Knowledge (XXG)

Tired light

Source đź“ť

890:
constant, that is, the farther an object is, the less light we receive, but its apparent area diminishes as well, so the light received divided by the apparent area should be constant. In an expanding universe, the surface brightness diminishes with distance. As the observed object recedes, photons are emitted at a reduced rate because each photon has to travel a distance that is a little longer than the previous one, while its energy is reduced a little because of increasing redshift at a larger distance. On the other hand, in an expanding universe, the object appears to be larger than it really is, because it was closer to us when the photons started their travel. This causes a difference in surface brilliance of objects between a static and an expanding Universe. This is known as the
928: 882: 570: 47: 1232:... gravitational analogue of the Compton effect It is easy to see that the above redshift should broaden these absorption lines asymmetrically toward the red. If these lines can be photographed with a high enough dispersion, the displacement of the center of gravity of the line will give the redshift independent of the velocity of the system from which the light is emitted. 582: 1320:, but ten months later, in the same journal, such tired light models were shown to be inconsistent with extant observations. As cosmological measurements became more precise and the statistics in cosmological data sets improved, tired light proposals ended up being falsified, to the extent that the theory was described in 2001 by science writer 1240:
recessional-velocity based theory. He writes, referring to sources of light within our galaxy: "It is especially desirable to determine the redshift independent of the proper velocities of the objects observed". Subsequent to this, astronomers have patiently mapped out the three-dimensional velocity-position
889:
By the 1990s and on into the twenty-first century, a number of falsifying observations have shown that "tired light" hypotheses are not viable explanations for cosmological redshifts. For example, in a static universe with tired light mechanisms, the surface brightness of stars and galaxies should be
1691:
Goldhaber, G.; Groom, D. E.; Kim, A.; Aldering, G.; Astier, P.; Conley, A.; Deustua, S. E.; Ellis, R.; Fabbro, S.; Fruchter, A. S.; Goobar, A.; Hook, I.; Irwin, M.; Kim, M.; Knop, R. A.; Lidman, C.; McMahon, R.; Nugent, P. E.; Pain, R.; Panagia, N.; Pennypacker, C. R.; Perlmutter, S.; Ruiz-Lapuente,
1223:
One might expect a shift of spectral lines due to the difference of the static gravitational potential at different distances from the center of a galaxy. This effect, of course, has no relation to the distance of the observed galaxy from our own system and, therefore, cannot provide any explanation
829:
has noted "Zwicky’s hypothesis was the best known and most elaborate alternative to the expanding universe, but it was far from the only one. More than a dozen physicists, astronomers and amateur scientists proposed in the 1930s tired-light ideas having in common the assumption of nebular photons
1263:
both incline to the opinion, however, that if the red-shift is not due to recessional motion, its explanation will probably involve some quite new physical principles use of a static Einstein model of the universe, combined with the assumption that the photons emitted by a nebula lose energy on
741:
realized that this correlation could fit non-static solutions to the equations of Einstein's theory of gravity, the Friedmann–Lemaître solutions. However Lemaître's article was appreciated only after Hubble's publication of 1929. The universal redshift-distance relation in this solution is
730:) generally exhibited redshift rather than blueshifts independent of where they were located. Since the relation holds in all directions it cannot be attributed to normal movement with respect to a background which would show an assortment of redshifts and blueshifts. Everything is moving 935:
is an image of galaxies that are in excess of 10 billion light years away. If tired light was a correct explanation, these galaxies would appear blurred in comparison to closer galaxies. That they do not rules out the suggestion that scattering processes are causing the redshift-distance
873:
that precisely specifies the state and evolution of the universe. Although the proposals of "tired light cosmologies" are now more-or-less relegated to the dustbin of history, as a completely alternative proposal tired-light cosmologies were considered a remote possibility worthy of some
1239:
Zwicky also notes, in the same paper, that according to a tired light model a distance-redshift relationship would necessarily be present in the light from sources within our own galaxy (even if the redshift would be so small that it would be hard to measure), that do not appear under a
1205:
on those free electrons But then the light scattered in all directions would make the interstellar space intolerably opaque which disposes of the above explanation. it is evident that any explanation based on a scattering process like the Compton effect or the
1268:
These conditions became almost impossible to meet and the overall success of general relativistic explanations for the redshift-distance relation is one of the core reasons that the Big Bang model of the universe remains the cosmology preferred by researchers.
