Knowledge (XXG)

Tidal heating

Source đź“ť

117:. The same mechanism has provided the energy to melt the lower layers of the ice surrounding the rocky mantle of Jupiter's next-closest large moon, Europa. However, the heating of the latter is weaker, because of reduced flexing—Europa has half Io's orbital frequency and a 14% smaller radius; also, while Europa's orbit is about twice as eccentric as Io's, tidal force falls off with the cube of distance and is only a quarter as strong at Europa. Jupiter maintains the moons' orbits via tides they raise on it and thus its rotational energy ultimately powers the system. Saturn's moon 142:, with 3.2 TW being due to tidal interactions with the Moon and 0.5 TW being due to tidal interactions with the Sun. Egbert & Ray (2001) confirmed that overall estimate, writing "The total amount of tidal energy dissipated in the Earth-Moon-Sun system is now well-determined. The methods of space geodesy—altimetry, satellite laser ranging, lunar laser ranging—have converged to 3.7 TW 74:). Sustained tidal heating occurs when the elliptical orbit is prevented from circularizing due to additional gravitational forces from other bodies that keep tugging the object back into an elliptical orbit. In this more complex system, orbital and rotational energy still is being converted to thermal energy; however, now the orbit's 149:
Heller et al. (2021) estimated that shortly after the Moon was formed, when the Moon orbited 10-15 times closer to Earth than it does now, tidal heating might have contributed ~10 W/m of heating over perhaps 100 million years, and that this could have accounted for a temperature increase of up to 5°C
543:
which measures the efficiency at which the satellite dissipates tidal energy into frictional heat. This imaginary portion is defined by interplay of the body's rheology and self-gravitation. It, therefore, is a function of the body's radius, density, and rheological parameters (the
383: 57:
than near apoapsis. Thus the deformation of the body due to tidal forces (i.e. the tidal bulge) varies over the course of its orbit, generating internal friction which heats its interior. This energy gained by the object comes from its
137:
Munk & Wunsch (1998) estimated that Earth experiences 3.7 TW (0.0073 W/m) of tidal heating, of which 95% (3.5 TW or 0.0069 W/m) is associated with ocean tides and 5% (0.2 TW or 0.0004 W/m) is associated with
257: 552:, and others – dependent upon the rheological model). The rheological parameters' values, in turn, depend upon the temperature and the concentration of partial melt in the body's interior. 537: 214: 498: 45:
processes: orbital and rotational energy is dissipated as heat in either (or both) the surface ocean or interior of a planet or satellite. When an object is in an
248: 463: 443: 423: 403: 669: 909:
Segatz, M.; Spohn, T.; Ross, M.N.; Schubert, G. (August 1988). "Tidal dissipation, surface heat flow, and figure of viscoelastic models of Io".
1142: 158:
Harada et al. (2014) proposed that tidal heating may have created a molten layer at the core-mantle boundary within Earth's Moon.
775:"Habitability of the early Earth: liquid water under a faint young Sun facilitated by strong tidal heating due to a closer Moon" 470: 121:
is similarly thought to have a liquid water ocean beneath its icy crust, due to tidal heating related to its resonance with
378:{\displaystyle {\dot {E}}_{\text{Tidal}}=-\operatorname {Im} (k_{2}){\frac {21}{2}}{\frac {GM_{h}^{2}R^{5}ne^{2}}{a^{6}}}} 1147: 993:"Increased Tidal Dissipation Using Advanced Rheological Models: Implications for Io and Tidally Active Exoplanets" 938: 584: 503: 183: 129:
which eject material from Enceladus are thought to be powered by friction generated within its interior.
1152: 217: 67: 1108: 1014: 957: 883: 796: 745: 699: 618: 251: 79: 1044:"Tidal Dissipation Compared to Seismic Dissipation: In Small Bodies, in Earths, and in Superearths" 579: 221: 167: 90:
Tidal heating is responsible for the geologic activity of the most volcanically active body in the
831: 1098: 1055: 1004: 973: 947: 812: 786: 650: 634: 569: 555:
The tidally dissipated power in a nonsynchronised rotator is given by a more complex expression.
936:
Henning, Wade G. (2009). "Tidally Heated Terrestrial Exoplanets: Viscoelastic Response Models".
684: 66:, so over time in a two-body system, the initial elliptical orbit decays into a circular orbit ( 774: 642: 609: 103: 63: 1116: 1065: 1022: 965: 918: 891: 872:"Strong tidal heating in an ultralow-viscosity zone at the core–mantle boundary of the Moon" 843: 804: 753: 707: 626: 118: 46: 870:
Harada, Y; Goosens, S; Matsumoto, K; Yan, J; Ping, J; Noda, H; Harayama, J (27 July 2014).
