Knowledge (XXG)

Thermodynamic cycle

Source đź“ť

2466:. Power cycles can be organized into two categories: real cycles and ideal cycles. Cycles encountered in real world devices (real cycles) are difficult to analyze because of the presence of complicating effects (friction), and the absence of sufficient time for the establishment of equilibrium conditions. For the purpose of analysis and design, idealized models (ideal cycles) are created; these ideal models allow engineers to study the effects of major parameters that dominate the cycle without having to spend significant time working out intricate details present in the real cycle model. 3214:. The actual device is made up of a series of stages, each of which is itself modeled as an idealized thermodynamic process. Although each stage which acts on the working fluid is a complex real device, they may be modelled as idealized processes which approximate their real behavior. If energy is added by means other than combustion, then a further assumption is that the exhaust gases would be passed from the exhaust to a heat exchanger that would sink the waste heat to the environment and the working gas would be reused at the inlet stage. 3750: 2445: 42: 1612: 3229: 3190: 2525: 2383: 3236: 4949:
Heat flows into the loop through the top isotherm and the left isochore, and some of this heat flows back out through the bottom isotherm and the right isochore, but most of the heat flow is through the pair of isotherms. This makes sense since all the work done by the cycle is done by the pair of
3262:
As the net work output for a cycle is represented by the interior of the cycle, there is a significant difference between the predicted work output of the ideal cycle and the actual work output shown by a real engine. It may also be observed that the real individual processes diverge from their
3157:. There is no difference between the two except the purpose of the refrigerator is to cool a very small space while the household heat pump is intended to warm or cool a house. Both work by moving heat from a cold space to a warm space. The most common refrigeration cycle is the 4413: 3201:
Thermodynamic cycles may be used to model real devices and systems, typically by making a series of assumptions. simplifying assumptions are often necessary to reduce the problem to a more manageable form. For example, as shown in the figure, devices such a
1899:
output, while heat pump cycles transfer heat from low to high temperatures by using mechanical work as the input. Cycles composed entirely of quasistatic processes can operate as power or heat pump cycles by controlling the process direction. On a
2075:
Equation (2) is consistent with the First Law; even though the internal energy changes during the course of the cyclic process, when the cyclic process finishes the system's internal energy is the same as the energy it had when the process began.
4954:. This suggests that all the net heat comes in through the top isotherm. In fact, all of the heat which comes in through the left isochore comes out through the right isochore: since the top isotherm is all at the same warmer temperature 2935: 2740: 3044: 2849: 2654: 3243: 1331: 1678:
to its initial state. In the process of passing through a cycle, the working fluid (system) may convert heat from a warm source into useful work, and dispose of the remaining heat to a cold sink, thereby acting as a
3129: 5008:, and since change in energy for an isochore is proportional to change in temperature, then all of the heat coming in through the left isochore is cancelled out exactly by the heat going out the right isochore. 2528:
The clockwise thermodynamic cycle indicated by the arrows shows that the cycle represents a heat engine. The cycle consists of four states (the point shown by crosses) and four thermodynamic processes (lines).
4929:
A Stirling cycle is like an Otto cycle, except that the adiabats are replaced by isotherms. It is also the same as an Ericsson cycle with the isobaric processes substituted for constant volume processes.
4150: 4511: 2070: 4821: 5270: 4902: 5138: 1997: 4672: 3922: 5197: 1783: 4142: 3217:
The difference between an idealized cycle and actual performance may be significant. For example, the following images illustrate the differences in work output predicted by an ideal
4580:
Thus, the total heat flow per cycle is calculated without knowing the heat capacities and temperature changes for each step (although this information would be needed to assess the
3994: 2371: 4575: 4068: 1871:
would be the total work and heat output during the cycle. The repeating nature of the process path allows for continuous operation, making the cycle an important concept in
4029: 1166: 1111: 1056: 5061: 2318: 2269: 2234: 2199: 2164: 2129: 863: 816: 731: 684: 596: 549: 1641: 767: 635: 4733: 4704: 2855: 2660: 1869: 1836: 1001: 5006: 4979: 3952: 3169:
is an alternative that absorbs the refrigerant in a liquid solution rather than evaporating it. Gas refrigeration cycles include the reversed Brayton cycle and the
2941: 2746: 5420: 4094: 2542: 1342: 500: 3862: 3842: 3818: 3798: 1806: 1230: 839: 792: 707: 660: 572: 525: 1924:
The net work equals the area inside because it is (a) the Riemann sum of work done on the substance due to expansion, minus (b) the work done to re-compress.
3275:. Any thermodynamic processes may be used. However, when idealized cycles are modeled, often processes where one state variable is kept constant, such as: 464: 1320: 3193:
Example of a real system modelled by an idealized process: PV and TS diagrams of a Brayton cycle mapped to actual processes of a gas turbine engine
5582: 1353: 4618:
of a Carnot cycle depends only on the absolute temperatures of the two reservoirs in which heat transfer takes place, and for a power cycle is:
923: 3055: 2432:
3→4: Isentropic / adiabatic compression: Constant entropy (s), Increase in pressure (P), Decrease in volume (v), Increase in temperature (T)
1634: 1221: 457: 335: 890: 4603: 2323: 1683:. Conversely, the cycle may be reversed and use work to move heat from a cold source and transfer it to a warm sink thereby acting as a 273: 4907:
The second law of thermodynamics limits the efficiency and COP for all cyclic devices to levels at or below the Carnot efficiency. The
1921: 5413: 1405: 1379: 900: 354: 5648: 5356: 5331: 3140: 306: 1458: 5732: 929: 328: 4408:{\displaystyle W_{cycle}=p_{A}(v_{2}-v_{1})+p_{C}(v_{4}-v_{3})=p_{A}(v_{2}-v_{1})+p_{C}(v_{1}-v_{2})=(p_{A}-p_{C})(v_{2}-v_{1})} 1905: 5686: 2469:
Power cycles can also be divided according to the type of heat engine they seek to model. The most common cycles used to model
1627: 5737: 5727: 3166: 1909: 1558: 90: 4418: 1453: 2435:
4→1: Isochoric heating: Constant volume (v), Increase in pressure (P), Increase in entropy (S), Increase in temperature (T)
2008: 5722: 5406: 4749: 1533: 1306: 283: 5209: 5633: 4836: 4415:, which is just the area of the rectangle. If the total heat flow per cycle is required, this is easily obtained. Since 3824:
vanishes. Therefore, the internal energy changes of a perfect gas undergoing various processes connecting initial state
918: 121: 111: 5077: 3714:. 1→2 accomplishes both the heat rejection and the compression. Originally developed for use in reciprocating engines. 3630:. Originally developed for use in reciprocating engines. The external combustion version of this cycle is known as the 5068: 1958: 1715: 126: 116: 4624: 5547: 5437: 5351:
Cengel, Yunus A.; Boles, Michael A. (2002). Thermodynamics: an engineering approach. Boston: McGraw-Hill. pp. 452.
4736: 3870: 3688: 3345: 2490: 2470: 1448: 1410: 1374: 86: 5701: 5294: 1688: 1203: 951: 397: 210: 200: 5153: 3049:
For the ideal Stirling cycle, no volume change happens in process 4-1 and 2-3, thus equation (3) simplifies to:
1928:
Because the net variation in state properties during a thermodynamic cycle is zero, it forms a closed loop on a
4581: 1724: 5656: 4099: 3170: 2458:
Thermodynamic power cycles are the basis for the operation of heat engines, which supply most of the world's
5742: 5681: 5666: 5612: 3957: 3684: 3158: 1929: 1901: 1615: 1443: 1240: 943: 882: 418: 407: 73: 2429:
cooling: Constant volume(v), Decrease in pressure (P), Decrease in entropy (S), Decrease in temperature (T)
1702:
During a closed cycle, the system returns to its original thermodynamic state of temperature and pressure.
2329: 1548: 1468: 1265: 349: 103: 78: 4516: 2236:). Energy transfer is considered as heat removed from the system, as the work done by the system is zero. 5527: 5487: 3272: 3174: 1711: 1659: 1483: 1060: 373: 219: 68: 3263:
idealized counterparts; e.g., isochoric expansion (process 1-2) occurs with some actual volume change.
5671: 5390:
Hill and Peterson. "Mechanics and Thermodynamics of Propulsion", 2nd ed. Prentice Hall, 1991. 760 pp.
4034: 1675: 1563: 1488: 1478: 278: 152: 140: 2079:
If the cyclic process moves clockwise around the loop, then W will be positive, and it represents a
5676: 5577: 3560: 3531: 3309: 2274: 1876: 1508: 1503: 1270: 258: 253: 166: 5203:
In general, for any cyclic process the state points can be connected by reversible paths, so that
2536:
output from the ideal Stirling cycle (net work out), consisting of 4 thermodynamic processes, is:
5533: 4615: 4002: 3392: 3353: 3303: 3285: 3146: 2280: 1703: 1597: 1260: 1208: 1121: 1066: 1011: 440: 424: 311: 263: 248: 238: 47: 41: 5034: 3749: 2930:{\displaystyle W_{3\to 4}=\int _{V_{3}}^{V_{4}}P\,dV,\,\,{\text{positive, work done by system}}} 2735:{\displaystyle W_{1\to 2}=\int _{V_{1}}^{V_{2}}P\,dV,\,\,{\text{negative, work done on system}}} 2286: 2245: 2210: 2175: 2140: 2105: 1255: 845: 798: 713: 666: 578: 531: 5323: 5316: 5696: 5518: 5352: 5327: 3821: 3445: 3297: 3279: 3039:{\displaystyle W_{4\to 1}=\int _{V_{4}}^{V_{1}}P\,dV,\,\,{\text{zero work since }}V_{4}=V_{1}} 2844:{\displaystyle W_{2\to 3}=\int _{V_{2}}^{V_{3}}P\,dV,\,\,{\text{zero work since }}V_{2}=V_{3}} 2426: 2204: 2095:
The following processes are often used to describe different stages of a thermodynamic cycle:
1592: 1553: 1543: 1115: 913: 749: 741: 614: 243: 233: 175: 4709: 4680: 1841: 5638: 3291: 2649:{\displaystyle {\text{(3)}}\qquad W_{\rm {net}}=W_{1\to 2}+W_{2\to 3}+W_{3\to 4}+W_{4\to 1}} 2169: 2137: : The process is at a constant temperature during that part of the cycle (T=constant, 1811: 1513: 1498: 1438: 1433: 1250: 1245: 971: 895: 363: 228: 4984: 4957: 4915:
are two other reversible cycles that use regeneration to obtain isothermal heat transfer.
