Knowledge (XXG)

Thermal laser epitaxy

Source πŸ“

46: 83: 191:
Experiments utilizing continuous-wave lasers continued to be performed throughout the latter half of the twentieth century, highlighting the many advantages of continuous-wave laser evaporation including low power densities, which can reduce surface damage to sensitive films. It proved challenging to
183:
laser in 1968. Further work demonstrated that laser-induced evaporation is an effective way to deposit dielectric and semiconductor films. However, issues occurred with regard to stoichiometry and the uniformity of the deposited films, thus diminishing their quality compared to films deposited by
90:
TLE uses continuous-wave lasers (typically with a wavelength of around 1000 nm) located outside the vacuum chamber to heat sources of material in order to generate a flux of vapor via evaporation or sublimation. Owing to the localized nature of the heat induced by the laser, a portion of the
49:
Diagram of a TLE chamber. Continuous-wave lasers are focused on sources inside a vacuum chamber. The localized heating induced by these lasers creates a flux of vapor from each source, which is then deposited onto a heated substrate. A gaseous atmosphere can be introduced via a gas inlet to grow
178:
in 1960, it was quickly recognized that a laser could act as a point source to evaporate source material in a vacuum chamber for fabricating thin films. In 1965, Smith and Turner succeeded in depositing thin films using a ruby laser, after which Groh deposited thin films using a continuous-wave
112:
region close to the irradiated surface of the source. The localized character of the heating enables many materials to be grown by TLE from freestanding sources without a crucible. Owing to the direct transfer of energy from the laser to the source, TLE is more efficient than other evaporation
95:
state while the rest remains solid, such that the source acts as its own crucible. The strong absorption of light causes the laser-induced heat to be highly localized via the small diameter of the laser beam, which can also have the effect of confining the heat to the axis of the source. The
199:
and dubbed "thermal laser epitaxy". This new technique uses elemental sources illuminated by high-power continuous-wave lasers (typically with peak powers around 1 kW at a wavelength of 1000 nm), thus allowing the deposition of low-vapor-pressure materials such as
162:
The deposition rate of the vapor impinging upon the substrate is controlled by adjusting the power of the incident source laser. The deposition rate frequently increases exponentially with source temperature, which in turn increases linearly with incident laser power.
192:
achieve congruent evaporation from compound sources using continuous-wave lasers, and film deposition was typically limited to sources with high vapor pressures due to the low continuous wave power densities available.
62:
of the source material, with no plasma or high-energy particle species being produced. Despite operating at comparatively low power densities, TLE is capable of depositing many materials with low
166:
The gas in the chamber can be incorporated in the deposition film. With the addition of an oxygen or ozone atmosphere, oxide films can readily be grown with TLE at pressures up to 10 hPa.
523:
Smart, Thomas J.; Hensling, Felix V. E.; Kim, Dong Yeong; Majer, Lena N.; Suyolcu, Y. Eren; Dereh, Dominik; Schlom, Darrell G.; Jena, Dubdeep; Mannhart, Jochen; Braun, Wolfgang (2023-05-08).
132:
relation to temperature. The vapor is then deposited onto a laser-heated substrate. The very high substrate temperatures achievable by laser heating allow the use of