1295:
three months later in response to this suggestion heavily criticizing the approach, "No generally accepted physical mechanism has been proposed for this loss." Still, until the so-called "Age of Precision Cosmology" was ushered in with results from the
663:
have been observed—these effects should not be present if the cosmological redshift was due to any tired light scattering mechanism. Despite periodic re-examination of the concept, tired light has not been supported by observational tests and remains a
1214:
This expected "blurring" of cosmologically distant objects is not seen in the observational evidence, though it would take much larger telescopes than those available at that time to show this with certainty. Alternatively, Zwicky proposed a kind of
973:, in his paper proposing these models investigated a number of redshift explanations, ruling out some himself. The simplest form of a tired light theory assumes an exponential decrease in photon energy with distance traveled: 864:
developed in the late twentieth century and the associated data became more numerous and accurate, the Big Bang emerged as the cosmological theory most supported by the observational evidence, and it remains the accepted
1276:
proposed a redshift as "the result of loss of energy by observed photons traversing a radiation field". which was cited and argued for as an explanation for the redshift-distance relation in a 1962 astrophysics theory
1051: 1745:
Lubin, Lori M.; Sandage, Allan (2001). "The Tolman Surface Brightness Test for the Reality of the Expansion. IV. A Measurement of the Tolman Signal and the Luminosity Evolution of Early-Type Galaxies".
171: 856:, both of which relied on the general relativistic expansion of the universe of the FRW metric. Through the middle of the twentieth century, most cosmologists supported one of these two 2240:
Measurements of the cosmic microwave background put the theory firmly on the fringe of physics 30 years ago; still, scientists sought more direct proofs of the expansion of the cosmos.
2046:"Our Age of Precision Cosmology". Proceedings of the 2002 International Symposium on Cosmology and Particle Astrophysics (CosPA 02) Taipei, Taiwan, 31 May – 2 June 2002 (pp. 314–325) 644:, who suggested that if photons lost energy over time through collisions with other particles in a regular way, the more distant objects would appear redder than more nearby ones. 860:, but there were a few scientists, especially those who were working on alternatives to general relativity, who worked with the tired light alternative. As the discipline of 1264:
their journey to the observer by some unknown effect, which is linear with distance, and which leads to a decrease in frequency, without appreciable transverse deflection.
542: 919:
of general relativity. Such theories are sometimes referred to as "tired-light cosmologies", though not all authors are necessarily aware of the historical antecedents.
1187: 1156: 1129: 1082: 1692:
P.; Schaefer, B.; Walton, N. A.; York, T.; The Supernova Cosmology Project (2001). "Timescale Stretch Parameterization of Type Ia Supernova B-band Light Curves".
1102: 1308:
proposing "photon decay" in a curved spacetime that was five months later criticized in the same journal as being wholly inconsistent with observations of the
1244:
for the galaxy and found the redshifts and blueshifts of galactic objects to accord well with the statistical distribution of a spiral galaxy, eliminating the
612: 734:
from the Milky Way galaxy. Hubble's contribution was to show that the magnitude of the redshift correlated strongly with the distance to the galaxies.
1382: 978: 1304:, tired light models could occasionally get published in the mainstream journals, including one that was published in the February 1979 edition of 2273: 2268: 1868: 1816: 1571: 1538: 1443: 346: 909:
that do not have an expanding universe in them need an alternative to explain the correspondence between redshift and distance that is
1634: 555: 1528: 1389: 2101:
Beckers, J. M.; Cram, L. E. (July 1979). "Use of the solar limb effect to test photon decay and cosmological redshift theories".
605: 906: 188: 901:. They often refer to age and distance to objects in terms of redshift rather than years or light-years. In such a scale, the 891: 652: 550: 264: 818: 703: 193: 116: 1236:
Such broadening of absorption lines is not seen in high-redshift objects, thus falsifying this particular hypothesis.
660: 598: 574: 121: 1316:. In 1986 a paper claiming tired light theories explained redshift better than cosmic expansion was published in the 340: 320: 128: 73: 916: 830:
interacting with intergalactic matter to which they transferred part of their energy." Kragh noted in particular
759: 711: 707: 637: 166: 2223: 1284: 835: 335: 100: 2258: 1833: 1273: 940:
In general, any "tired light" mechanism must solve some basic problems, in that the observed redshift must:
932: 927: 861: 303: 183: 1216: 1309: 681: 955: 894:
that in those studies favors the expanding universe hypothesis and rules out static tired light models.
508: 310: 252: 1554:
Kragh, Helge (2019). "Alternative Cosmological Theories". In Kragh, Helge; Longair, Malcolm S. (eds.).
885:
The Tolman surface brightness test rules out the tired light explanation for the cosmological redshift.
801:
by interaction with matter or other photons, or by some novel physical mechanism. Since a decrease in
2193: 2155: 2112: 2067: 2010: 1967: 1932: 1897: 1804: 1765: 1711: 1663: 1596: 1481: 866: 521: 493: 315: 1838: 1587:
Wilson, O. C. (1939). "Possible Applications of Supernovae to the Study of the Nebular Red Shifts".
1337: 850: 831: 766: 738: 453: 413: 383: 330: 286: 274: 178: 68: 881: 2128: 2083: 2026: 1983: 1781: 1755: 1727: 1701: 1414: 1288: 1245: 874:
consideration in cosmology texts well into the 1980s, though it was dismissed as an unlikely and
853: 770: 765:
At the same time, other explanations were proposed that did not concord with general relativity.
