338: 2332: 2295: 2291: 2281: 2264: 2260: 2253: 2216: 2212: 2202: 2157: 2153: 2143: 2102: 2098: 2091: 2046: 2042: 2032: 1997: 1993: 1983: 1932: 1928: 1875: 1871: 1861: 1816: 1812: 1802: 1783: 1750:(1): 27–38. 1747: 1743: 1690:(544): 544. 1687: 1683: 1673: 1646: 1642: 1632: 1597: 1593: 1583: 1548: 1544: 1534: 1493: 1489: 1483: 1458: 1454: 1441: 1416: 1412: 1406: 1381: 1377: 1371: 1330: 1326: 1320: 1306:(1): 25–40. 1303: 1299: 1293: 1268: 1264: 1258: 1217: 1213: 1172: 1168: 1162: 1137: 1133: 1079: 1075: 1065: 1043:(1): 22–31. 1040: 1036: 992: 988: 978: 953: 949: 908:(2): 55–75. 905: 901: 853: 849: 795: 791: 781: 763:Gene therapy 729:blood vessel 713:claudication 702: 690: 675: 645: 639: 608: 557: 526:followed by 500:major groove 497: 437: 423: 419: 415: 398: 395: 369:beta-alanine 365: 297: 279:minor groove 276: 257:silence gene 254: 246: 218: 190: 167: 152: 119:antiparallel 116: 102:major groove 99: 82: 69:gene therapy 66: 58: 30: 25:gene therapy 16: 15: 2345:: 377–402. 2213:J Biol Chem 1384:: 439–461. 743:in humans. 735:(FDA), two 721:plasmid DNA 634:chromosomal 623:- or other 588:replication 452:zinc-finger 448:DNA-binding 237:target gene 209:cholesterol 178:specificity 123:pyrimidines 2549:Categories 2261:Cancer Res 1958:10261/6295 774:References 625:epigenetic 512:nucleotide 504:amino acid 320:Amide Pair 303:(Im), and 241:DNA repair 170:endogenous 159:protonated 73:endogenous 2512:Gene Ther 2347:CiteSeerX 1250:205023593 950:Biochimie 629:chromatin 612:methylase 584:repressor 468:histidine 301:imidazole 294:Structure 161:, but at 127:Hoogsteen 2534:22378343 2467:22186795 2437:Mol Ther 2418:18239128 2369:16834561 2324:16481219 2292:Mol Ther 2273:14695215 2245:22782891 2194:10660690 2127:15806097 2024:14602907 1975:12701336 1902:11433278 1764:16298089 1722:22848790 1665:12196541 1624:12582240 1575:12414976 1545:J. Virol 1475:12059208 1433:12150881 1398:10940255 1285:12831879 1189:11553460 1154:11281837 1116:10760257 1057:12467644 1019:23658228 970:18460344 932:21417933 880:14576293 822:10799600 747:See also 664:leukemia 656:oncogene 580:promoter 508:sequence 506:residue 472:cysteine 462:and one 460:Ξ²-sheets 440:proteins 250:in vitro 186:affinity 2491:25 July 2458:3293614 2409:2490797 2388:Science 2315:7106286 2236:3436144 2162:Bibcode 2135:4390010 2107:Bibcode 2083:8577732 2051:Bibcode 1967:7990954 1937:Bibcode 1893:2677679 1853:8460130 1821:Bibcode 1713:3408130 1692:Bibcode 1526:4358491 1518:9144294 1498:Bibcode 1363:4335955 1355:8700233 1335:Bibcode 1312:2838035 1242:9461213 1222:Bibcode 1084:Bibcode 1010:3711454 923:3078494 650:BCR-ABL 644:, Choo 642:in vivo 621:histone 464:Ξ±-helix 305:pyrrole 269:types. 131:purines 2532:  2465:  2455:  2416:  2406:  2367:  2349:  2322:  2312:  2271:  2243:  2233:  2192:  2182:  2133:  2125:  2099:Nature 2081:  2071:  2022:  2015:275549 2012:  1973:  1965:  1929:Nature 1900:  1890:  1851:  1841:  1790:  1762:  1720:  1710:  1663:  1622:  1615:150233 1612:  1573:  1566:136904 1563:  1524:  1516:  1490:Nature 1473:  1431:  1396:  1361:  1353:  1327:Nature 1310:  1283:  1248:  1240:  1214:Nature 1187:  1152:  1114:  1104:  1055:  1017:  1007:  968:  930:  920:  878:  871:275457 868:  820:  813:110878 810:  676:et al. 668:cancer 653:fusion 646:et al. 466:. Two 456:genome 267:cancer 229:cleave 174:genome 77:splice 2185:26462 2131:S2CID 2074:40048 1971:S2CID 1925:(PDF) 1844:46065 1522:S2CID 1451:(PDF) 