961: 196: 971: 184:
other techniques. Experiments to investigate the deposition of thin films using a pulsed laser at high power densities laid the foundation for
144:
and temperature of the deposited film. This precise control is valuable for growing thin-film heterostructures of complex materials, such as
910:
Trujillo, O.; Moss, R.; Vuong, K.D.; Lee, D. H.; Noble, R.; Finnigan, D.; Orloff, S.; Tenpas, E.; Park, C.; Fagan, J.; Wang, X.W. (1996).
429:
Braun, Wolfgang; JΓ€ger, Maren; Laskin, Gennadii; Ngabonziza, Prosper; Voesch, Wolfgang; Wittlich, Pascal; Mannhart, Jochen (2020-07-16).
981: 145: 570: 59: 966: 96:
resulting absorption corresponds to a typical photon penetration depth on the order of 2 nm due to the high
20: 976: 155:. By positioning all lasers outside of the evaporation chamber, contamination can be reduced compared to using 114: 185: 584: 137: 128:
By heating the source, a flux of vapor is produced, the pressure of which frequently has an approximately
118: 71: 564: 911: 919: 876: 829: 782: 700: 661: 596: 495: 446: 389: 321: 245: 129: 892: 817: 798: 612: 464: 405: 379: 337: 285: 263: 175: 101: 947: 525:"Why thermal laser epitaxy aluminum sources yield reproducible fluxes in oxidizing environments" 727: 845: 751: 546: 97: 67: 35: 927: 884: 837: 790: 743: 708: 669: 604: 536: 503: 454: 397: 329: 253: 86:
Photograph of a freestanding silicon disc being heated locally by a laser in a TLE chamber.
652:
Smith, Howard M.; Turner, A. F. (1965). "Vacuum Deposited Thin Films Using a Ruby laser".
63: 24: 195:
In 2019, the evaporation of sources using continuous-wave lasers was rediscovered at the
923: 880: 833: 786: 704: 665: 600: 499: 450: 393: 325: 249: 309: 931: 955: 802: 468: 409: 341: 267: 141: 122: 896: 865:"Formation of dielectric and semiconductor thin films by laser-assisted evaporation" 616: 367: 54:
TLE operates at power densities between 10 – 10 W/cm, which results in
109: 55: 45: 133: 31: 550: 771:"Thin films of semiconductors and dielectrics produced by laser evaporation" 105: 849: 755: 841: 728:"Vacuum Deposition of Dielectric and Semiconductor Films by Means of a CO 205: 747: 673: 284:
Braun, Wolfgang (2018). "Adsorption-controlled epitaxy of perovskites".
208:
while avoiding issues with congruent evaporation from compound sources.
82: 888: 794: 188:, an extremely successful growth technique that is widely used today. 712: 541: 508: 483: 459: 430: 401: 368:"Thermal laser evaporation of elements from across the periodic table" 333: 258: 233: 948:
Thermal Laser Epitaxy - Max Planck Institute for Solid State Research
864: 770: 608: 201: 92: 27: 688: 524: 384: 290: 366:
Smart, Thomas J.; Mannhart, Jochen; Braun, Wolfgang (2021-03-09).
81: 44: 39: 482:
Kim, Dong Yeong; Mannhart, Jochen; Braun, Wolfgang (2021-08-04).
308:
Kim, Dong Yeong; Mannhart, Jochen; Braun, Wolfgang (2021-08-13).
38:
pressure or in the presence of a background atmosphere, such as
689:"Vacuum Deposition of Thin Films by Means of a CO2 Laser" 310:"Thermal laser evaporation for the growth of oxide films" 34:
on a substrate. This technique can be performed under
630:
Nichols, K. G. (1965). "Lasers and microelectronics".