3930: 5661: 3736: 3506: 2533: 2478: 1896: 1671: 1463: 1311: 965: 606: 429: 190: 157: 4073: 1714:
are process dependent. For a cycle for which the system returns to its initial state the
17: 482: 5628: 5587: 5572: 5557: 5492: 5482: 5477: 5452: 5021: 4924: 4912: 4908: 3847: 3827: 3803: 3783: 3663: 3631: 3568: 3538: 3489: 3399: 3218: 2518: 2514: 2510: 2459: 1872: 1791: 1696: 1667: 1518: 1288: 824: 777: 692: 645: 557: 510: 388: 268: 205: 195: 63: 33: 2277: : The process that proceeds without any change in enthalpy or specific enthalpy. 5716: 5691: 5607: 5562: 5523: 5497: 5467: 5462: 5144: 3656: 3598: 3513: 3466: 3421: 3211: 2506: 2502: 2494: 2486: 2463: 1663: 1587: 905: 474: 435: 147: 2444: 5597: 5592: 5567: 5513: 5472: 4827: 4599: 4593: 3695: 3639: 3438: 3375: 3154: 2482: 1691:, the cycle is reversible. Whether carried out reversible or irreversibly, the net 1538: 1523: 1473: 956: 3316:
Some example thermodynamic cycles and their constituent processes are as follows:
2201:). Energy transfer is considered as heat removed from or work done by the system. 2166:). Energy transfer is considered as heat removed from or work done by the system. 3777: 3271:
In practice, simple idealized thermodynamic cycles are usually made out of four
3235: 3203: 3162: 2498: 2453: 2419: 2080: 1680: 1493: 301: 5275:
meaning that the net entropy change of the working fluid over a cycle is zero.
3173:. Multiple compression and expansion cycles allow gas refrigeration systems to 5602: 5289: 4611: 4607: 3719: 3627: 3207: 2474: 2399: 2391: 2239: 2172: : Pressure in that part of the cycle will remain constant. (P=constant, 2134: 1582: 1528: 2083:. If it moves counterclockwise, then W will be negative, and it represents a 5067:
Entropy is a state function and is defined in an absolute sense through the
4740: 3711: 3680: 3623: 3228: 3150: 2524: 2403: 2382: 2099: 2084: 1920: 1684: 180: 3189: 2002:
This work is equal to the balance of heat (Q) transferred into the system:
1670:
into and out of the system, while varying pressure, temperature, and other
3619: 2411: 1296: 1213: 1005: 413: 185: 5398: 5284: 2407: 1692: 402: 3124:{\displaystyle {\text{(4)}}\qquad W_{\rm {net}}=W_{1\to 2}+W_{3\to 4}} 2102: : No energy transfer as heat (Q) during that part of the cycle ( 3615: 2415: 3242: 3748: 2381: 1919: 5147:
to the final state, so that for an isothermal reversible process
3753:
An illustration of an ideal cycle heat engine (arrows clockwise).
2131:). Energy transfer is considered as work done by the system only. 1788:
The above states that there is no change of the internal energy (
1707: 378: 5402: 1895:. Power cycles are cycles which convert some heat input into a 1875:. Thermodynamic cycles are often represented mathematically as 4981:
and the bottom isotherm is all at the same cooler temperature
2326: : The process where the net entropy production is zero; 2271:). It is adiabatic (no heat nor mass exchange) and reversible. 1912:
directions indicate power and heat pump cycles, respectively.
1838:
represents the total work and heat input during the cycle and
3999:
Under this set of assumptions, for processes A and C we have
3256:
Actual and ideal overlaid, showing difference in work output
2242: : The process is one of constant entropy (S=constant, 5376:, 5th edition. John Wiley & Sons, 1997. Chapter 21, 3768:
RIGHT (B) and LEFT (D) of the loop: a pair of parallel
3761:
TOP (A) and BOTTOM (C) of the loop: a pair of parallel
4506:{\displaystyle \Delta U_{cycle}=Q_{cycle}-W_{cycle}=0} 2386:
Description of each point in the thermodynamic cycles.
5212: 5156: 5080: 5037: 4987: 4960: 4941:
LEFT and RIGHT sides of the loop: a pair of parallel
4934:
TOP and BOTTOM of the loop: a pair of quasi-parallel
4839: 4752: 4712: 4683: 4627: 4519: 4421: 4153: 4102: 4076: 4037: 4005: 3960: 3933: 3873: 3850: 3830: 3806: 3786: 3757:
An ideal cycle is simple to analyze and consists of:
3058: 2944: 2858: 2749: 2663: 2545: 2332: 2289: 2248: 2213: 2178: 2143: 2108: 2065:{\displaystyle {\text{(2)}}\qquad W=Q=Q_{in}-Q_{out}} 2011: 1961: 1879:
in the modeling of the workings of an actual device.
1844: 1814: 1794: 1727: 1124: 1069: 1014: 974: 848: 827: 801: 780: 752: 716: 695: 669: 648: 617: 581: 560: 534: 513: 485: 4816:{\displaystyle \ COP=1+{\frac {T_{L}}{T_{H}-T_{L}}}} 2207: : The process is constant volume (V=constant, 5647: 5621: 5546: 5506: 5447: 5436: 5265:{\displaystyle \oint dS=\oint {dQ_{rev} \over T}=0} 2394:is an example of a reversible thermodynamic cycle. 1674:within the system, and that eventually returns the 5315: 5264: 5191: 5132: 5055: 5000: 4973: 4897:{\displaystyle \ COP={\frac {T_{L}}{T_{H}-T_{L}}}} 4896: 4815: 4727: 4698: 4666: 4569: 4505: 4407: 4136: 4088: 4062: 4023: 3988: 3946: 3916: 3856: 3836: 3812: 3792: 3123: 3038: 2929: 2843: 2734: 2648: 2365: 2312: 2263: 2228: 2193: 2158: 2123: 2064: 1991: 1863: 1830: 1800: 1777: 1687:. If at every point in the cycle the system is in 1160: 1105: 1050: 995: 857: 833: 810: 786: 761: 725: 701: 678: 654: 629: 590: 566: 543: 519: 494: 5133:{\displaystyle S=\int _{0}^{T}{dQ_{rev} \over T}} 3221:and the actual performance of a Stirling engine: 1992:{\displaystyle {\text{(1)}}\qquad W=\oint P\ dV} 1887:Two primary classes of thermodynamic cycles are 27:Linked cyclic series of thermodynamic processes 4667:{\displaystyle \eta =1-{\frac {T_{L}}{T_{H}}}} 1948:). The area enclosed by the loop is the work ( 1695:change of the system is zero, as entropy is a 5414: 5387:, 7th ed. New York: McGraw-Hill, 2011. Print. 4950:isothermal processes, which are described by 3917:{\displaystyle \Delta U=\int _{a}^{b}C_{v}dT} 1635: 8: 5378:Entropy and the Second Law of Thermodynamics 5314:Cengel, Yunus A.; Boles, Michael A. (2002). 