743: 534: 473: 443: 408: 378: 325: 269: 38: 2228: 1885: 1864: 1812: 1630: 1567: 1534: 1509: 1439: 898: 773:
but not general relativity that there was a giant explosion that could explain redshifts (see
755: 503: 2201: 2163: 2120: 2103: 2075: 2058: 2018: 1975: 1940: 1905: 1773: 1719: 1671: 1604: 1559: 1499: 1489: 1279: 1228:
Zwicky's proposals were carefully presented as falsifiable according to later observations:
870: 714:
from an object toward lower energies and frequencies, associated with the phenomenon of the
651:
of light would blur the images of distant objects more than what is seen. Additionally, the
586: 398: 388: 373: 224: 93: 1563: 1328:
30 years ago; still, scientists sought more direct proofs of the expansion of the cosmos".
1165: 1134: 1107: 1393: 1301: 1058: 798: 513: 448: 433: 418: 403: 393: 257: 1159: 633: 154: 2197: 2159: 2116: 2071: 2014: 1971: 1936: 1901: 1808: 1769: 1715: 1667: 1600: 1485: 2263: 2001:
Alpher, R. A. (1962). "Laboratory Test of the Finlay-Freundlich Red Shift Hypothesis".
1386: 1325: 1313: 1256: 1202: 1194: 1087: 839: 822: 774: 751: 715: 665: 498: 458: 1504: 1469: 2252: 2219: 1944: 1785: 1321: 962: 814: 742:
attributable to the effect an expanding universe has on a photon traveling on a null
723: 719: 656: 483: 468: 368: 2132: 1888:(November 1935). "Two Methods of Investigating the Nature of the Nebular Redshift". 1731: 2087: 2043: 2030: 1987: 1881: 1252: 1210:, etc., will be in a hopeless position regarding the good definition of the images. 1207: 1158:
is a large constant characterizing the "resistance of the space". To correspond to
970: 782: 691: 641: 488: 463: 438: 423: 279: 1409:
Peebles, P. J. E. (1998). "The Standard Cosmological Model". In Greco, M. (ed.).
1363: 636:. These models have been proposed as alternatives to the models that involve the 1622: 1241: 911: 897:
Redshift is directly observable and used by cosmologists as a direct measure of
826: 778: 236: 229: 1923:
Finlay-Freundlich, E. (1954). "Red-Shifts in the Spectra of Celestial Bodies".
2181: 1359: 806: 648: 478: 1259:
compared recessional redshift with a non-recessional one, writing that they
951: 428: 1513: 1494: 17: 1201:... light coming from distant nebulae would undergo a shift to the red by 1760: 1706: 1436:
The light/dark universe: light from galaxies, dark matter and dark energy
1419: 902: 857: 846: 810: 794: 747: 699: 677: 629: 161: 63: 56: 969:
A number of tired light mechanisms have been suggested over the years.
1979: 821:
with the distance of the source. The term "tired light" was coined by
46: 2146:
LaViolette, P. A. (April 1986). "Is the universe really expanding?".
2124: 2079: 2022: 1190: 802: 790: 786: 754:, though relative velocities need to be handled with more care since 727: 695: 2205: 2167: 1909: 1777: 1723: 1676: 1651: 1608: 845:
Tired light mechanisms were among the proposed alternatives to the
750:). In this formulation, there was still an analogous effect to the 632:
mechanisms that was proposed as an alternative explanation for the
1958:
Brown, P. F. (1962). "The Case for an Exponential Red Shift Law".
926: 880: 785:
proposed a "tired light" mechanism in 1929. Zwicky suggested that
781:
could explain the redshift-distance correlation. Along this line,
687: 2184:(February 1987). "Source counts in the chronometric cosmology". 1297: 1046:{\displaystyle E(x)=E_{0}\exp \left(-{\frac {x}{R_{0}}}\right)} 1470:"On the Redshift of Spectral Lines Through Interstellar Space" 1197:
could account for the scale normalization of the above model:
2056:
Crawford, D. F. (1979). "Photon Decay in Curved Space-time".