818:"Thin-film deposition by laser-assisted evaporation" 484:"Epitaxial film growth by thermal laser evaporation" 159:heaters, resulting in highly pure deposited films. 100:of Ξ± ~ 10 cm of many materials. Heat loss via 587:(1960). "Stimulated optical radiation in ruby". 232:Braun, Wolfgang; Mannhart, Jochen (2019-08-14). 70:, a process that is challenging to perform with 279: 277: 234:"Film deposition by thermal laser evaporation" 227: 225: 223: 221: 912:"CdS thin film deposition by CW Nd:YAG laser" 197:Max Planck Institute for Solid State Research 8: 488:Journal of Vacuum Science & Technology A 174:Shortly after the invention of the laser by 529:Journal of Vacuum Science and Technology A 540: 507: 458: 383: 289: 257: 23:technique that utilizes irradiation from 647: 645: 361: 359: 357: 217: 632:British Communications and Electronics 562: 435:thermal preparation of oxide surfaces" 303: 301: 136:-controlled growth modes, similar to 121:, which typically rely on wire-based 30:to heat sources locally for growing 7: 962:Physical vapor deposition techniques 863:Sankur, H.; Cheung, J. T. (1988). 140:, ensuring precise control of the 14: 769:Ban, V.S.; Kramer, D. A. (1970). 91:source may be transformed into a 972:Semiconductor device fabrication 726:Hass, G.; Ramsey, J. B. (1969). 1: 932:10.1016/S0040-6090(96)09065-7 816:Sankur, H.; Hall, R. (1985). 569:: CS1 maint: date and year ( 372:Journal of Laser Applications 775:Journal of Materials Science 125:to reach high temperatures. 108:further localizes the high- 17:Thermal laser epitaxy (TLE) 998: 693:Journal of Applied Physics 42:, to deposit oxide films. 982:Methods of crystal growth 50:compounds such as oxides. 21:physical vapor deposition 186:pulsed laser deposition 98:absorption coefficients 138:molecular beam epitaxy 119:molecular beam epitaxy 87: 72:molecular beam epitaxy 51: 85: 48: 967:Thin film deposition 842:10.1364/AO.24.003343 924:1996TSF...290...13T 881:1988ApPhA..47..271S 834:1985ApOpt..24.3343S 787:1970JMatS...5..978B 748:10.1364/AO.8.001115 705:1968JAP....39.5804G 674:10.1364/AO.4.000147 666:1965ApOpt...4..147S 601:1960Natur.187..493M 500:2021JVSTA..39e3406K 451:2020APLM....8g1112B 394:2021JLasA..33b2008S 326:2021APLM....9h1105K 250:2019AIPA....9h5310B 113:techniques such as 918:. 290–291: 13–17. 889:10.1007/BF00615933 795:10.1007/BF00558179 88: 52: 828:(20): 3343–3347. 781:(11): 1573–4803. 713:10.1063/1.1656056 699:(12): 5804–5805. 687:Groh, G. (1968). 595:(4736): 493–494. 542:10.1116/6.0002632 509:10.1116/6.0001177 460:10.1063/5.0008324 402:10.2351/7.0000348 334:10.1063/5.0055237 259:10.1063/1.5111678 68:refractory metals 36:ultra-high vacuum 989: 936: 935: 916:Thin Solid Films 907: 901: 900: 860: 854: 853: 813: 807: 806: 766: 760: 759: 742:(6): 1115–1118. 723: 717: 716: 684: 678: 677: 649: 640: 639: 627: 621: 620: 609:10.1038/187493a0 581: 575: 574: 568: 560: 558: 557: 544: 520: 514: 513: 511: 479: 473: 472: 462: 426: 420: 419: 417: 416: 387: 363: 352: 351: 349: 348: 305: 296: 295: 293: 281: 272: 271: 261: 229: 78:Physical process 997: 996: 992: 991: 990: 988: 987: 986: 977:Crystallography 952: 951: 945: 940: 939: 909: 908: 904: 862: 861: 857: 815: 814: 810: 768: 767: 763: 731: 725: 724: 720: 686: 685: 681: 651: 650: 643: 629: 628: 624: 583: 582: 578: 561: 555: 553: 522: 521: 517: 481: 480: 476: 428: 427: 423: 414: 412: 365: 364: 355: 346: 344: 307: 306: 299: 283: 282: 275: 231: 230: 219: 214: 182: 176:Theodore Maiman 172: 153:superconductors 152: 80: 64:vapor pressures 25:continuous-wave 12: 11: 5: 995: 993: 985: 984: 979: 974: 969: 964: 954: 953: 944: 943:External links 941: 938: 937: 902: 875:(3): 271–284. 855: 808: 761: 729: 718: 679: 660:(1): 147–148. 641: 622: 576: 515: 474: 421: 353: 297: 273: 216: 215: 213: 210: 180: 171: 168: 150: 79: 76: 13: 10: 9: 6: 4: 3: 2: 994: 983: 980: 978: 975: 973: 970: 968: 965: 963: 960: 959: 957: 950: 949: 942: 933: 929: 925: 921: 917: 913: 906: 903: 898: 894: 890: 886: 882: 878: 874: 870: 869:Appl. Phys. A 866: 859: 856: 851: 847: 843: 839: 835: 831: 827: 823: 819: 812: 809: 804: 800: 796: 792: 788: 784: 780: 776: 772: 765: 762: 757: 753: 749: 745: 741: 737: 733: 722: 719: 714: 710: 706: 702: 698: 694: 690: 683: 680: 675: 671: 667: 663: 659: 655: 648: 646: 642: 637: 633: 626: 623: 618: 614: 610: 606: 602: 598: 594: 590: 586: 585:Maiman, T. H. 580: 577: 572: 566: 552: 548: 543: 538: 535:(4): 042701. 