476: 70:) and the rotational periods of the two bodies adjust towards matching the orbital period ( 114: 227: 1112: 1018: 961: 887: 800: 749: 703: 622: 969: 448: 428: 408: 388: 107: 75: 59: 42: 1070: 1043: 711: 607:
Peale, S.J.; Cassen, P.; Reynolds, R.T. (1979). "Melting of Io by Tidal Dissipation".
1136: 977: 922: 871: 816: 574: 545: 110: 71: 1121: 1086: 654: 122: 91: 630: 564: 540: 466: 139: 126: 50: 1027: 992: 808: 17: 549: 95: 646: 848: 758: 733: 734:"Estimatesof tidal energy dissipationfrom TOPEX/Poseidon altimeter data" 638: 99: 895: 27:
Orbital and friction heating on a planet or moon oceans, or interior
1009: 791: 1103: 1060: 952: 172:
Jupiter's closest moon Io experiences considerable tidal heating.
54: 1087:"Tidal Dissipation in a Homogeneous Spherical Body. I. Methods" 773:
Heller, R; Duda, JP; Winkler, M; Reitner, J; Gizon, L (2021).
685:"Abyssal recipes II: energetics of tidal and wind mixing" 692:
Deep Sea Research Part I: Oceanographic Research Papers
732:
Egbert, Gary D.; Ray, Richard D. (October 15, 2001).
539:
represents the imaginary portion of the second-order
506: 479: 451: 431: 411: 391: 260: 230: 186: 531: 492: 457: 437: 417: 397: 377: 242: 208: 102:. Io's eccentricity persists as the result of its 667:Peale, S.J. (2003). "Tidally induced volcanism". 1085:Efroimsky, Michael; Makarov, Valeri V. (2014). 465:are respectively the satellite's mean radius, 8: 670:Celestial Mechanics and Dynamical Astronomy 602: 600: 532:{\displaystyle \operatorname {Im} (k_{2})} 1120: 1102: 1069: 1059: 1026: 1008: 991:Renaud, Joe P.; Henning, Wade G. (2018). 951: 847: 832:"How Much Did the Moon Heat Young Earth?" 790: 757: 520: 505: 500:is the host (or central) body's mass and 484: 478: 450: 430: 410: 390: 367: 356: 343: 333: 328: 318: 308: 299: 274: 263: 262: 259: 229: 209:{\displaystyle {\dot {E}}_{\text{Tidal}}} 200: 189: 188: 185: 596: 7: 683:Munk, Walter; Wunsch, Carl (1998). 25: 830:Jure Japelj (11 January 2022). 738:Journal of Geophysical Research 53:acting on it are stronger near 526: 513: 305: 292: 1: 712:10.1016/S0967-0637(98)00070-3 78:would shrink rather than its 970:10.1088/0004-637X/707/2/1000 923:10.1016/0019-1035(88)90001-2 631:10.1126/science.203.4383.892 1071:10.1088/0004-637X/746/2/150 1042:Efroimsky, Michael (2012). 1169: 809:10.1007/s12542-021-00582-7 165: 1122:10.1088/0004-637X/795/1/6 1091:The Astrophysical Journal 1048:The Astrophysical Journal 997:The Astrophysical Journal 939:The Astrophysical Journal 585:Planetary differentiation 216:, in a satellite that is 1143:Concepts in astrophysics 1028:10.3847/1538-4357/aab784 180:The tidal heating rate, 533: 494: 459: 439: 419: 399: 379: 244: 210: 534: 495: 493:{\displaystyle M_{h}} 460: 440: 420: 400: 380: 245: 211: 150:on the early Earth. 68:tidal circularization 41:) occurs through the 849:10.1029/2022EO220017 759:10.1029/2000JC000699 744:(C10): 22475–22502. 504: 477: 473:, and eccentricity. 