Knowledge (XXG)

Groupoid object

Source đź“ť

349: 229: 601: 794: 1337: 495: 413: 985: 693: 1444: 1032: 642: 1271: 1119: 1074: 1514: 1210: 1184: 864: 838: 97: 1411: 240: 108: 502: 698: 1304: 1551: 421: 1128:
However, unlike in the previous example with Lie groups, a groupoid object in the category of manifolds is not necessarily a
871: 1449: 1520: 1513:
Behrend, Kai; Conrad, Brian; Edidin, Dan; Fulton, William; Fantechi, Barbara; Göttsche, Lothar; Kresch, Andrew (2006),
1588: 67: 1453: 1121:. When the term "groupoid" can naturally refer to a groupoid object in some particular category in mind, the term 354: 1598: 1133: 921: 71: 1414: 647: 1417: 1298: 1593: 60: 1355: 898:
in the usual sense: a category in which every morphism is an isomorphism. Indeed, given such a category
879: 1153: 990: 608: 1378: 1367: 1234: 1244: 1079: 1037: 1538: 1465: 867: 1560: 891: 1572: 1568: 1228: 1221: 28: 1189: 1163: 843: 817: 76: 1132:, since the maps s and t fail to satisfy further requirements (they are not necessarily 1371: 1384: 1582: 1564: 344:{\displaystyle s\circ e=t\circ e=1_{U},\,s\circ m=s\circ p_{1},t\circ m=t\circ p_{2}} 17: 1534: 1213: 1129: 811: 44: 1344: 32: 875: 224:{\displaystyle s,t:R\to U,\ e:U\to R,\ m:R\times _{U,t,s}R\to R,\ i:R\to R} 1362:
to the category of groupoids. This way, each groupoid object determines a
1363: 895: 100: 43:
which is built on richer structures than sets, and a generalization of a
40: 596:{\displaystyle m\circ (e\circ s,1_{R})=m\circ (1_{R},e\circ t)=1_{R},} 789:{\displaystyle m\circ (1_{R},i)=e\circ s,\,m\circ (i,1_{R})=e\circ t} 1332:{\displaystyle R{\overset {s}{\underset {t}{\rightrightarrows }}}U} 1125:
is used to refer to a groupoid object in the category of sets.
1347:
of the same diagram, if any, is the quotient of the groupoid.
490:{\displaystyle m\circ (1_{R}\times m)=m\circ (m\times 1_{R}),} 1420: 1387: 1307: 1281:
the given action. This determines a groupoid scheme.
1247: 1192: 1166: 1082: 1040: 993: 924: 846: 820: 701: 650: 611: 505: 424: 357: 243: 111: 79: 1545:, Proceedings of the Luminy conference on algebraic 1212:
are necessarily the structure map) is the same as a
47:when the multiplication is only partially defined. 1438: 1405: 1377:The main use of the notion is that it provides an 1331: 1265: 1204: 1178: 1113: 1068: 1026: 979: 858: 832: 788: 687: 636: 595: 489: 407: 343: 223: 91: 1220:, to convey the idea it is a generalization of 814:is a special case of a groupoid object, where 1539:"Intersection theory on algebraic stacks and 8: 1484: 1456:. Conversely, any DM stack is of this form. 408:{\displaystyle p_{i}:R\times _{U,t,s}R\to R} 1419: 1386: 1311: 1306: 1246: 1191: 1165: 1102: 1081: 1060: 1039: 992: 980:{\displaystyle s(x\to y)=x,\,t(x\to y)=y} 952: 923: 845: 819: 765: 745: 715: 700: 669: 649: 628: 610: 584: 556: 531: 504: 475: 438: 423: 378: 362: 356: 335: 304: 281: 272: 242: 234:satisfying the following groupoid axioms 173: 110: 78: 1152:is a groupoid object in the category of 1477: 1339:, if any, is a group object called the 688:{\displaystyle s\circ i=t,\,t\circ i=s} 1496: 1439:{\displaystyle (R\rightrightarrows U)} 1216:. A groupoid scheme is also called an 1366:in groupoids. This prestack is not a 7: 1381:for a stack. More specifically, let 1552:Journal of Pure and Applied Algebra 1350:Each groupoid object in a category 25: 1354:(if any) may be thought of as a 1186:, then a groupoid scheme (where 906:to be the set of all objects in 1452:; in fact, (in a nice case), a 1027:{\displaystyle m(f,g)=g\circ f} 1433: 1427: 1421: 1400: 1394: 1388: 1314: 1092: 1086: 1050: 1044: 1009: 997: 968: 