1287:
physics professor P. F. Browne. The pre-eminent cosmologist
690:
was an idea that came about due to the observation made by
1530:
The Enigmatic Photon: Theory and Practice of the B3 Field
1193:. For example, Zwicky considered whether an integrated 1131:
is the energy of the photon at the source of light, and
659:
of cosmological sources, and a thermal spectrum of the
1556:
The Oxford Handbook of the History of Modern Cosmology
726:
observed that these objects (now known to be separate
1168: 1137: 1110: 1090: 1061: 981: 825:in the early 1930s as a way to refer to this idea. 1181: 1150: 1123: 1096: 1076: 1045: 950:follow the detailed Hubble relation observed with 944:admit the same measurement in any wavelength-band 653:surface brightness of galaxies evolving with time 1434:Overduin, James Martin; Wesson, Paul S. (2008). 1219:explanation for the redshift distance relation: 1474:Proceedings of the National Academy of Sciences 1261: 1230: 1221: 1199: 737:Basing on Slipher's and Hubble's data, in 1927 1527:Evans, Myron W.; Vigier, Jean-Pierre (1996). 606: 8: 1801:The Routledge Companion to the New Cosmology 640:. The concept was first proposed in 1929 by 1799:Barrow, John D. (2001). Peter Coles (ed.). 1438:. World Scientific Publishing. p. 10. 1411:Rencontres de Physique de la Vallee d'Aosta 1355: 1353: 1652:"Test of the Expanding Universe Postulate" 1224:of the phenomenon discussed in this paper. 613: 599: 213: 87: 45: 29: 1759: 1705: 1675: 1650:Geller, M. J.; Peebles, P. J. E. (1972). 1645: 1643: 1503: 1493: 1418: 1404: 1402: 1383:University of California at Santa Barbara 1173: 1167: 1142: 1136: 1115: 1109: 1089: 1060: 1030: 1021: 1001: 980: 682:Non-standard cosmology § Tired light 27:Class of hypothetical redshift mechanisms 2224:"'Tired-Light' Hypothesis Gets Re-Tired" 1834:"Prospecting for C IV at high redshifts" 1463: 1461: 1459: 1457: 1455: 1084:is the energy of the photon at distance 878:proposal by mainstream astrophysicists. 769:proposed an explanation compatible with 1349: 905:corresponds to a redshift of infinity. 244: 216: 108: 37: 1377: 1375: 1373: 805:corresponds to an increase in light's 1925:Proceedings of the Physical Society A 647:Zwicky acknowledged that any sort of 7: 1629:. (1980) W. H. Freeman and Company. 1564:10.1093/oxfordhb/9780198817666.013.4 758:can be defined in different ways in 1832:Newton, Elisabeth (27 April 2011). 341:2dF Galaxy Redshift Survey ("2dF") 25: 1381:Tommaso Treu, Lecture slides for 965:of cosmologically distant events. 556:Timeline of cosmological theories 321:Cosmic Background Explorer (COBE) 1251:Following after Zwicky in 1935, 580: 569: 568: 1364:Errors in Tired Light Cosmology 907:Alternative theories of gravity 336:Sloan Digital Sky Survey (SDSS) 189:Future of an expanding universe 2274:Physical cosmological concepts 1863:. Princeton University Press, 1071: 1065: 991: 985: 892:Tolman surface brightness test 809:, this effect would produce a 746:(also known as a "light-like" 634:redshift-distance relationship 551:History of the Big Bang theory 347:Wilkinson Microwave Anisotropy 1: 706:. Redshift is a shift in the 543:Discovery of cosmic microwave 194:Ultimate fate of the universe 2269:Obsolete theories in physics 1621:See, for example, p. 397 of 661:cosmic microwave background 628:is a class of hypothetical 311:Black Hole Initiative (BHI) 2290: 1945:10.1088/0370-1298/67/2/114 1803:. Routledge. p. 308. 1104:from the source of light, 675: 74:Chronology of the universe 1859:Binney & Merrifield: 1694:The Astrophysical Journal 1656:The Astrophysical Journal 1589:The Astrophysical Journal 923:Specific falsified models 712:electromagnetic radiation 638:expansion of the universe 167:Expansion of the universe 1748:The Astronomical Journal 1533:. Springer. p. 29. 