3996:for any process undergone by a perfect gas. 2283: : The process that obeys the relation 5028:remains unchanged during a cyclic process: 5444: 5421: 5407: 5399: 5192:{\displaystyle \Delta S={Q_{rev} \over T}} 1642: 1628: 1191: 343: 162: 40: 29: 5238: 5228: 5211: 5172: 5166: 5155: 5112: 5102: 5096: 5091: 5079: 5036: 4992: 4986: 4965: 4959: 4885: 4872: 4861: 4855: 4838: 4804: 4791: 4780: 4774: 4751: 4735:the highest. For Carnot power cycles the 4718: 4713: 4711: 4689: 4684: 4682: 4656: 4646: 4640: 4626: 4549: 4524: 4518: 4479: 4454: 4429: 4420: 4396: 4383: 4367: 4354: 4335: 4322: 4309: 4293: 4280: 4267: 4251: 4238: 4225: 4209: 4196: 4183: 4158: 4152: 4122: 4101: 4075: 4048: 4036: 4004: 3974: 3959: 3938: 3932: 3902: 3892: 3887: 3872: 3849: 3829: 3805: 3785: 3109: 3090: 3070: 3069: 3059: 3057: 3030: 3017: 3008: 3007: 3006: 2996: 2985: 2980: 2973: 2968: 2949: 2943: 2922: 2921: 2920: 2910: 2899: 2894: 2887: 2882: 2863: 2857: 2835: 2822: 2813: 2812: 2811: 2801: 2790: 2785: 2778: 2773: 2754: 2748: 2727: 2726: 2725: 2715: 2704: 2699: 2692: 2687: 2668: 2662: 2634: 2615: 2596: 2577: 2557: 2556: 2546: 2544: 2342: 2331: 2298: 2297: 2288: 2247: 2212: 2177: 2142: 2107: 2050: 2034: 2012: 2010: 1962: 1960: 1849: 1843: 1819: 1813: 1793: 1778:{\displaystyle \Delta U=E_{in}-E_{out}=0} 1757: 1741: 1726: 1123: 1068: 1013: 973: 847: 826: 800: 779: 751: 715: 694: 668: 647: 616: 580: 559: 533: 512: 484: 5383:Çengel, Yunus A., and Michael A. Boles. 5347: 5345: 5343: 4137:{\displaystyle Q=\Delta U=C_{v}\Delta T} 4070:, whereas for processes B and D we have 3558: 3343: 3318: 3188: 2532:For example :--the pressure-volume 2523: 2443: 5583:Homogeneous charge compression ignition 5385:Thermodynamics: An Engineering Approach 5318:Thermodynamics: an engineering approach 5306: 5143:where a reversible path is chosen from 3145:Thermodynamic heat pump cycles are the 1388: 1365: 1319: 1279: 1229: 1194: 387: 362: 291: 218: 165: 32: 4602:is a cycle composed of the totally 3989:{\displaystyle \Delta U=C_{v}\Delta T} 2521:, which also models hot air engines. 7: 4830:the coefficient of performance is: 4706:is the lowest cycle temperature and 3416:The second Ericsson cycle from 1853 2366:{\displaystyle dS-{\frac {dQ}{T}}=0} 4570:{\displaystyle Q_{cycle}=W_{cycle}} 5157: 4614:heat addition and rejection. The 4422: 4128: 4109: 4054: 4015: 3980: 3961: 3874: 3077: 3074: 3071: 2564: 2561: 2558: 1728: 849: 802: 717: 670: 582: 535: 355:Intensive and extensive properties 25: 4147:The total work done per cycle is 3585:Differs from Otto cycle in that V 3141:Heat pump and refrigeration cycle 2091:A list of thermodynamic processes 5372:Halliday, Resnick & Walker. 5322:. Boston: McGraw-Hill. pp.  3864:are always given by the formula 3241: 3234: 3227: 1808:) of the system over the cycle. 1658:consists of linked sequences of 1611: 1610: 930:Table of thermodynamic equations 4063:{\displaystyle Q=C_{p}\Delta T} 3267:Well-known thermodynamic cycles 3223: 3184: 3064: 2551: 2017: 1967: 1406:Maxwell's thermodynamic surface 4610:compression and expansion and 4402: 4376: 4373: 4347: 4341: 4315: 4299: 4273: 4257: 4231: 4215: 4189: 3820:for a closed system since its 3776:If the working substance is a 3167:absorption refrigeration cycle 3113: 3094: 2953: 2867: 2758: 2672: 2638: 2619: 2600: 2581: 1910:clockwise and counterclockwise 1706:(or path quantities), such as 1140: 1128: 1085: 1073: 1030: 1018: 990: 978: 1: 3689:continuous detonation engines 3161:, which models systems using 2924:positive, work done by system 2729:negative, work done on system 2462:and run the vast majority of 1307:Mechanical equivalent of heat 1902:pressure–volume (PV) diagram 919:Onsager reciprocal relations 5488:Stirling (pseudo/adiabatic) 5069:Third Law of Thermodynamics 5012:State functions and entropy 4024:{\displaystyle W=p\Delta v} 3559:Power cycles normally with 3344:Power cycles normally with 2491:external combustion engines 2471:internal combustion engines 1906:temperature–entropy diagram 1716:first law of thermodynamics 1411:Entropy as energy dispersal 1222:"Perpetual motion" machines 1161:{\displaystyle G(T,p)=H-TS} 1106:{\displaystyle A(T,V)=U-TS} 1051:{\displaystyle H(S,p)=U+pV} 5759: 5056:{\displaystyle \oint dZ=0} 4922: 4737:coefficient of performance 4591: 3138: 2451: 2313:{\displaystyle pV^{\,n}=C} 2264:{\displaystyle \delta S=0} 2229:{\displaystyle \delta V=0} 2194:{\displaystyle \delta P=0} 2159:{\displaystyle \delta T=0} 2124:{\displaystyle \delta Q=0} 858:{\displaystyle \partial T} 811:{\displaystyle \partial V} 726:{\displaystyle \partial p} 679:{\displaystyle \partial V} 591:{\displaystyle \partial T} 544:{\displaystyle \partial S} 5295:Thermogravitational cycle 3737:Gasoline / petrol engines 3527:isochoric then adiabatic 3370:A reversed Brayton cycle 1689:thermodynamic equilibrium 1332:An Inquiry Concerning the 18:Thermodynamic power cycle 4582:thermodynamic efficiency 1345:Heterogeneous Substances 762:{\displaystyle \alpha =} 630:{\displaystyle \beta =-} 5733:Thermodynamic processes 5374:Fundamentals of Physics 4728:{\displaystyle {T_{H}}} 4699:{\displaystyle {T_{L}}} 3348:- or heat pump cycles: 3273:thermodynamic processes 3165:that change phase. The 3159:vapor compression cycle 2378:Example: The Otto cycle 1952:) done by the process: 1864:{\displaystyle E_{out}} 1660:thermodynamic processes 5266: 5193: 5134: 5057: 5002: 4975: 4898: 4817: 4729: 4700: 4668: 4571: 4507: 4409: 4138: 4090: 4064: 4025: 3990: 3948: 3918: 3858: 3838: 3814: 3800:is only a function of 3794: 3754: 3288:(constant temperature) 3194: 3125: 3040: 2931: 2845: 2736: 2650: 2529: 2449: 2387: 2367: 2314: 2265: 2230: 2195: 2160: 2125: 2066: 1993: 1925: 1865: 1832: 1831:{\displaystyle E_{in}} 1802: 1779: 1162: 1107: 1052: 997: 996:{\displaystyle U(S,V)} 859: 835: 812: 788: 763: 727: 703: 680: 656: 631: 592: 568: 545: 521: 496: 475:Specific heat capacity 79:Quantum thermodynamics 5738:Thermodynamic systems 5728:Equilibrium chemistry 5267: 5194: 5135: 5058: 5003: 5001:{\displaystyle T_{C}} 4976: 4974:{\displaystyle T_{H}} 4899: 4818: 4730: 4701: 4669: 4572: 4508: 4410: 4139: 4091: 4065: 4026: 3991: 3949: 3947:{\displaystyle C_{v}} 3919: 3859: 3839: 3815: 3795: 3752: 3250:Ideal Stirling cycle 3192: 3181:Modeling real systems 3126: 3041: 3010:zero work since  2932: 2846: 2815:zero work since  2737: 2651: 2527: 2447: 2385: 2368: 2315: 2266: 2231: 2196: 2161: 2126: 2067: 1994: 1936:axis shows pressure ( 1923: 1877:quasistatic processes 1866: 1833: 1803: 1780: 1343:On the Equilibrium of 1163: 1108: 1061:Helmholtz free energy 1053: 998: 860: 836: 813: 789: 764: 728: 704: 681: 657: 632: 593: 569: 546: 522: 497: 5723:Thermodynamic cycles 5672:Regenerative cooling 5550:combustion / thermal 5449:Without phase change 5440:combustion / thermal 5430:Thermodynamic cycles 5210: 5154: 5078: 5035: 5024:then the balance of 4985: 4958: 4837: 4750: 4710: 4681: 4625: 4604:reversible processes 4517: 4419: 4151: 4100: 4074: 4035: 4003: 3958: 3931: 3871: 3848: 3828: 3804: 3784: 3632:first Ericsson cycle 3532:Manson-Guise engines 3336:Heat rejection, 4→1 3210:can be modeled as a 3056: 2942: 2856: 2747: 2661: 2543: 2489:. Cycles that model 2448:Heat engine diagram. 