1359:S2CID 1246:S2CID 1210:(PDF) 1107:18107 582:or a 566:or a 352:Im/Py 344:Hp/Py 336:Py/Hp 328:Py/Im 43:, or 2530:PMID 2493:2013 2463:PMID 2414:PMID 2365:PMID 2320:PMID 2269:PMID 2241:PMID 2190:PMID 2123:PMID 2079:PMID 2020:PMID 1963:PMID 1898:PMID 1849:PMID 1788:ISBN 1760:PMID 1744:Gene 1718:PMID 1661:PMID 1620:PMID 1571:PMID 1514:PMID 1471:PMID 1429:PMID 1394:PMID 1351:PMID 1308:PMID 1281:PMID 1238:PMID 1185:PMID 1150:PMID 1112:PMID 1053:PMID 1015:PMID 966:PMID 928:PMID 876:PMID 818:PMID 715:, a 600:exon 596:gene 476:zinc 355:G-C 347:T-A 339:A-T 331:C-G 61:gDNA 2520:doi 2453:PMC 2445:doi 2404:PMC 2396:doi 2392:319 2357:doi 2310:PMC 2300:doi 2231:PMC 2221:doi 2217:287 2180:PMC 2170:doi 2115:doi 2103:435 2069:PMC 2059:doi 2010:PMC 2002:doi 1953:hdl 1945:doi 1933:372 1888:PMC 1880:doi 1839:PMC 1829:doi 1752:doi 1748:366 1708:PMC 1700:doi 1651:doi 1647:277 1610:PMC 1602:doi 1561:PMC 1553:doi 1506:doi 1494:387 1463:doi 1459:124 1421:doi 1386:doi 1343:doi 1331:382 1273:doi 1230:doi 1218:391 1177:doi 1142:doi 1102:PMC 1092:doi 1045:doi 1005:PMC 997:doi 958:doi 918:PMC 910:doi 866:PMC 858:doi 808:PMC 800:doi 586:of 444:DNA 39:), 2551:: 2528:. 2516:19 2514:. 2510:. 2483:. 2461:. 2451:. 2441:20 2439:. 2435:. 2412:. 2402:. 2390:. 2386:. 2363:. 2355:. 2341:. 2318:. 2308:. 2296:13 2294:. 2290:. 2265:63 2263:. 2239:. 2229:. 2215:. 2211:. 2188:. 2178:. 2168:. 2158:97 2156:. 2152:. 2129:. 2121:. 2113:. 2101:. 2077:. 2067:. 2057:. 2047:93 2045:. 2041:. 2018:. 2008:. 1998:31 1996:. 1992:. 1969:. 1961:. 1951:. 1943:. 1931:. 1927:. 1910:^ 1896:. 1886:. 1876:19 1874:. 1870:. 1847:. 1837:. 1827:. 1817:90 1815:. 1811:. 1772:^ 1758:. 1746:. 1730:^ 1716:. 1706:. 1698:. 1686:. 1682:. 1659:. 1645:. 1641:. 1618:. 1608:. 1598:31 1596:. 1592:. 1569:. 1559:. 1549:76 1547:. 1543:. 1520:. 1512:. 1504:. 1492:. 1469:. 1457:. 1453:. 1427:. 1417:10 1415:. 1392:. 1382:29 1380:. 1357:. 1349:. 1341:. 1329:. 1302:. 1279:. 1269:13 1267:. 1244:. 1236:. 1228:. 1216:. 1212:. 1197:^ 1183:. 1171:. 1148:. 1136:. 1124:^ 1110:. 1100:. 1090:. 1080:97 1078:. 1074:. 1051:. 1041:35 1039:. 1027:^ 1013:. 1003:. 993:41 991:. 987:. 964:. 954:90 952:. 940:^ 926:. 916:. 906:21 904:. 900:. 888:^ 874:. 864:. 854:31 852:. 848:. 830:^ 816:. 806:. 796:74 794:. 790:. 683:. 109:. 87:. 51:. 2536:. 2522:: 2495:. 2469:. 2447:: 2420:. 2398:: 2371:. 2359:: 2343:8 2326:. 2302:: 2275:. 2247:. 2223:: 2196:. 2172:: 2164:: 2137:. 2117:: 2109:: 2085:. 2061:: 2053:: 2026:. 2004:: 1977:. 1955:: 1947:: 1939:: 1904:. 1882:: 1855:. 1831:: 1823:: 1796:. 1766:. 1754:: 1724:. 1702:: 1694:: 1688:2 1667:. 1653:: 1626:. 1604:: 1577:. 1555:: 1528:. 1508:: 1500:: 1477:. 1465:: 1435:. 1423:: 1400:. 1388:: 1365:. 1345:: 1337:: 1314:. 1304:3 1287:. 1275:: 1252:. 1232:: 1224:: 1191:. 1179:: 1173:9 1156:. 1144:: 1138:8 1118:. 1094:: 1086:: 1059:. 1047:: 1021:. 999:: 972:. 960:: 934:. 912:: 882:. 860:: 824:. 802:: 144:.

Index

expression of a gene
gene therapy
transcription
artificial transcription factors
small molecules
synthetic oligonucleotides
RNA interference
gDNA
gene therapy
endogenous
splice
DNA binding proteins
major groove
Watson-Crick helix
antiparallel
pyrimidines
Hoogsteen
purines

triplex helix configuration
hydrogen bonds
protonated
physiological pH
endogenous
genome
specificity
locked nucleic acids
affinity
binding affinity
chemical modifications

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