1324:as being "firmly on the 1285:University of Manchester 1248:component as an effect. 836:William Duncan MacMillan 777:). Others proposed that 331:Planck space observatory 117:Gravitational wave (GWB) 1300:space probe and modern 1274:Erwin Finlay-Freundlich 933:Hubble Ultra Deep Field 862:observational cosmology 184:Inhomogeneous cosmology 1495:10.1073/pnas.15.10.773 1310:gravitational redshift 1266: 1234: 1226: 1212: 1183: 1152: 1125: 1098: 1078: 1047: 937: 886: 702:proportional to their 2186:Astrophysical Journal 2148:Astrophysical Journal 1890:Astrophysical Journal 1385:Astrophysics course. 1318:Astrophysical Journal 1184: 1182:{\displaystyle R_{0}} 1153: 1151:{\displaystyle R_{0}} 1126: 1124:{\displaystyle E_{0}} 1099: 1079: 1048: 956:accelerating universe 930: 884: 760:an expanding universe 672:History and reception 275:Large-scale structure 253:Shape of the universe 1272:In the early 1950s, 1189:must be several giga 1166: 1135: 1108: 1088: 1077:{\displaystyle E(x)} 1059: 979: 947:not exhibit blurring 793:as they travel vast 587:Astronomy portal 545:background radiation 522:List of cosmologists 2198:1987ApJ...313..551W 2160:1986ApJ...301..544L 2117:1979Natur.280..255B 2072:1979Natur.277..633C 2015:1962Natur.196..367A 1972:1962Natur.193.1019B 1966:(4820): 1019–1021. 1937:1954PPSA...67..192F 1902:1935ApJ....82..302H 1809:2001rcnc.book.....C 1770:2001AJ....122.1084L 1716:2001ApJ...558..359G 1668:1972ApJ...174....1G 1601:1939ApJ....90..634W 1486:1929PNAS...15..773Z 1468:Zwicky, F. (1929). 1338:Dispersion (optics) 961:explain associated 832:John Quincy Stewart 287:Structure formation 179:Friedmann equations 69:Age of the universe 33:Part of a series on 1886:Tolman, Richard C. 1861:Galactic Astronomy 1392:2010-06-23 at the 1291:wrote a letter to 1289:Ralph Asher Alpher 1246:intrinsic redshift 1217:Sachs–Wolfe effect 1179: 1148: 1121: 1094: 1074: 1043: 938: 887: 789:might slowly lose 779:systematic effects 771:special relativity 744:spacetime interval 326:Dark Energy Survey 270:Large quasar group 39:Physical cosmology 2111:(5719): 255–256. 2066:(5698): 633–635. 2009:(4852): 367–368. 1980:10.1038/1931019a0 1869:978-0-691-02565-0 1818:978-0-415-24312-4 1573:978-0-19-881766-6 1540:978-0-7923-4044-7 1445:978-981-283-441-6 1326:fringe of physics 1097:{\displaystyle x} 1036: 917:expanding metrics 668:in astrophysics. 623: 622: 294: 293: 136: 135: 16:(Redirected from 2281: 2243: 2242: 2237: 2236: 2222:(28 June 2001). 2216: 2210: 2209: 2178: 2172: 2171: 2143: 2137: 2136: 2125:10.1038/280255a0 2098: 2092: 2091: 2080:10.1038/277633a0 2053: 2047: 2044:Smoot, George S. 2041: 2035: 2034: 2023:10.1038/196367b0 1998: 1992: 1991: 1955: 1949: 1948: 1920: 1914: 1913: 1878: 1872: 1857: 1851: 1850: 1848: 1846: 1829: 1823: 1822: 1796: 1790: 1789: 1763: 1761:astro-ph/0106566 1754:(3): 1084–1103. 1742: 1736: 1735: 1709: 1707:astro-ph/0104382 1688: 1682: 1681: 1679: 1647: 1638: 1619: 1613: 1612: 1584: 1578: 1577: 1551: 1545: 1544: 1524: 1518: 1517: 1507: 1497: 1465: 1450: 1449: 1431: 1425: 1424: 1422: 1420:astro-ph/9806201 1406: 1397: 1379: 1368: 1357: 1312:observed in the 1302:redshift surveys 1188: 1186: 1185: 1180: 1178: 1177: 1157: 1155: 1154: 1149: 1147: 1146: 1130: 1128: 1127: 1122: 1120: 1119: 1103: 1101: 1100: 1095: 1083: 1081: 1080: 1075: 1052: 1050: 1049: 1044: 1042: 1038: 1037: 1035: 1034: 1022: 1006: 1005: 739:Georges LemaĂ®tre 696:distant galaxies 615: 608: 601: 585: 584: 583: 572: 571: 265:Galaxy formation 225:Lambda-CDM model 214: 206:Components  88: 49: 30: 21: 2289: 2288: 2284: 2283: 2282: 2280: 2279: 2278: 2249: 2248: 2247: 2246: 2234: 2232: 2218: 2217: 2213: 2180: 2179: 2175: 2145: 2144: 2140: 2100: 2099: 2095: 2055: 2054: 2050: 2042: 2038: 2000: 1999: 1995: 1957: 1956: 1952: 1922: 1921: 1917: 1880: 1879: 1875: 1858: 1854: 1844: 1842: 1831: 1830: 1826: 1819: 1798: 1797: 1793: 1744: 1743: 1739: 1690: 1689: 1685: 1649: 1648: 1641: 1620: 1616: 1586: 1585: 1581: 1574: 1553: 1552: 1548: 1541: 1526: 1525: 1521: 1480:(10): 773–779. 