2406:expansion: Constant 2330: 2287: 2246: 2211: 2176: 2141: 2106: 2009: 1959: 1916:Relationship to work 1842: 1812: 1792: 1725: 1356:Motive Power of Fire 1122: 1067: 1012: 972: 924:Bridgman's equations 901:Fundamental relation 846: 825: 799: 778: 750: 714: 693: 667: 646: 615: 579: 558: 532: 511: 483: 5101: 4089:{\displaystyle W=0} 3897: 3561:internal combustion 3346:external combustion 3330:Heat addition, 2→3 3320: 3312:(constant enthalpy) 3294:(constant pressure) 3253:Actual performance 3171:Hampson–Linde cycle 2992: 2906: 2797: 2711: 1944:axis shows volume ( 1656:thermodynamic cycle 1334:Source ... Friction 1266:Loschmidt's paradox 458:Material properties 336:Conjugate variables 5262: 5189: 5130: 5087: 5053: 4998: 4971: 4894: 4813: 4725: 4696: 4664: 4616:thermal efficiency 4567: 4503: 4405: 4134: 4086: 4060: 4021: 3986: 3944: 3914: 3883: 3854: 3834: 3810: 3790: 3755: 3393:Carnot heat engine 3319: 3306:(constant entropy) 3195: 3121: 3036: 2964: 2927: 2878: 2841: 2769: 2732: 2683: 2646: 2530: 2450: 2388: 2363: 2310: 2261: 2226: 2191: 2156: 2121: 2062: 1989: 1926: 1861: 1828: 1798: 1775: 1704:Process quantities 1598:Order and disorder 1354:Reflections on the 1261:Heat death paradox 1158: 1103: 1048: 993: 855: 831: 808: 784: 759: 723: 699: 676: 652: 627: 588: 564: 541: 517: 495:{\displaystyle c=} 492: 465:Property databases 441:Reduced properties 425:Chemical potential 389:Functions of state 312:Thermal efficiency 48:Carnot heat engine 5710: 5709: 5687:Vapor-compression 5613:Staged combustion 5542: 5541: 5507:With phase change 5254: 5187: 5128: 4892: 4842: 4811: 4755: 4662: 3857:{\displaystyle b} 3837:{\displaystyle a} 3822:internal pressure 3813:{\displaystyle T} 3793:{\displaystyle U} 3742: 3741: 3474:variable pressure 3327:Compression, 1→2 3300:(constant volume) 3260: 3259: 3199: 3198: 3062: 3011: 2925: 2816: 2730: 2549: 2418:(v), Decrease in 2414:(P), Increase in 2410:(s), Decrease in 2355: 2015: 1982: 1965: 1932:. A PV diagram's 1801:{\displaystyle U} 1652: 1651: 1593:Self-organization 1418: 1417: 1116:Gibbs free energy 914:Maxwell relations 872: 871: 868: 867: 834:{\displaystyle V} 787:{\displaystyle 1} 742:Thermal expansion 736: 735: 702:{\displaystyle V} 655:{\displaystyle 1} 601: 600: 567:{\displaystyle N} 520:{\displaystyle T} 448: 447: 364:Process functions 350:Property diagrams 329:System properties 319: 318: 284:Endoreversibility 176:Equation of state 16:(Redirected from 5750: 5682:Vapor absorption 5445: 5423: 5416: 5409: 5400: 5360: 5349: 5338: 5337: 5321: 5311: 5271: 5269: 5268: 5263: 5255: 5250: 5249: 5248: 5229: 5198: 5196: 5195: 5190: 5188: 5183: 5182: 5167: 5139: 5137: 5136: 5131: 5129: 5124: 5123: 5122: 5103: 5100: 5095: 5062: 5060: 5059: 5054: 5007: 5005: 5004: 4999: 4997: 4996: 4980: 4978: 4977: 4972: 4970: 4969: 4903: 4901: 4900: 4895: 4893: 4891: 4890: 4889: 4877: 4876: 4866: 4865: 4856: 4840: 4822: 4820: 4819: 4814: 4812: 4810: 4809: 4808: 4796: 4795: 4785: 4784: 4775: 4753: 4734: 4732: 4731: 4726: 4724: 4723: 4722: 4705: 4703: 4702: 4697: 4695: 4694: 4693: 4673: 4671: 4670: 4665: 4663: 4661: 4660: 4651: 4650: 4641: 4576: 4574: 4573: 4568: 4566: 4565: 4541: 4540: 4512: 4510: 4509: 4504: 4496: 4495: 4471: 4470: 4446: 4445: 4414: 4412: 4411: 4406: 4401: 4400: 4388: 4387: 4372: 4371: 4359: 4358: 4340: 4339: 4327: 4326: 4314: 4313: 4298: 4297: 4285: 4284: 4272: 4271: 4256: 4255: 4243: 4242: 4230: 4229: 4214: 4213: 4201: 4200: 4188: 4187: 4175: 4174: 4143: 4141: 4140: 4135: 4127: 4126: 4095: 4093: 4092: 4087: 4069: 4067: 4066: 4061: 4053: 4052: 4030: 4028: 4027: 4022: 3995: 3993: 3992: 3987: 3979: 3978: 3953: 3951: 3950: 3945: 3943: 3942: 3923: 3921: 3920: 3915: 3907: 3906: 3896: 3891: 3863: 3861: 3860: 3855: 3843: 3841: 3840: 3835: 3819: 3817: 3816: 3811: 3799: 3797: 3796: 3791: 3507:Stirling engines 3321: 3245: 3238: 3231: 3224: 3185: 3135:Heat pump cycles 3130: 3128: 3127: 3122: 3120: 3119: 3101: 3100: 3082: 3081: 3080: 3063: 3060: 3045: 3043: 3042: 3037: 3035: 3034: 3022: 3021: 3012: 3009: 2991: 2990: 2989: 2979: 2978: 2977: 2960: 2959: 2936: 2934: 2933: 2928: 2926: 2923: 2905: 2904: 2903: 2893: 2892: 2891: 2874: 2873: 2850: 2848: 2847: 2842: 2840: 2839: 2827: 2826: 2817: 2814: 2796: 2795: 2794: 2784: 2783: 2782: 2765: 2764: 2741: 2739: 2738: 2733: 2731: 2728: 2710: 2709: 2708: 2698: 2697: 2696: 2679: 2678: 2655: 2653: 2652: 2647: 2645: 2644: 2626: 2625: 2607: 2606: 2588: 2587: 2569: 2568: 2567: 2550: 2547: 2479:gasoline engines 2372: 2370: 2369: 2364: 2356: 2351: 2343: 2319: 2317: 2316: 2311: 2303: 2302: 2270: 2268: 2267: 2262: 2235: 2233: 2232: 2227: 2200: 2198: 2197: 2192: 2165: 2163: 2162: 2157: 2130: 2128: 2127: 2122: 2071: 2069: 2068: 2063: 2061: 2060: 2042: 2041: 2016: 2013: 1998: 1996: 1995: 1990: 1980: 1966: 1963: 1893:heat pump cycles 1870: 1868: 1867: 1862: 1860: 1859: 1837: 1835: 1834: 1829: 1827: 1826: 1807: 1805: 1804: 1799: 1784: 1782: 1781: 1776: 1768: 1767: 1749: 1748: 1664:transfer of heat 1644: 1637: 1630: 1614: 1613: 1321:Key publications 1302: 1301:("living force") 1251:Brownian ratchet 1246:Entropy and life 1241:Entropy and time 1192: 1167: 1165: 1164: 1159: 1112: 1110: 1109: 1104: 1057: 1055: 1054: 1049: 1002: 1000: 999: 994: 896:Clausius theorem 891:Carnot's theorem 864: 862: 861: 856: 840: 838: 837: 832: 817: 815: 814: 809: 793: 791: 790: 785: 772: 771: 768: 766: 765: 760: 732: 730: 729: 724: 708: 706: 705: 700: 685: 683: 682: 677: 661: 659: 658: 653: 640: 639: 636: 634: 633: 628: 597: 595: 594: 589: 573: 571: 570: 565: 550: 548: 547: 542: 526: 524: 523: 518: 505: 504: 501: 499: 498: 493: 471: 470: 344: 163: 44: 30: 21: 5758: 5757: 5753: 5752: 5751: 5749: 5748: 5747: 5713: 5712: 5711: 5706: 5643: 5617: 5549: 5538: 5528:Organic Rankine 5502: 5456: 5453:hot air engines 5450: 5439: 5432: 5427: 5397: 5369: 5367:Further reading 5364: 5363: 5350: 5341: 5334: 5313: 5312: 5308: 5303: 5281: 5234: 5230: 5208: 5207: 5168: 5152: 5151: 5108: 5104: 5076: 5075: 5033: 5032: 5014: 4988: 4983: 4982: 4961: 4956: 4955: 4927: 4921: 4881: 4868: 4867: 4857: 4835: 4834: 4800: 4787: 4786: 4776: 4748: 4747: 4714: 4708: 4707: 4685: 4679: 4678: 4652: 4642: 4623: 4622: 4596: 4590: 4584:of the cycle). 