449: 429: 409: 389: 258: 228: 184: 1113:2014ApJ...795....6E 1019:2018ApJ...857...98R 962:2009ApJ...707.1000H 888:2014NatGe...7..569H 801:2021PalZ...95..563H 750:2001JGR...10622475E 704:1998DSRI...45.1977M 623:1979Sci...203..892P 580:Io Volcano Observer 467:mean orbital motion 338: 243:{\displaystyle I=0} 168:Tidal heating of Io 127:water vapor geysers 86:Moons of Gas Giants 570:Tidal acceleration 529: 490: 455: 435: 415: 395: 375: 324: 240: 206: 104:orbital resonances 1148:Planetary science 876:Nature Geoscience 698:(12): 1977–2010. 617:(4383): 892–894. 458:{\displaystyle e} 438:{\displaystyle a} 418:{\displaystyle n} 398:{\displaystyle R} 373: 316: 277: 271: 203: 197: 64:rotational energy 16:(Redirected from 1160: 1127: 1126: 1124: 1106: 1082: 1076: 1075: 1073: 1063: 1039: 1033: 1032: 1030: 1012: 988: 982: 981: 955: 946:(2): 1000–1015. 933: 927: 926: 906: 900: 899: 896:10.1038/ngeo2211 867: 861: 860: 858: 856: 851: 827: 821: 820: 794: 770: 764: 763: 761: 729: 723: 722: 720: 718: 689: 680: 674: 665: 659: 658: 604: 538: 536: 535: 530: 525: 524: 499: 497: 496: 491: 489: 488: 471:orbital distance 464: 462: 461: 456: 444: 442: 441: 436: 424: 422: 421: 416: 404: 402: 401: 396: 384: 382: 381: 376: 374: 372: 371: 362: 361: 360: 348: 347: 337: 332: 319: 317: 309: 304: 303: 279: 278: 275: 273: 272: 264: 249: 247: 246: 241: 218:spin-synchronous 215: 213: 212: 207: 205: 204: 201: 199: 198: 190: 145: 47:elliptical orbit 21: 1168: 1167: 1163: 1162: 1161: 1159: 1158: 1157: 1133: 1132: 1131: 1130: 1084: 1083: 1079: 1041: 1040: 1036: 990: 989: 985: 935: 934: 930: 908: 907: 903: 869: 868: 864: 854: 852: 829: 828: 824: 772: 771: 767: 731: 730: 726: 716: 714: 687: 682: 681: 677: 666: 662: 606: 605: 598: 593: 561: 516: 502: 501: 480: 475: 474: 447: 446: 427: 426: 407: 406: 387: 386: 363: 352: 339: 320: 295: 261: 256: 255: 252:eccentric orbit 226: 225: 187: 182: 181: 178: 170: 164: 156: 143: 135: 88: 33:(also known as 28: 23: 22: 15: 12: 11: 5: 1166: 1164: 1156: 1155: 1150: 1145: 1135: 1134: 1129: 1128: 1077: 1034: 983: 928: 917:(2): 187–206. 901: 882:(8): 569–572. 862: 822: 785:(4): 563–575. 765: 724: 675: 660: 595: 594: 592: 589: 588: 587: 582: 577: 572: 567: 560: 557: 528: 523: 519: 515: 512: 509: 487: 483: 454: 434: 414: 394: 370: 366: 359: 355: 351: 346: 342: 336: 331: 327: 323: 315: 312: 307: 302: 298: 294: 291: 288: 285: 282: 270: 267: 250:), and has an 239: 236: 233: 196: 193: 177: 174: 166:Main article: 163: 160: 155: 152: 134: 131: 108:Galilean moons 87: 84: 76:semimajor axis 60:orbital energy 43:tidal friction 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1165: 1154: 1151: 1149: 1146: 1144: 1141: 1140: 1138: 1123: 1118: 1114: 1110: 1105: 1100: 1096: 1092: 1088: 1081: 1078: 1072: 1067: 1062: 1057: 1053: 1049: 1045: 1038: 1035: 1029: 1024: 1020: 1016: 1011: 1006: 1002: 998: 994: 987: 984: 979: 975: 971: 967: 963: 959: 954: 949: 945: 941: 940: 932: 929: 924: 920: 916: 912: 905: 902: 897: 893: 889: 885: 881: 877: 873: 866: 863: 850: 845: 841: 837: 833: 826: 823: 818: 814: 810: 806: 802: 798: 793: 788: 784: 780: 776: 769: 766: 760: 755: 751: 747: 743: 739: 735: 728: 725: 713: 709: 705: 701: 697: 693: 686: 679: 676: 672: 671: 664: 661: 656: 652: 648: 644: 640: 636: 632: 628: 624: 620: 616: 612: 611: 603: 601: 597: 590: 586: 583: 581: 578: 576: 575:Tidal locking 573: 571: 568: 566: 563: 562: 558: 556: 