1467: 1466: 1453: 1446: 1433: 1432: 1428: 1408: 1407: 1400: 1394:Wayback Machine 1380: 1371: 1358: 1351: 1346: 1334: 1169: 1164: 1163: 1162:, the constant 1138: 1133: 1132: 1111: 1106: 1105: 1086: 1085: 1057: 1056: 1026: 1017: 1013: 997: 977: 976: 925: 871:parametrization 869:with a current 867:consensus model 799:static universe 718:. Observers of 710:of the emitted 684: 674: 619: 581: 579: 561: 560: 547: 544: 537: 535:Subject history 527: 526: 518: 363: 355: 354: 351: 348: 306: 296: 295: 258:Galaxy filament 211: 199: 198: 150: 145:Expansion  138: 137: 122:Microwave (CMB) 101:Nucleosynthesis 85: 28: 23: 22: 15: 12: 11: 5: 2287: 2285: 2277: 2276: 2271: 2266: 2261: 2259:Fringe physics 2251: 2250: 2245: 2244: 2211: 2206:10.1086/164996 2173: 2168:10.1086/163922 2138: 2093: 2048: 2036: 1993: 1950: 1931:(2): 192–193. 1915: 1910:10.1086/143682 1873: 1852: 1839:astrobites.org 1824: 1817: 1791: 1778:10.1086/322134 1737: 1724:10.1086/322460 1700:(1): 359–368. 1683: 1677:10.1086/151462 1639: 1614: 1609:10.1086/144134 1579: 1572: 1558:. p. 29. 1546: 1539: 1519: 1451: 1444: 1426: 1398: 1369: 1348: 1347: 1345: 1342: 1341: 1340: 1333: 1330: 1257:Richard Tolman 1203:Compton effect 1195:Compton effect 1176: 1172: 1145: 1141: 1118: 1114: 1093: 1073: 1070: 1067: 1064: 1041: 1033: 1029: 1025: 1020: 1016: 1012: 1009: 1004: 1000: 996: 993: 990: 987: 984: 967: 966: 959: 948: 945: 924: 921: 840:Walther Nernst 823:Richard Tolman 819:proportionally 817:that increase 815:spectral lines 775:Milne universe 752:Doppler effect 720:spiral nebulae 716:Doppler effect 673: 670: 621: 620: 618: 617: 610: 603: 595: 592: 591: 590: 589: 577: 563: 562: 559: 558: 553: 548: 541: 538: 533: 532: 529: 528: 525: 524: 517: 516: 511: 506: 501: 496: 491: 486: 481: 476: 471: 466: 461: 456: 451: 446: 441: 436: 431: 426: 421: 416: 411: 406: 401: 396: 391: 386: 381: 376: 371: 365: 364: 361: 360: 357: 356: 353: 352: 345: 343: 338: 333: 328: 323: 318: 313: 307: 302: 301: 298: 297: 292: 291: 290: 289: 277: 272: 267: 255: 247: 246: 242: 241: 240: 239: 227: 219: 218: 212: 205: 204: 201: 200: 197: 196: 191: 186: 181: 169: 164: 151: 144: 143: 140: 139: 134: 133: 132: 131: 129:Neutrino (CNB) 119: 111: 110: 106: 105: 104: 103: 86: 84:Early universe 83: 82: 79: 78: 77: 76: 71: 66: 51: 50: 42: 41: 35: 34: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2286: 2275: 2272: 2270: 2267: 2265: 2262: 2260: 2257: 2256: 2254: 2241: 2231: 2230: 2225: 2221: 2220:Charles Seife 2215: 2212: 2207: 2203: 2199: 2195: 2191: 2187: 2183: 2182:Wright, E. L. 2177: 2174: 2169: 2165: 2161: 2157: 2153: 2149: 2142: 2139: 2134: 2130: 2126: 2122: 2118: 2114: 2110: 2106: 2105: 2097: 2094: 2089: 2085: 2081: 2077: 2073: 2069: 2065: 2061: 2060: 2052: 2049: 2045: 2040: 2037: 2032: 2028: 2024: 2020: 2016: 2012: 2008: 2004: 1997: 1994: 1989: 1985: 1981: 1977: 1973: 1969: 1965: 1961: 1954: 1951: 1946: 1942: 1938: 1934: 1930: 1926: 1919: 1916: 1911: 1907: 1903: 1899: 1895: 1891: 1887: 1883: 1882:Hubble, Edwin 1877: 1874: 1870: 1866: 1862: 1856: 1853: 1841: 1840: 1835: 1828: 1825: 1820: 1814: 1810: 1806: 1802: 1795: 1792: 1787: 1783: 1779: 1775: 1771: 1767: 1762: 1757: 1753: 1749: 1741: 1738: 1733: 1729: 1725: 