4545: 4520: 4515: 4514: 4475: 4450: 4425: 4417: 4416: 4392: 4379: 4363: 4350: 4331: 4318: 4305: 4289: 4276: 4263: 4247: 4234: 4221: 4205: 4192: 4179: 4154: 4149: 4148: 4118: 4098: 4097: 4072: 4071: 4044: 4033: 4032: 4001: 4000: 3970: 3956: 3955: 3934: 3929: 3928: 3898: 3869: 3868: 3846: 3845: 3844:to final state 3826: 3825: 3802: 3801: 3782: 3781: 3747: 3592: 3588: 3475: 3333:Expansion, 3→4 3282:(constant heat) 3269: 3183: 3143: 3137: 3105: 3086: 3065: 3054: 3053: 3026: 3013: 2981: 2969: 2945: 2940: 2939: 2895: 2883: 2859: 2854: 2853: 2831: 2818: 2786: 2774: 2750: 2745: 2744: 2700: 2688: 2664: 2659: 2658: 2630: 2611: 2592: 2573: 2552: 2541: 2540: 2534:mechanical work 2515:hot air engines 2513:, which models 2505:, which models 2497:, which models 2485:, which models 2477:, which models 2456: 2442: 2380: 2344: 2328: 2327: 2293: 2285: 2284: 2244: 2243: 2209: 2208: 2174: 2173: 2139: 2138: 2104: 2103: 2093: 2046: 2030: 2007: 2006: 1957: 1956: 1918: 1897:mechanical work 1885: 1845: 1840: 1839: 1815: 1810: 1809: 1790: 1789: 1753: 1737: 1723: 1722: 1672:state variables 1648: 1603: 1602: 1578: 1570: 1569: 1568: 1428: 1420: 1419: 1398: 1384: 1359: 1355: 1348: 1344: 1337: 1333: 1300: 1293: 1275: 1256:Maxwell's demon 1218: 1189: 1188: 1172: 1171: 1170: 1120: 1119: 1118: 1065: 1064: 1063: 1010: 1009: 1008: 970: 969: 968: 966:Internal energy 961: 946: 936: 935: 910: 885: 875: 874: 873: 844: 843: 823: 822: 797: 796: 776: 775: 748: 747: 712: 711: 691: 690: 665: 664: 644: 643: 613: 612: 607:Compressibility 577: 576: 556: 555: 530: 529: 509: 508: 481: 480: 460: 450: 449: 430:Particle number 383: 342: 331: 321: 320: 279:Irreversibility 191:State of matter 158:Isolated system 143: 133: 132: 131: 106: 96: 95: 91:Non-equilibrium 83: 58: 50: 28: 23: 22: 15: 12: 11: 5: 5756: 5754: 5746: 5745: 5743:Thermodynamics 5740: 5735: 5730: 5725: 5715: 5714: 5708: 5707: 5705: 5704: 5699: 5694: 5689: 5684: 5679: 5674: 5669: 5664: 5659: 5653: 5651: 5645: 5644: 5642: 5641: 5636: 5631: 5625: 5623: 5619: 5618: 5616: 5615: 5610: 5605: 5600: 5595: 5590: 5585: 5580: 5575: 5570: 5565: 5560: 5554: 5552: 5544: 5543: 5540: 5539: 5537: 5536: 5531: 5521: 5516: 5510: 5508: 5504: 5503: 5501: 5500: 5495: 5490: 5485: 5480: 5475: 5470: 5465: 5459: 5457: 5448: 5442: 5434: 5433: 5428: 5426: 5425: 5418: 5411: 5403: 5396: 5395:External links 5393: 5392: 5391: 5388: 5381: 5368: 5365: 5362: 5361: 5339: 5332: 5305: 5304: 5302: 5299: 5298: 5297: 5292: 5287: 5280: 5277: 5273: 5272: 5261: 5258: 5253: 5247: 5244: 5241: 5237: 5233: 5227: 5224: 5221: 5218: 5215: 5201: 5200: 5186: 5181: 5178: 5175: 5171: 5165: 5162: 5159: 5141: 5140: 5127: 5121: 5118: 5115: 5111: 5107: 5099: 5094: 5090: 5086: 5083: 5065: 5064: 5052: 5049: 5046: 5043: 5040: 5022:state function 5013: 5010: 4995: 4991: 4968: 4964: 4947: 4946: 4939: 4925:Stirling cycle 4923:Main article: 4920: 4919:Stirling cycle 4917: 4913:Ericsson cycle 4909:Stirling cycle 4905: 4904: 4888: 4884: 4880: 4875: 4871: 4864: 4860: 4854: 4851: 4848: 4845: 4824: 4823: 4807: 4803: 4799: 4794: 4790: 4783: 4779: 4773: 4770: 4767: 4764: 4761: 4758: 4721: 4717: 4692: 4688: 4675: 4674: 4659: 4655: 4649: 4645: 4639: 4636: 4633: 4630: 4592:Main article: 4589: 4586: 4564: 4561: 4558: 4555: 4552: 4548: 4544: 4539: 4536: 4533: 4530: 4527: 4523: 4502: 4499: 4494: 4491: 4488: 4485: 4482: 4478: 4474: 4469: 4466: 4463: 4460: 4457: 4453: 4449: 4444: 4441: 4438: 4435: 4432: 4428: 4424: 4404: 4399: 4395: 4391: 4386: 4382: 4378: 4375: 4370: 4366: 4362: 4357: 4353: 4349: 4346: 4343: 4338: 4334: 4330: 4325: 4321: 4317: 4312: 4308: 4304: 4301: 4296: 4292: 4288: 4283: 4279: 4275: 4270: 4266: 4262: 4259: 4254: 4250: 4246: 4241: 4237: 4233: 4228: 4224: 4220: 4217: 4212: 4208: 4204: 4199: 4195: 4191: 4186: 4182: 4178: 4173: 4170: 4167: 4164: 4161: 4157: 4133: 4130: 4125: 4121: 4117: 4114: 4111: 4108: 4105: 4085: 4082: 4079: 4059: 4056: 4051: 4047: 4043: 4040: 4020: 4017: 4014: 4011: 4008: 3985: 3982: 3977: 3973: 3969: 3966: 3963: 3941: 3937: 3927:Assuming that 3925: 3924: 3913: 3910: 3905: 3901: 3895: 3890: 3886: 3882: 3879: 3876: 3853: 3833: 3809: 3789: 3774: 3773: 3766: 3746: 3743: 3740: 3739: 3734: 3731: 3728: 3725: 3722: 3716: 3715: 3709: 3706: 3703: 3700: 3698: 3692: 3691: 3678: 3675: 3672: 3669: 3666: 3660: 3659: 3654: 3651: 3648: 3645: 3642: 3636: 3635: 3613: 3610: 3607: 3604: 3601: 3595: 3594: 3590: 3586: 3583: 3580: 3577: 3574: 3571: 3565: 3564: 3556: 3555: 3553: 3550: 3547: 3544: 3541: 3535: 3534: 3528: 3525: 3522: 3519: 3516: 3510: 3509: 3504: 3501: 3498: 3495: 3492: 3486: 3485: 3483: 3480: 3477: 3472: 3469: 3463: 3462: 3460: 3457: 3454: 3451: 3448: 3442: 3441: 3436: 3433: 3430: 3427: 3424: 3418: 3417: 3414: 3411: 3408: 3405: 3402: 3396: 3395: 3390: 3387: 3384: 3381: 3378: 3372: 3371: 3368: 3365: 3362: 3359: 3356: 3350: 3349: 3341: 3340: 3337: 3334: 3331: 3328: 3325: 3314: 3313: 3307: 3301: 3295: 3289: 3283: 3268: 3265: 3258: 3257: 3254: 3251: 3247: 3246: 3239: 3232: 3219:Stirling cycle 3197: 3196: 3182: 3179: 3149:for household 3139:Main article: 3136: 3133: 3132: 3131: 3118: 3115: 3112: 3108: 3104: 3099: 3096: 3093: 3089: 3085: 3079: 3076: 3073: 3068: 3047: 3046: 3033: 3029: 3025: 3020: 3016: 3005: 3002: 2999: 2995: 2988: 2984: 2976: 2972: 2967: 2963: 2958: 2955: 2952: 2948: 2937: 2919: 2916: 2913: 2909: 2902: 2898: 2890: 2886: 2881: 2877: 2872: 2869: 2866: 2862: 2851: 2838: 2834: 2830: 2825: 2821: 2810: 2807: 2804: 2800: 2793: 2789: 2781: 2777: 2772: 2768: 2763: 2760: 2757: 2753: 2742: 2724: 2721: 2718: 2714: 2707: 2703: 2695: 2691: 2686: 2682: 2677: 2674: 2671: 2667: 2656: 2643: 2640: 2637: 2633: 2629: 2624: 2621: 2618: 2614: 2610: 2605: 2602: 2599: 2595: 2591: 2586: 2583: 2580: 2576: 2572: 2566: 2563: 2560: 2555: 2519:Ericsson cycle 2511:Stirling cycle 2507:steam turbines 2487:diesel engines 2464:motor vehicles 2460:electric power 2452:Main article: 2441: 2438: 2437: 2436: 2433: 2430: 2423: 2379: 2376: 2375: 2374: 2362: 2359: 2354: 2350: 2347: 2341: 2338: 2335: 2321: 2309: 2306: 2301: 2296: 2292: 2278: 2272: 2260: 2257: 2254: 2251: 2237: 2225: 2222: 2219: 2216: 2202: 2190: 2187: 2184: 2181: 2167: 2155: 2152: 2149: 2146: 2132: 2120: 2117: 2114: 2111: 2092: 2089: 2073: 2072: 2059: 2056: 2053: 2049: 2045: 2040: 2037: 2033: 2029: 2026: 2023: 2020: 2000: 1999: 1988: 1985: 1979: 1976: 1973: 1970: 1917: 1914: 1884: 1881: 1873:thermodynamics 1858: 1855: 1852: 1848: 1825: 1822: 1818: 1797: 1786: 1785: 1774: 1771: 1766: 1763: 1760: 1756: 1752: 