962: 956: 940: 934: 928: 918:, the five morphisms given by 872:category of topological spaces 771: 752: 727: 708: 637:{\displaystyle i\circ i=1_{R}} 574: 549: 537: 512: 481: 462: 450: 431: 399: 215: 194: 148: 127: 39:is both a generalization of a 1: 1450:category fibered in groupoids 1565:10.1016/0022-4049(84)90036-7 1156:over some fixed base scheme 1266:{\displaystyle R=U\times G} 1237:from the right on a scheme 1114:{\displaystyle i(f)=f^{-1}} 1615: 1069:{\displaystyle e(x)=1_{x}} 1289:Given a groupoid object ( 914:the set of all arrows in 890:A groupoid object in the 866:. One recovers therefore 1549:-theory (Luminy, 1983), 1227:For example, suppose an 415:are the two projections, 1440: 1407: 1333: 1267: 1206: 1180: 1115: 1070: 1028: 981: 860: 834: 790: 689: 638: 597: 491: 409: 345: 225: 93: 70:consists of a pair of 1454:Deligne–Mumford stack 1441: 1408: 1356:contravariant functor 1343:of the groupoid. The 1334: 1268: 1207: 1181: 1116: 1071: 1029: 982: 880:category of manifolds 861: 835: 791: 690: 639: 598: 492: 410: 346: 226: 94: 1418: 1385: 1305: 1245: 1190: 1164: 1080: 1038: 991: 922: 844: 818: 699: 648: 609: 503: 422: 355: 241: 109: 77: 18:Topological groupoid 1413:be the category of 1224:and their actions. 1205:{\displaystyle s=t} 1179:{\displaystyle U=S} 859:{\displaystyle s=t} 833:{\displaystyle R=U} 99:together with five 92:{\displaystyle R,U} 1589:Algebraic geometry 1436: 1403: 1374:to yield a stack. 1329: 1320: 1263: 1218:algebraic groupoid 1202: 1176: 1111: 1066: 1024: 977: 868:topological groups 856: 830: 786: 685: 634: 593: 487: 405: 341: 221: 89: 1466:Simplicial scheme 1324: 1313: 205: 159: 138: 66:admitting finite 16:(Redirected from 1606: 1575: 1559:(2–3): 193–240, 1548: 1542: 1530: 1529: 1528: 1519:, archived from 1516:Algebraic stacks 1500: 1494: 1488: 1485:Algebraic stacks 1482: 1445: 1443: 1442: 1437: 1412: 1410: 1409: 1406:{\displaystyle } 1404: 1338: 1336: 1335: 1330: 1325: 1312: 1277:the projection, 1272: 1270: 1269: 1264: 1222:algebraic groups 1211: 1209: 1208: 1203: 1185: 1183: 1182: 1177: 1140:Groupoid schemes 1120: 1118: 1117: 1112: 1110: 1109: 1075: 1073: 1072: 1067: 1065: 1064: 1033: 1031: 1030: 1025: 986: 984: 983: 978: 892:category of sets 865: 863: 862: 857: 839: 837: 836: 831: 795: 793: 792: 787: 770: 769: 720: 719: 694: 692: 691: 686: 643: 641: 640: 635: 633: 632: 602: 600: 599: 594: 589: 588: 561: 560: 536: 535: 496: 494: 493: 488: 480: 479: 443: 442: 418:(associativity) 414: 412: 411: 406: 395: 394: 367: 366: 350: 348: 347: 342: 340: 339: 309: 308: 277: 276: 230: 228: 227: 222: 203: 190: 189: 157: 136: 98: 96: 95: 90: 21: 1614: 1613: 1609: 1608: 1607: 1605: 1604: 1603: 1599:Category theory 1579: 1578: 1546: 1540: 1533: 1526: 1524: 1512: 1509: 1504: 1503: 1495: 1491: 1483: 1479: 1474: 1462: 1448:. Then it is a 1416: 1415: 1383: 1382: 1303: 1302: 1287: 1243: 1242: 1229:algebraic group 1188: 1187: 1162: 1161: 1142: 1098: 1078: 1077: 1056: 1036: 1035: 989: 988: 920: 919: 894:is precisely a 888: 842: 841: 816: 815: 808: 803: 761: 711: 697: 696: 646: 645: 624: 607: 606: 580: 552: 527: 501: 500: 471: 434: 420: 419: 374: 358: 353: 352: 331: 300: 268: 239: 238: 169: 107: 106: 75: 74: 57:groupoid object 53: 37:groupoid object 29:category theory 23: 22: 15: 12: 11: 5: 1612: 1610: 1602: 1601: 1596: 1591: 1581: 1580: 1577: 1576: 1531: 1508: 1505: 1502: 1501: 1489: 1476: 1475: 1473: 1470: 1469: 1468: 1461: 1458: 1435: 1432: 1429: 1426: 1423: 1402: 1399: 1396: 1393: 1390: 1370:but it can be 1328: 1323: 1319: 1316: 1310: 1286: 1283: 1262: 1259: 1256: 1253: 1250: 1201: 1198: 1195: 1175: 1172: 1169: 1141: 1138: 1108: 1105: 