1721: 1717: 1713: 1708: 1703: 1699: 1695: 1687: 1684: 1678: 1673: 1669: 1665: 1661: 1657: 1653: 1646: 1644: 1640: 1636: 1635:0-7167-1812-X 1632: 1628: 1624: 1618: 1615: 1610: 1606: 1602: 1598: 1594: 1590: 1583: 1580: 1575: 1569: 1565: 1561: 1557: 1550: 1547: 1542: 1536: 1532: 1531: 1523: 1520: 1515: 1511: 1506: 1501: 1496: 1491: 1487: 1483: 1479: 1475: 1471: 1464: 1462: 1460: 1458: 1456: 1452: 1447: 1441: 1437: 1430: 1427: 1421: 1416: 1412: 1405: 1403: 1399: 1395: 1391: 1388: 1384: 1378: 1376: 1374: 1370: 1366: 1365: 1361: 1360:Wright, E. L. 1356: 1354: 1350: 1343: 1339: 1336: 1335: 1331: 1329: 1327: 1323: 1322:Charles Seife 1319: 1315: 1311: 1307: 1303: 1299: 1294: 1290: 1286: 1282: 1281: 1275: 1270: 1265: 1260: 1258: 1254: 1249: 1247: 1243: 1237: 1233: 1229: 1225: 1220: 1218: 1211: 1209: 1204: 1198: 1196: 1192: 1174: 1170: 1161: 1143: 1139: 1116: 1112: 1091: 1068: 1062: 1053: 1039: 1031: 1027: 1023: 1018: 1014: 1010: 1007: 1002: 998: 994: 988: 982: 974: 972: 964: 963:time dilation 960: 957: 953: 949: 946: 943: 942: 941: 934: 929: 922: 920: 918: 914: 913: 908: 904: 900: 899:lookback time 895: 893: 883: 879: 877: 872: 868: 863: 859: 855: 852: 848: 843: 841: 837: 833: 828: 824: 820: 816: 812: 808: 804: 800: 796: 792: 788: 784: 780: 776: 772: 768: 763: 761: 757: 753: 749: 745: 740: 735: 733: 729: 725: 724:Vesto Slipher 721: 717: 713: 709: 705: 701: 697: 693: 689: 683: 679: 671: 669: 667: 662: 658: 657:time dilation 654: 650: 645: 643: 639: 635: 631: 627: 616: 611: 609: 604: 602: 597: 596: 594: 593: 588: 578: 576: 567: 566: 565: 564: 557: 554: 552: 549: 546: 540: 539: 536: 531: 530: 523: 520: 519: 515: 512: 510: 507: 505: 502: 500: 497: 495: 492: 490: 487: 485: 482: 480: 477: 475: 472: 470: 467: 465: 462: 460: 457: 455: 452: 450: 447: 445: 442: 440: 437: 435: 432: 430: 427: 425: 422: 420: 417: 415: 412: 410: 407: 405: 402: 400: 397: 395: 392: 390: 387: 385: 382: 380: 377: 375: 372: 370: 367: 366: 359: 358: 350: 344: 342: 339: 337: 334: 332: 329: 327: 324: 322: 319: 317: 314: 312: 309: 308: 305: 300: 299: 288: 285: 281: 278: 276: 273: 271: 268: 266: 263: 259: 256: 254: 251: 250: 249: 248: 243: 238: 235: 231: 228: 226: 223: 222: 221: 220: 215: 209: 203: 202: 195: 192: 190: 187: 185: 182: 180: 177: 173: 170: 168: 165: 163: 160: 156: 153: 152: 148: 142: 141: 130: 127: 123: 120: 118: 115: 114: 113: 112: 107: 102: 99: 95: 92: 91: 90: 89: 81: 80: 75: 72: 70: 67: 65: 62: 58: 55: 54: 53: 52: 48: 44: 43: 40: 36: 32: 31: 19: 2239: 2233:. Retrieved 2227: 2214: 2189: 2185: 2176: 2151: 2147: 2141: 2108: 2102: 2096: 2063: 2057: 2051: 2039: 2006: 2002: 1996: 1963: 1959: 1953: 1928: 1924: 1918: 1893: 1889: 1876: 1860: 1855: 1843:. Retrieved 1837: 1827: 1800: 1794: 1751: 1747: 1740: 1697: 1693: 1686: 1659: 1655: 1627:The Big Bang 1626: 1617: 1592: 1588: 1582: 1555: 1549: 1529: 1522: 1477: 1473: 1435: 1429: 1410: 1362: 1317: 1305: 1292: 1278: 1271: 1267: 1262: 1253:Edwin Hubble 1250: 1238: 1235: 1231: 1227: 1222: 1213: 1208:Raman effect 1200: 1160:Hubble's law 1054: 975: 971:Fritz Zwicky 968: 939: 910: 896: 888: 875: 851:Steady State 844: 783:Fritz Zwicky 767:Edward Milne 764: 736: 731: 692:Edwin Hubble 685: 666:fringe topic 646: 642:Fritz Zwicky 625: 624: 349:Probe (WMAP) 283: 280:Reionization 261: 233: 207: 175: 158: 155:Hubble's law 146: 125: 97: 60: 2192:: 551–555. 2154:: 544–553. 1623:Joseph Silk 1242:phase space 912:sui generis 854:cosmologies 827:Helge Kragh 626:Tired light 304:Experiments 237:Dark matter 230:Dark energy 172:FLRW metric 109:Backgrounds 18:Tired Light 2253:Categories 2235:2016-06-03 1845:4 November 1344:References 1314:solar limb 954:data (see 807:wavelength 797:through a 676:See also: 649:scattering 384:Copernicus 362:Scientists 217:Components 1786:118897528 1625:'s book, 1283:paper by 1019:− 1011:⁡ 952:supernova 936:relation. 