1747: 1744: 1740: 1736: 1733: 1730: 1697:state function 1650: 1649: 1647: 1646: 1639: 1632: 1624: 1621: 1620: 1619: 1618: 1605: 1604: 1601: 1600: 1595: 1590: 1585: 1579: 1576: 1575: 1572: 1571: 1567: 1566: 1561: 1556: 1551: 1546: 1541: 1536: 1531: 1526: 1521: 1516: 1511: 1506: 1501: 1496: 1491: 1486: 1481: 1476: 1471: 1466: 1461: 1456: 1451: 1446: 1441: 1436: 1430: 1429: 1426: 1425: 1422: 1421: 1416: 1415: 1414: 1413: 1408: 1400: 1399: 1397: 1396: 1393: 1389: 1386: 1385: 1383: 1382: 1377: 1375:Thermodynamics 1371: 1368: 1367: 1363: 1362: 1361: 1360: 1351: 1349: 1340: 1338: 1329: 1324: 1323: 1317: 1316: 1315: 1314: 1309: 1304: 1292: 1291: 1289:Caloric theory 1285: 1282: 1281: 1277: 1276: 1274: 1273: 1268: 1263: 1258: 1253: 1248: 1243: 1237: 1234: 1233: 1227: 1226: 1225: 1224: 1217: 1216: 1211: 1206: 1200: 1197: 1196: 1190: 1187: 1186: 1183: 1179: 1178: 1177: 1174: 1173: 1169: 1168: 1157: 1154: 1151: 1148: 1145: 1142: 1139: 1136: 1133: 1130: 1127: 1113: 1102: 1099: 1096: 1093: 1090: 1087: 1084: 1081: 1078: 1075: 1072: 1058: 1047: 1044: 1041: 1038: 1035: 1032: 1029: 1026: 1023: 1020: 1017: 1003: 992: 989: 986: 983: 980: 977: 962: 960: 959: 954: 948: 947: 942: 941: 938: 937: 934: 933: 926: 921: 916: 909: 908: 903: 898: 893: 887: 886: 881: 880: 877: 876: 870: 869: 866: 865: 854: 851: 841: 830: 819: 818: 807: 804: 794: 783: 769: 758: 755: 745: 738: 737: 734: 733: 722: 719: 709: 698: 687: 686: 675: 672: 662: 651: 637: 626: 623: 620: 610: 603: 602: 599: 598: 587: 584: 574: 563: 552: 551: 540: 537: 527: 516: 502: 491: 488: 478: 469: 468: 467: 461: 456: 455: 452: 451: 446: 445: 444: 443: 438: 433: 422: 411: 392: 391: 385: 384: 382: 381: 376: 370: 367: 366: 360: 359: 358: 357: 352: 333: 332: 327: 326: 323: 322: 317: 316: 315: 314: 309: 304: 296: 295: 289: 288: 287: 286: 281: 276: 271: 269:Free expansion 266: 261: 256: 251: 246: 241: 236: 231: 223: 222: 216: 215: 214: 213: 208: 206:Control volume 203: 198: 196:Phase (matter) 193: 188: 183: 178: 170: 169: 161: 160: 155: 150: 144: 139: 138: 135: 134: 130: 129: 124: 119: 114: 108: 107: 102: 101: 98: 97: 94: 93: 82: 81: 76: 71: 66: 60: 59: 56: 55: 52: 51: 46:The classical 45: 37: 36: 34:Thermodynamics 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 5755: 5744: 5741: 5739: 5736: 5734: 5731: 5729: 5726: 5724: 5721: 5720: 5718: 5703: 5700: 5698: 5695: 5693: 5690: 5688: 5685: 5683: 5680: 5678: 5677:Transcritical 5675: 5673: 5670: 5668: 5665: 5663: 5660: 5658: 5657:Hampson–Linde 5655: 5654: 5652: 5650: 5649:Refrigeration 5646: 5640: 5637: 5635: 5632: 5630: 5627: 5626: 5624: 5620: 5614: 5611: 5609: 5606: 5604: 5601: 5599: 5596: 5594: 5591: 5589: 5586: 5584: 5581: 5579: 5578:Gas-generator 5576: 5574: 5571: 5569: 5566: 5564: 5563:Brayton/Joule 5561: 5559: 5556: 5555: 5553: 5551: 5545: 5535: 5532: 5529: 5525: 5522: 5520: 5517: 5515: 5512: 5511: 5509: 5505: 5499: 5496: 5494: 5491: 5489: 5486: 5484: 5481: 5479: 5476: 5474: 5471: 5469: 5468:Brayton/Joule 5466: 5464: 5461: 5460: 5458: 5454: 5446: 5443: 5441: 5435: 5431: 5424: 5419: 5417: 5412: 5410: 5405: 5404: 5401: 5394: 5389: 5386: 5382: 5379: 5375: 5371: 5370: 5366: 5358: 5357:0-07-238332-1 5354: 5348: 5346: 5344: 5340: 5335: 5333:0-07-238332-1 5329: 5325: 5320: 5319: 5310: 5307: 5300: 5296: 5293: 5291: 5288: 5286: 5283: 5282: 5278: 5276: 5259: 5256: 5251: 5245: 5242: 5239: 5235: 5231: 5225: 5222: 5219: 5216: 5213: 5206: 5205: 5204: 5184: 5179: 5176: 5173: 5169: 5163: 5160: 5150: 5149: 5148: 5146: 5145:absolute zero 5125: 5119: 5116: 5113: 5109: 5105: 5097: 5092: 5088: 5084: 5081: 5074: 5073: 5072: 5070: 5050: 5047: 5044: 5041: 5038: 5031: 5030: 5029: 5027: 5023: 5019: 5011: 5009: 4993: 4989: 4966: 4962: 4953: 4944: 4940: 4937: 4933: 4932: 4931: 4926: 4918: 4916: 4914: 4910: 4886: 4882: 4878: 4873: 4869: 4862: 4858: 4852: 4849: 4846: 4843: 4833: 4832: 4831: 4829: 4805: 4801: 4797: 4792: 4788: 4781: 4777: 4771: 4768: 4765: 4762: 4759: 4756: 4746: 4745: 4744: 4742: 4738: 4719: 4715: 4690: 4686: 4657: 4653: 4647: 4643: 4637: 4634: 4631: 4628: 4621: 4620: 4619: 4617: 4613: 4609: 4605: 4601: 4595: 4587: 4585: 4583: 4578: 4562: 4559: 4556: 4553: 4550: 4546: 4542: 4537: 4534: 4531: 4528: 4525: 4521: 4500: 4497: 4492: 4489: 4486: 4483: 4480: 4476: 4472: 4467: 4464: 4461: 4458: 4455: 4451: 4447: 4442: 4439: 4436: 4433: 4430: 4426: 4397: 4393: 4389: 4384: 4380: 4368: 4364: 4360: 4355: 4351: 4344: 4336: 4332: 4328: 4323: 4319: 4310: 4306: 4302: 4294: 4290: 4286: 4281: 4277: 4268: 4264: 4260: 4252: 4248: 4244: 4239: 4235: 4226: 4222: 4218: 4210: 4206: 4202: 4197: 4193: 4184: 4180: 4176: 4171: 4168: 4165: 4162: 4159: 4155: 4145: 4131: 4123: 4119: 4115: 4112: 4106: 4103: 4083: 4080: 4077: 4057: 4049: 4045: 4041: 4038: 4018: 4012: 4009: 4006: 3997: 3983: 3975: 3971: 3967: 3964: 3954:is constant, 3939: 3935: 3911: 3908: 3903: 3899: 3893: 3888: 3884: 3880: 3877: 3867: 3866: 3865: 3851: 3831: 3823: 3807: 3787: 3779: 3771: 3767: 3764: 3760: 3759: 3758: 3751: 3744: 3738: 3735: 3732: 3729: 3726: 3723: 3721: 3718: 3717: 3713: 3710: 3707: 3704: 3701: 3699: 3697: 3694: 3693: 3690: 3686: 3682: 3679: 3676: 3673: 3670: 3667: 3665: 3662: 3661: 3658: 3657:Diesel engine 3655: 3652: 3649: 3646: 3643: 3641: 3638: 3637: 3633: 3629: 3625: 3621: 3617: 3614: 3611: 3608: 3605: 3602: 3600: 3597: 3596: 3584: 3581: 3578: 3575: 3572: 3570: 3567: 3566: 3562: 3557: 3554: 3551: 3548: 3545: 3542: 3540: 3537: 3536: 3533: 3529: 3526: 3523: 3520: 3517: 3515: 3512: 3511: 3508: 3505: 3502: 3499: 3496: 3493: 3491: 3488: 3487: 3484: 3481: 3478: 3473: 3470: 3468: 3465: 3464: 3461: 3458: 3455: 3452: 3449: 3447: 3444: 3443: 3440: 3439:Steam engines 3437: 3434: 3431: 3428: 3425: 3423: 3420: 3419: 3415: 3412: 3409: 3406: 3403: 3401: 3398: 3397: 3394: 3391: 3388: 3385: 3382: 3379: 3377: 3374: 3373: 3369: 3366: 3363: 3360: 3357: 3355: 3352: 3351: 3347: 3342: 3338: 3335: 3332: 3329: 3326: 3323: 3322: 3317: 3311: 3308: 3305: 3302: 3299: 3296: 3293: 3290: 3287: 3284: 3281: 3278: 3277: 3276: 3274: 3266: 3264: 3255: 3252: 3249: 3248: 3244: 3240: 3237: 3233: 3230: 3226: 3225: 3222: 3220: 3215: 3213: 3212:Brayton cycle 3209: 3205: 3191: 3187: 3186: 3180: 3178: 3176: 3175:liquify gases 3172: 3168: 3164: 3160: 3156: 3155:refrigerators 3152: 3148: 3142: 3134: 3116: 3110: 3106: 3102: 3097: 3091: 3087: 3083: 3066: 3052: 3051: 3050: 3031: 3027: 3023: 3018: 3014: 3003: 3000: 2997: 2993: 2986: 2982: 2974: 2970: 2965: 2961: 2956: 