534: 530: 526: 519: 516: 510: 505: 501: 497: 494:(5): 053406. 493: 489: 485: 478: 475: 470: 466: 461: 456: 452: 448: 445:(7): 071112. 444: 440: 439:APL Materials 436: 434: 425: 422: 411: 407: 403: 399: 395: 391: 386: 381: 378:(2): 022008. 377: 373: 369: 362: 360: 358: 354: 343: 339: 335: 331: 327: 323: 320:(8): 081105. 319: 315: 314:APL Materials 311: 304: 302: 298: 292: 287: 280: 278: 274: 269: 265: 260: 255: 251: 247: 244:(8): 085310. 243: 239: 235: 228: 226: 224: 222: 218: 211: 209: 207: 203: 198: 193: 189: 187: 177: 169: 167: 164: 160: 158: 154: 149: 143: 142:stoichiometry 139: 135: 131: 126: 124: 123:Joule heaters 120: 116: 111: 107: 103: 99: 94: 84: 77: 75: 73: 69: 66:, including 65: 61: 57: 47: 43: 41: 37: 33: 29: 26: 22: 18: 946: 915: 905: 872: 868: 858: 825: 821: 811: 778: 774: 764: 739: 735: 721: 696: 692: 682: 657: 653: 635: 631: 625: 592: 588: 579: 565:cite journal 554:. Retrieved 532: 528: 518: 491: 487: 477: 442: 438: 432: 424: 413:. Retrieved 375: 371: 345:. Retrieved 317: 313: 241: 238:AIP Advances 237: 194: 190: 173: 165: 161: 156: 147: 127: 89: 53: 16: 15: 130:exponential 115:evaporation 110:temperature 60:sublimation 56:evaporation 956:Categories 556:2024-06-03 415:2021-09-08 385:2103.12596 347:2021-09-08 291:2405.04075 212:References 134:adsorption 102:conduction 822:Appl. Opt 803:137145469 736:Appl. Opt 654:Appl. Opt 638:(4): 368. 551:0734-2101 469:225595599 410:232320531 342:238646816 268:202065503 106:radiation 897:98006904 850:18224054 756:20072385 206:tungsten 920:Bibcode 877:Bibcode 830:Bibcode 783:Bibcode 701:Bibcode 662:Bibcode 617:4224209 597:Bibcode 496:Bibcode 447:Bibcode 433:In situ 390:Bibcode 322:Bibcode 246:Bibcode 170:History 157:in situ 895:  848:  801:  754:  732:Laser" 615:  589:Nature 549:  467:  408:  340:  266:  202:carbon 93:liquid 28:lasers 893:S2CID 799:S2CID 613:S2CID 465:S2CID 406:S2CID 380:arXiv 338:S2CID 286:arXiv 264:S2CID 146:high- 40:ozone 32:films 19:is a 846:PMID 752:PMID 571:link 547:ISSN 204:and 117:and 104:and 928:doi 885:doi 838:doi 791:doi 744:doi 709:doi 670:doi 605:doi 593:187 537:doi 504:doi 455:doi 398:doi 330:doi 254:doi 58:or 958:: 926:. 914:. 891:. 883:. 873:47 871:. 867:. 844:. 836:. 826:24 824:. 820:. 797:. 789:. 777:. 773:. 750:. 738:. 734:. 707:. 697:39 695:. 691:. 668:. 656:. 644:^ 636:12 634:. 611:. 603:. 591:. 567:}} 563:{{ 545:. 533:41 531:. 527:. 502:. 492:39 490:. 486:. 463:. 453:. 441:. 437:. 404:. 396:. 388:. 376:33 374:. 370:. 356:^ 336:. 328:. 316:. 312:. 300:^ 276:^ 262:. 252:. 240:. 236:. 220:^ 179:CO 74:. 934:. 930:: 922:: 899:. 887:: 879:: 852:. 840:: 832:: 805:. 793:: 785:: 779:5 758:. 746:: 740:8 730:2 715:. 711:: 703:: 676:. 672:: 664:: 658:4 619:. 607:: 599:: 573:) 559:. 539:: 512:. 506:: 498:: 471:. 457:: 449:: 443:8 431:" 418:. 400:: 392:: 382:: 350:. 332:: 324:: 318:9 294:. 288:: 270:. 256:: 248:: 242:9 181:2 151:c 148:T

Index

physical vapor deposition
continuous-wave
lasers
films
ultra-high vacuum
ozone

evaporation
sublimation
vapor pressures
refractory metals
molecular beam epitaxy

liquid
absorption coefficients
conduction
radiation
temperature
evaporation
molecular beam epitaxy
Joule heaters
exponential
adsorption
molecular beam epitaxy
stoichiometry
high-Tc superconductors
Theodore Maiman
pulsed laser deposition
Max Planck Institute for Solid State Research
carbon

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