553: 551: 547: 546:shear modulus 542: 521: 517: 510: 507: 485: 481: 472: 468: 452: 432: 412: 392: 368: 364: 357: 353: 349: 344: 340: 334: 329: 325: 321: 313: 310: 300: 296: 289: 286: 283: 280: 268: 265: 254:is given by: 253: 237: 234: 231: 223: 219: 194: 191: 175: 173: 169: 161: 159: 153: 151: 147: 141: 132: 130: 128: 124: 120: 116: 112: 109: 105: 101: 97: 93: 85: 83: 81: 77: 73: 72:tidal locking 69: 65: 61: 56: 52: 48: 44: 40: 39:tidal flexing 36: 35:tidal working 32: 31:Tidal heating 19: 18:Tidal Heating 1153:Tidal forces 1094: 1090: 1080: 1051: 1047: 1037: 1000: 996: 986: 943: 937: 931: 914: 910: 904: 879: 875: 865: 853:. Retrieved 839: 835: 825: 782: 778: 768: 741: 737: 727: 715:. Retrieved 695: 691: 678: 673:87, 129–155. 668: 663: 614: 608: 554: 179: 171: 157: 148: 136: 98:, a moon of 92:Solar System 89: 80:eccentricity 51:tidal forces 38: 34: 30: 29: 565:Cryovolcano 541:Love number 140:Earth tides 1137:Categories 1010:1707.06701 792:2007.03423 591:References 1104:1406.2376 1061:1105.3936 1003:(2): 98. 978:119286375 953:0912.1907 817:244532427 550:viscosity 511:⁡ 290:⁡ 284:− 269:˙ 195:˙ 119:Enceladus 106:with the 55:periapsis 1097:(1): 6. 855:26 March 717:26 March 655:21271617 647:17771724 559:See also 222:coplanar 115:Ganymede 1109:Bibcode 1054:: 150. 1015:Bibcode 958:Bibcode 884:Bibcode 797:Bibcode 746:Bibcode 700:Bibcode 639:1747884 619:Bibcode 610:Science 176:Formula 100:Jupiter 62:and/or 976:  911:Icarus 815:  653:  645:  637:  445:, and 385:where 144:  125:. The 111:Europa 49:, the 1099:arXiv 1056:arXiv 1005:arXiv 974:S2CID 948:arXiv 813:S2CID 787:arXiv 688:(PDF) 651:S2CID 635:JSTOR 276:Tidal 202:Tidal 146:..." 133:Earth 123:Dione 857:2023 779:PalZ 719:2023 643:PMID 154:Moon 113:and 1117:doi 1095:795 1066:doi 1052:746 1023:doi 1001:857 966:doi 944:707 919:doi 892:doi 844:doi 840:103 836:EOS 805:doi 754:doi 742:106 708:doi 627:doi 615:203 37:or 1139:: 1115:. 1107:. 1093:. 1089:. 1064:. 1050:. 1046:. 1021:. 1013:. 999:. 995:. 972:. 964:. 956:. 942:. 915:75 913:. 890:. 878:. 874:. 842:. 838:. 834:. 811:. 803:. 795:. 783:95 781:. 777:. 752:. 740:. 736:. 706:. 696:45 694:. 690:. 649:. 641:. 633:. 625:. 613:. 599:^ 548:, 508:Im 469:, 425:, 405:, 311:21 287:Im 220:, 162:Io 96:Io 94:: 82:. 1125:. 1119:: 1111:: 1101:: 1074:. 1068:: 1058:: 1031:. 1025:: 1017:: 1007:: 980:. 968:: 960:: 950:: 925:. 921:: 898:. 894:: 886:: 880:7 859:. 846:: 819:. 807:: 799:: 789:: 762:. 756:: 748:: 721:. 710:: 702:: 657:. 629:: 621:: 527:) 522:2 518:k 514:( 486:h 482:M 453:e 433:a 413:n 393:R 369:6 365:a 358:2 354:e 350:n 345:5 341:R 335:2 330:h 326:M 322:G 314:2 306:) 301:2 297:k 293:( 281:= 266:E 238:0 235:= 232:I 224:( 192:E 20:)

Index

Tidal Heating
tidal friction
elliptical orbit
tidal forces
periapsis
orbital energy
rotational energy
tidal circularization
tidal locking
semimajor axis
eccentricity
Solar System
Io
Jupiter
orbital resonances
Galilean moons
Europa
Ganymede
Enceladus
Dione
water vapor geysers
Earth tides
Tidal heating of Io
spin-synchronous
coplanar
eccentric orbit
mean orbital motion
orbital distance
Love number
shear modulus

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