2950: 2946: 2938: 2917: 2914: 2911: 2907: 2900: 2896: 2888: 2884: 2879: 2875: 2870: 2864: 2860: 2852: 2836: 2832: 2828: 2823: 2819: 2808: 2805: 2802: 2798: 2791: 2787: 2779: 2775: 2770: 2766: 2761: 2755: 2751: 2743: 2722: 2719: 2716: 2712: 2705: 2701: 2693: 2689: 2684: 2680: 2675: 2669: 2665: 2657: 2641: 2635: 2631: 2627: 2622: 2616: 2612: 2608: 2603: 2597: 2593: 2589: 2584: 2578: 2574: 2570: 2553: 2539: 2538: 2537: 2535: 2526: 2522: 2520: 2516: 2512: 2508: 2504: 2503:Rankine cycle 2500: 2496: 2495:Brayton cycle 2492: 2488: 2484: 2480: 2476: 2472: 2467: 2465: 2461: 2455: 2446: 2439: 2434: 2431: 2428: 2424: 2421: 2417: 2413: 2409: 2405: 2401: 2397: 2396: 2395: 2393: 2384: 2377: 2360: 2357: 2352: 2348: 2345: 2339: 2336: 2333: 2325: 2322: 2307: 2304: 2299: 2294: 2290: 2282: 2279: 2276: 2273: 2258: 2255: 2252: 2249: 2241: 2238: 2223: 2220: 2217: 2214: 2206: 2203: 2188: 2185: 2182: 2179: 2171: 2168: 2153: 2150: 2147: 2144: 2136: 2133: 2118: 2115: 2112: 2109: 2101: 2098: 2097: 2096: 2090: 2088: 2086: 2082: 2077: 2057: 2054: 2051: 2047: 2043: 2038: 2035: 2031: 2027: 2024: 2021: 2018: 2005: 2004: 2003: 1986: 1983: 1977: 1974: 1971: 1968: 1955: 1954: 1953: 1951: 1947: 1943: 1939: 1935: 1931: 1922: 1915: 1913: 1911: 1907: 1903: 1898: 1894: 1890: 1883:Heat and work 1882: 1880: 1878: 1874: 1856: 1853: 1850: 1846: 1823: 1820: 1816: 1795: 1772: 1769: 1764: 1761: 1758: 1754: 1750: 1745: 1742: 1738: 1734: 1731: 1721: 1720: 1719: 1717: 1713: 1709: 1705: 1700: 1698: 1694: 1690: 1686: 1682: 1677: 1673: 1669: 1665: 1662:that involve 1661: 1657: 1645: 1640: 1638: 1633: 1631: 1626: 1625: 1623: 1622: 1617: 1609: 1608: 1607: 1606: 1599: 1596: 1594: 1591: 1589: 1588:Self-assembly 1586: 1584: 1581: 1580: 1574: 1573: 1565: 1562: 1560: 1559:van der Waals 1557: 1555: 1552: 1550: 1547: 1545: 1542: 1540: 1537: 1535: 1532: 1530: 1527: 1525: 1522: 1520: 1517: 1515: 1512: 1510: 1507: 1505: 1502: 1500: 1497: 1495: 1492: 1490: 1487: 1485: 1484:von Helmholtz 1482: 1480: 1477: 1475: 1472: 1470: 1467: 1465: 1462: 1460: 1457: 1455: 1452: 1450: 1447: 1445: 1442: 1440: 1437: 1435: 1432: 1431: 1424: 1423: 1412: 1409: 1407: 1404: 1403: 1402: 1401: 1394: 1391: 1390: 1387: 1381: 1378: 1376: 1373: 1372: 1370: 1369: 1364: 1358: 1357: 1350: 1347: 1346: 1339: 1336: 1335: 1328: 1327: 1326: 1325: 1322: 1318: 1313: 1310: 1308: 1305: 1303: 1299: 1295: 1294: 1290: 1287: 1286: 1284: 1283: 1278: 1272: 1269: 1267: 1264: 1262: 1259: 1257: 1254: 1252: 1249: 1247: 1244: 1242: 1239: 1238: 1236: 1235: 1232: 1228: 1223: 1220: 1219: 1215: 1212: 1210: 1207: 1205: 1202: 1201: 1199: 1198: 1193: 1184: 1181: 1180: 1176: 1175: 1155: 1152: 1149: 1146: 1143: 1137: 1134: 1131: 1125: 1117: 1114: 1100: 1097: 1094: 1091: 1088: 1082: 1079: 1076: 1070: 1062: 1059: 1045: 1042: 1039: 1036: 1033: 1027: 1024: 1021: 1015: 1007: 1004: 987: 984: 981: 975: 967: 964: 963: 958: 955: 953: 950: 949: 945: 940: 939: 932: 931: 927: 925: 922: 920: 917: 915: 912: 911: 907: 906:Ideal gas law 904: 902: 899: 897: 894: 892: 889: 888: 884: 879: 878: 852: 842: 828: 821: 820: 805: 795: 781: 774: 773: 770: 756: 753: 746: 743: 740: 739: 720: 710: 696: 689: 688: 673: 663: 649: 642: 641: 638: 624: 621: 618: 611: 608: 605: 604: 585: 575: 561: 554: 553: 538: 528: 514: 507: 506: 503: 489: 486: 479: 476: 473: 472: 466: 463: 462: 459: 454: 453: 442: 439: 437: 436:Vapor quality 434: 432: 431: 426: 423: 421: 420: 415: 412: 409: 405: 404: 399: 396: 395: 394: 393: 390: 386: 380: 377: 375: 372: 371: 369: 368: 365: 361: 356: 353: 351: 348: 347: 346: 345: 341: 337: 330: 325: 324: 313: 310: 308: 305: 303: 300: 299: 298: 297: 294: 290: 285: 282: 280: 277: 275: 274:Reversibility 272: 270: 267: 265: 262: 260: 257: 255: 252: 250: 247: 245: 242: 240: 237: 235: 232: 230: 227: 226: 225: 224: 221: 217: 212: 209: 207: 204: 202: 199: 197: 194: 192: 189: 187: 184: 182: 179: 177: 174: 173: 172: 171: 168: 164: 159: 156: 154: 151: 149: 148:Closed system 146: 145: 142: 137: 136: 128: 125: 123: 120: 118: 115: 113: 110: 109: 105: 100: 99: 92: 88: 85: 84: 80: 77: 75: 72: 70: 67: 65: 62: 61: 54: 53: 49: 43: 39: 38: 35: 31: 19: 5534:Regenerative 5463:Bell Coleman 5429: 5384: 5377: 5373: 5317: 5309: 5274: 5202: 5142: 5066: 5025: 5017: 5015: 4951: 4948: 4942: 4935: 4928: 4906: 4828:refrigerator 4825: 4676: 4600:Carnot cycle 4597: 4594:Carnot cycle 4588:Carnot cycle 4579: 4146: 3998: 3926: 3775: 3769: 3762: 3756: 3354:Bell Coleman 3315: 3270: 3261: 3216: 3200: 3163:refrigerants 3144: 3048: 2531: 2499:gas turbines 2493:include the 2483:Diesel cycle 2468: 2457: 2440:Power cycles 2389: 2094: 2078: 2074: 2001: 1949: 1945: 1941: 1937: 1933: 1927: 1892: 1889:power cycles 1888: 1886: 1787: 1701: 1655: 1653: 1449:CarathĂ©odory 1380:Heat engines 1352: 1341: 1330: 1312:Motive power 1297: 957:Free entropy 928: 428: 427: / 417: 416: / 408:introduction 401: 400: / 339: 302:Heat engines 292: 89: / 5702:Ionocaloric 5697:Vuilleumier 5519:Hygroscopic 3778:perfect gas 3745:Ideal cycle 3634:from 1833. 3530:Manson and 3446:Hygroscopic 3389:isothermal 3310:isenthalpic 3204:gas turbine 2454:Heat engine 2420:temperature 2275:Isenthalpic 2081:heat engine 1681:heat engine 1271:Synergetics 952:Free energy 398:Temperature 259:Quasistatic 254:Isenthalpic 211:Instruments 201:Equilibrium 153:Open system 87:Equilibrium 69:Statistical 5717:Categories 5667:Pulse tube 5639:Mixed/dual 5301:References 5290:Economizer 4936:isothermal 4826:and for a 4612:isothermal 4608:isentropic 4513:, we have 3733:isochoric 3730:isentropic 3724:isentropic 3712:Pulse jets 3681:Shcramjets 3674:isentropic 3668:isentropic 3653:isochoric 3582:isochoric 3579:isentropic 3573:isentropic 3524:isothermal 3518:isothermal 3503:isochoric 3500:isothermal 3494:isothermal 3482:isochoric 3476:and volume 3410:isothermal 3404:isothermal 3386:isentropic 3383:isothermal 3380:isentropic 3304:isentropic 3286:isothermal 3208:jet engine 3151:heat pumps 2517:, and the 2481:, and the 2475:Otto cycle 2400:Isentropic 2392:Otto Cycle 2324:Reversible 2281:Polytropic 2240:Isentropic 2135:Isothermal 1930:PV diagram 1583:Nucleation 1427:Scientists 1231:Philosophy 944:Potentials 307:Heat pumps 264:Polytropic 249:Isentropic 239:Isothermal 5662:Kleemenko 5548:Internal 5226:∮ 5214:∮ 5158:Δ 5089:∫ 5039:∮ 4945:processes 4943:isochoric 4938:processes 4879:− 4798:− 4741:heat pump 4638:− 4629:η 4473:− 4423:Δ 4390:− 4361:− 4329:− 4287:− 4245:− 4203:− 4129:Δ 4110:Δ 4055:Δ 4016:Δ 