858:paradigms 795:distances 756:distances 700:redshifts 514:Zeldovich 414:Friedmann 389:de Sitter 316:BOOMERanG 245:Structure 210:Structure 94:Inflation 2133:43273035 1732:17237531 1514:16577237 1390:Archived 1332:See also 903:Big Bang 849:and the 847:Big Bang 811:redshift 748:geodesic 728:galaxies 722:such as 708:spectrum 704:distance 678:Redshift 630:redshift 575:Category 494:Suntzeff 454:LemaĂ®tre 404:Einstein 369:Aaronson 162:Redshift 64:Universe 57:Big Bang 2229:Science 2194:Bibcode 2156:Bibcode 2113:Bibcode 2088:4317887 2068:Bibcode 2031:4197527 2011:Bibcode 1988:4154001 1968:Bibcode 1933:Bibcode 1898:Bibcode 1896:: 302. 1805:Bibcode 1766:Bibcode 1712:Bibcode 1664:Bibcode 1597:Bibcode 1595:: 634. 1482:Bibcode 1191:parsecs 915:to the 787:photons 499:Sunyaev 484:Schmidt 474:Penzias 469:Penrose 444:Huygens 434:Hawking 419:Galileo 2131:  2104:Nature 2086:  2059:Nature 2029:  2003:Nature 1986:  1960:Nature 1867:  1815:  1784:  1730:  1633:  1570:  1537:  1512:  1505:522555 1502:  1442:  1306:Nature 1293:Nature 1280:Nature 1055:where 876:ad hoc 838:, and 803:energy 791:energy 686:Tired 573:  509:Wilson 504:Tolman 464:Newton 459:Mather 449:Kepler 439:Hubble 399:Ehlers 379:Alpher 374:AlfvĂ©n 282:  260:  232:  174:  157:  149:Future 124:  96:  59:  2264:Light 2129:S2CID 2084:S2CID 2027:S2CID 1984:S2CID 1782:S2CID 1756:arXiv 1728:S2CID 1702:arXiv 1662:: 1. 1415:arXiv 1387:p. 16 698:have 694:that 688:light 489:Smoot 479:Rubin 424:Gamow 409:Ellis 394:Dicke 1865:ISBN 1847:2023 1813:ISBN 1631:ISBN 1568:ISBN 1535:ISBN 1510:PMID 1440:ISBN 1298:WMAP 1255:and 931:The 732:away 680:and 429:Guth 2202:doi 2190:313 2164:doi 2152:301 2121:doi 2109:280 2076:doi 2064:277 2019:doi 2007:196 1976:doi 1964:193 1941:doi 1906:doi 1774:doi 1752:122 1720:doi 1698:558 1672:doi 1660:174 1605:doi 1560:doi 1500:PMC 1490:doi 1008:exp 813:in 2255:: 2238:. 2226:. 2200:. 2188:. 2162:. 2150:. 2127:. 2119:. 2107:. 2082:. 2074:. 2062:. 2025:. 2017:. 2005:. 1982:. 1974:. 1962:. 1939:. 1929:67 1927:. 1904:. 1894:82 1892:. 1884:; 1836:. 1811:. 1780:. 1772:. 1764:. 1750:. 1726:. 1718:. 1710:. 1696:. 1670:. 1658:. 1654:. 1642:^ 1603:. 1593:90 1591:. 1566:. 1508:. 1498:. 1488:. 1478:15 1476:. 1472:. 1454:^ 1413:. 1401:^ 1372:^ 1352:^ 842:. 834:, 762:. 655:, 2208:. 2204:: 2196:: 2170:. 2166:: 2158:: 2135:. 2123:: 2115:: 2090:. 2078:: 2070:: 2033:. 2021:: 2013:: 1990:. 1978:: 1970:: 1947:. 1943:: 1935:: 1912:. 1908:: 1900:: 1871:. 1849:. 1821:. 1807:: 1788:. 1776:: 1768:: 1758:: 1734:. 1722:: 1714:: 1704:: 1680:. 1674:: 1666:: 1637:. 1611:. 1607:: 1599:: 1576:. 1562:: 1543:. 1516:. 1492:: 1484:: 1448:. 1423:. 1417:: 1396:. 1367:. 1175:0 1171:R 1144:0 1140:R 1117:0 1113:E 1092:x 1072:) 1069:x 1066:( 1063:E 1040:) 1032:0 1028:R 1024:x 1015:( 1003:0 999:E 995:= 992:) 989:x 986:( 983:E 958:) 614:e 607:t 600:v 284:· 262:· 234:· 208:· 176:· 159:· 147:· 126:· 98:· 61:· 20:)

Index

Tired Light
Physical cosmology
Full-sky image derived from nine years' WMAP data
Big Bang
Universe
Age of the universe
Chronology of the universe
Inflation
Nucleosynthesis
Gravitational wave (GWB)
Microwave (CMB)
Neutrino (CNB)
Hubble's law
Redshift
Expansion of the universe
FLRW metric
Friedmann equations
Inhomogeneous cosmology
Future of an expanding universe
Ultimate fate of the universe
Lambda-CDM model
Dark energy
Dark matter
Shape of the universe
Galaxy filament
Galaxy formation
Large quasar group
Large-scale structure
Reionization
Structure formation

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