3981:Δ 3962:Δ 3885:∫ 3875:Δ 3772:processes 3770:isochoric 3765:processes 3727:isochoric 3708:isobaric 3705:adiabatic 3702:isochoric 3677:isobaric 3671:isochoric 3650:adiabatic 3644:adiabatic 3620:turbojets 3612:isobaric 3609:adiabatic 3603:adiabatic 3576:isochoric 3552:isobaric 3549:adiabatic 3543:adiabatic 3521:isochoric 3497:isochoric 3479:adiabatic 3471:adiabatic 3459:isobaric 3456:adiabatic 3450:adiabatic 3435:isobaric 3432:adiabatic 3426:adiabatic 3413:isobaric 3367:isobaric 3364:adiabatic 3358:adiabatic 3298:isochoric 3280:adiabatic 3114:→ 3095:→ 2966:∫ 2954:→ 2880:∫ 2868:→ 2771:∫ 2759:→ 2685:∫ 2673:→ 2639:→ 2620:→ 2601:→ 2582:→ 2427:Isochoric 2404:adiabatic 2340:− 2250:δ 2215:δ 2205:Isochoric 2180:δ 2145:δ 2110:δ 2100:Adiabatic 2085:heat pump 2044:− 1975:∮ 1751:− 1729:Δ 1718:applies: 1685:heat pump 1564:Waterston 1514:von Mayer 1469:de Donder 1459:Clapeyron 1439:Boltzmann 1434:Bernoulli 1395:Education 1366:Timelines 1150:− 1095:− 883:Equations 850:∂ 803:∂ 754:α 718:∂ 671:∂ 625:− 619:β 583:∂ 536:∂ 244:Adiabatic 234:Isochoric 220:Processes 181:Ideal gas 64:Classical 5629:Combined 5588:Humphrey 5573:Expander 5558:Atkinson 5493:Stoddard 5483:Stirling 5478:Ericsson 5438:External 5279:See also 3763:isobaric 3664:Humphrey 3647:isobaric 3606:isobaric 3569:Atkinson 3546:isobaric 3539:Stoddard 3490:Stirling 3453:isobaric 3429:isobaric 3407:isobaric 3400:Ericsson 3361:isobaric 3292:isobaric 2473:are the 2412:pressure 2170:Isobaric 1616:Category 1554:Thompson 1464:Clausius 1444:Bridgman 1298:Vis viva 1280:Theories 1214:Gas laws 1006:Enthalpy 414:Pressure 229:Isobaric 186:Real gas 74:Chemical 57:Branches 5692:Siemens 5608:Scuderi 5524:Rankine 5285:Entropy 3628:-shafts 3616:Ramjets 3599:Brayton 3467:Scuderi 3422:Rankine 2408:entropy 1693:entropy 1539:Smeaton 1534:Rankine 1524:Onsager 1509:Maxwell 1504:Massieu 1209:Entropy 1204:General 1195:History 1185:Culture 1182:History 406: ( 403:Entropy 340:italics 141:Systems 5598:Miller 5593:Lenoir 5568:Diesel 5514:Kalina 5498:Manson 5473:Carnot 5355:  5330:  4841:  4754:  4739:for a 4677:where 3696:Lenoir 3685:pulse- 3640:Diesel 3626:, and 3624:-props 3589:< V 3514:Manson 3376:Carnot 3339:Notes 3324:Cycle 3147:models 2509:, the 2501:, the 2416:volume 1981:  1940:) and 1908:, the 1676:system 1529:Planck 1519:Nernst 1494:Kelvin 1454:Carnot 744:  609:  477:  419:Volume 334:Note: 293:Cycles 122:Second 112:Zeroth 5622:Mixed 5020:is a 4743:is: 4096:and 2425:2→3: 2398:1→2: 1577:Other 1544:Stahl 1499:Lewis 1489:Joule 1479:Gibbs 1474:Duhem 167:State 127:Third 117:First 5634:HEHC 5603:Otto 5353:ISBN 5328:ISBN 4911:and 4598:The 4031:and 3720:Otto 3687:and 3153:and 2390:The 1891:and 1712:work 1710:and 1708:heat 1668:work 1666:and 1549:Tait 379:Heat 374:Work 104:Laws 5071:as 5016:If 4952:Q=W 4606:of 3206:or 3061:(4) 2548:(3) 2422:(T) 2014:(2) 1964:(1) 1904:or 1392:Art 338:in 5719:: 5342:^ 5326:. 5324:14 4577:. 4144:. 3780:, 3683:, 3622:, 3618:, 3593:. 3563:: 3177:. 2402:/ 2087:. 1699:. 1654:A 5530:) 5526:( 5455:) 5451:( 5422:e 5415:t 5408:v 5380:. 5359:. 5336:. 5260:0 5257:= 5252:T 5246:v 5243:e 5240:r 5236:Q 5232:d 5223:= 5220:S 5217:d 5199:. 5185:T 5180:v 5177:e 5174:r 5170:Q 5164:= 5161:S 5126:T 5120:v 5117:e 5114:r 5110:Q 5106:d 5098:T 5093:0 5085:= 5082:S 5063:. 5051:0 5048:= 5045:Z 5042:d 5026:Z 5018:Z 4994:C 4990:T 4967:H 4963:T 4887:L 4883:T 4874:H 4870:T 4863:L 4859:T 4853:= 4850:P 4847:O 4844:C 4806:L 4802:T 4793:H 4789:T 4782:L 4778:T 4772:+ 4769:1 4766:= 4763:P 4760:O 4757:C 4720:H 4716:T 4691:L 4687:T 4658:H 4654:T 4648:L 4644:T 4635:1 4632:= 4563:e 4560:l 4557:c 4554:y 4551:c 4547:W 4543:= 4538:e 4535:l 4532:c 4529:y 4526:c 4522:Q 4501:0 4498:= 4493:e 4490:l 4487:c 4484:y 4481:c 4477:W 4468:e 4465:l 4462:c 4459:y 4456:c 4452:Q 4448:= 4443:e 4440:l 4437:c 4434:y 4431:c 4427:U 4403:) 4398:1 4394:v 4385:2 4381:v 4377:( 4374:) 4369:C 4365:p 4356:A 4352:p 4348:( 4345:= 4342:) 4337:2 4333:v 4324:1 4320:v 4316:( 4311:C 4307:p 4303:+ 4300:) 4295:1 4291:v 4282:2 4278:v 4274:( 4269:A 4265:p 4261:= 4258:) 4253:3 4249:v 4240:4 4236:v 4232:( 4227:C 4223:p 4219:+ 4216:) 4211:1 4207:v 4198:2 4194:v 4190:( 4185:A 4181:p 4177:= 4172:e 4169:l 4166:c 4163:y 4160:c 4156:W 4132:T 4124:v 4120:C 4116:= 4113:U 4107:= 4104:Q 4084:0 4081:= 4078:W 4058:T 4050:p 4046:C 4042:= 4039:Q 4019:v 4013:p 4010:= 4007:W 3984:T 3976:v 3972:C 3968:= 3965:U 3940:v 3936:C 3912:T 3909:d 3904:v 3900:C 3894:b 3889:a 3881:= 3878:U 3852:b 3832:a 3808:T 3788:U 3591:4 3587:1 3117:4 3111:3 3107:W 3103:+ 3098:2 3092:1 3088:W 3084:= 3078:t 3075:e 3072:n 3067:W 3032:1 3028:V 3024:= 3019:4 3015:V 3004:, 3001:V 2998:d 2994:P 2987:1 2983:V 2975:4 2971:V 2962:= 2957:1 2951:4 2947:W 2918:, 2915:V 2912:d 2908:P 2901:4 2897:V 2889:3 2885:V 2876:= 2871:4 2865:3 2861:W 2837:3 2833:V 2829:= 2824:2 2820:V 2809:, 2806:V 2803:d 2799:P 2792:3 2788:V 2780:2 2776:V 2767:= 2762:3 2756:2 2752:W 2723:, 2720:V 2717:d 2713:P 2706:2 2702:V 2694:1 2690:V 2681:= 2676:2 2670:1 2666:W 2642:1 2636:4 2632:W 2628:+ 2623:4 2617:3 2613:W 2609:+ 2604:3 2598:2 2594:W 2590:+ 2585:2 2579:1 2575:W 2571:= 2565:t 2562:e 2559:n 2554:W 2373:. 2361:0 2358:= 2353:T 2349:Q 2346:d 2337:S 2334:d 2320:. 2308:C 2305:= 2300:n 2295:V 2291:p 2259:0 2256:= 2253:S 2224:0 2221:= 2218:V 2189:0 2186:= 2183:P 2154:0 2151:= 2148:T 2119:0 2116:= 2113:Q 2058:t 2055:u 2052:o 2048:Q 2039:n 2036:i 2032:Q 2028:= 2025:Q 2022:= 2019:W 1987:V 1984:d 1978:P 1972:= 1969:W 1950:W 1946:V 1942:X 1938:P 1934:Y 1857:t 1854:u 1851:o 1847:E 1824:n 1821:i 1817:E 1796:U 1773:0 1770:= 1765:t 1762:u 1759:o 1755:E 1746:n 1743:i 1739:E 1735:= 1732:U 1643:e 1636:t 1629:v 1156:S 1153:T 1147:H 1144:= 1141:) 1138:p 1135:, 1132:T 1129:( 1126:G 1101:S 1098:T 1092:U 1089:= 1086:) 1083:V 1080:, 1077:T 1074:( 1071:A 1046:V 1043:p 1040:+ 1037:U 1034:= 1031:) 1028:p 1025:, 1022:S 1019:( 1016:H 991:) 988:V 985:, 982:S 979:( 976:U 853:T 829:V 806:V 782:1 757:= 721:p 697:V 674:V 650:1 622:= 586:T 562:N 539:S 515:T 490:= 487:c 410:) 20:)

Index

Thermodynamic power cycle
Thermodynamics

Carnot heat engine
Classical
Statistical
Chemical
Quantum thermodynamics
Equilibrium
Non-equilibrium
Laws
Zeroth
First
Second
Third
Systems
Closed system
Open system
Isolated system
State
Equation of state
Ideal gas
Real gas
State of matter
Phase (matter)
Equilibrium
Control volume
Instruments
Processes
Isobaric

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