1101: 1097: 1094: 1091: 1088: 1085: 1063: 1059: 1055: 1052: 1049: 1046: 1043: 1023: 1020: 1017: 1014: 1011: 1008: 1005: 1002: 999: 996: 976: 973: 970: 967: 964: 961: 958: 955: 951: 948: 945: 942: 939: 936: 933: 930: 927: 887: 884: 878:by taking the 870:by taking the 855: 852: 849: 829: 826: 823: 807: 804: 802: 799: 798: 797: 785: 782: 779: 776: 773: 768: 764: 760: 757: 754: 751: 748: 744: 741: 738: 735: 732: 729: 726: 723: 718: 714: 710: 707: 704: 684: 681: 678: 675: 672: 668: 665: 662: 659: 656: 653: 631: 627: 623: 620: 617: 614: 603: 592: 587: 583: 579: 576: 573: 570: 567: 564: 559: 555: 551: 548: 545: 542: 539: 534: 530: 526: 523: 520: 517: 514: 511: 508: 497: 486: 483: 478: 474: 470: 467: 464: 461: 458: 455: 452: 449: 446: 441: 437: 433: 430: 427: 416: 404: 401: 398: 393: 390: 387: 384: 381: 377: 373: 370: 365: 361: 338: 334: 330: 327: 324: 321: 318: 315: 312: 307: 303: 299: 296: 293: 290: 287: 284: 280: 275: 271: 267: 264: 261: 258: 255: 252: 249: 246: 232: 231: 220: 217: 214: 211: 208: 202: 199: 196: 193: 188: 185: 182: 179: 176: 172: 168: 165: 162: 156: 153: 150: 147: 144: 141: 135: 132: 129: 126: 123: 120: 117: 114: 88: 85: 82: 68:fiber products 52: 49: 31:, a branch of 24: 14: 13: 10: 9: 6: 4: 3: 2: 1611: 1600: 1597: 1595: 1594:Scheme theory 1592: 1590: 1587: 1586: 1584: 1574: 1570: 1566: 1562: 1558: 1554: 1553: 1544: 1536: 1535:Gillet, Henri 1532: 1523:on 2008-05-05 1522: 1518: 1517: 1511: 1510: 1506: 1498: 1493: 1490: 1486: 1481: 1478: 1471: 1467: 1464: 1463: 1459: 1457: 1455: 1451: 1447: 1430: 1424: 1397: 1391: 1380: 1375: 1373: 1369: 1365: 1361: 1357: 1353: 1348: 1346: 1342: 1341:inertia group 1326: 1321: 1317: 1308: 1300: 1296: 1292: 1285:Constructions 1284: 1282: 1280: 1276: 1260: 1257: 1254: 1251: 1248: 1240: 1236: 1233: 1230: 1225: 1223: 1219: 1215: 1199: 1196: 1193: 1173: 1170: 1167: 1159: 1155: 1151: 1149: 1139: 1137: 1135: 1131: 1126: 1124: 1106: 1103: 1099: 1095: 1089: 1083: 1061: 1057: 1053: 1047: 1041: 1021: 1018: 1015: 1012: 1006: 1003: 1000: 994: 974: 971: 965: 959: 953: 949: 946: 943: 937: 931: 925: 917: 913: 909: 905: 901: 897: 893: 885: 883: 881: 877: 873: 869: 853: 850: 847: 827: 824: 821: 813: 806:Group objects 805: 800: 783: 780: 777: 774: 766: 762: 758: 755: 749: 746: 742: 739: 736: 733: 730: 724: 721: 716: 712: 705: 702: 682: 679: 676: 673: 670: 666: 663: 660: 657: 654: 651: 629: 625: 621: 618: 615: 612: 604: 590: 585: 581: 577: 571: 568: 565: 562: 557: 553: 546: 543: 540: 532: 528: 524: 521: 518: 515: 509: 506: 498: 484: 476: 472: 468: 465: 459: 456: 453: 447: 444: 439: 435: 428: 425: 417: 402: 396: 391: 388: 385: 382: 379: 375: 371: 368: 363: 359: 336: 332: 328: 325: 322: 319: 316: 313: 310: 305: 301: 297: 294: 291: 288: 285: 282: 278: 273: 269: 265: 262: 259: 256: 253: 250: 247: 244: 237: 236: 235: 218: 212: 209: 206: 200: 197: 191: 186: 183: 180: 177: 174: 170: 166: 163: 160: 154: 151: 145: 142: 139: 133: 130: 124: 121: 118: 115: 112: 105: 104: 103: 102: 86: 83: 80: 73: 69: 65: 62: 58: 50: 48: 46: 45:group objects 42: 38: 34: 30: 19: 1556: 1550: 1525:, retrieved 1521:the original 1515: 1492: 1487:, Ch 3. § 1. 1480: 1376: 1359: 1351: 1349: 1340: 1294: 1290: 1288: 1278: 1274: 1241:. Then take 1238: 1231: 1226: 1217: 1214:group scheme 1157: 1147: 1145: 1143: 1130:Lie groupoid 1127: 1123:groupoid set 1122: 915: 911: 907: 903: 899: 889: 812:group object 809: 233: 63: 56: 54: 36: 26: 1543:-varieties" 1497:Gillet 1984 1345:coequalizer 1134:submersions 33:mathematics 1583:Categories 1527:2014-02-11 1507:References 1372:stackified 876:Lie groups 605:(inverse) 351:where the 51:Definition 1428:⇉ 1395:⇉ 1315:⇉ 1299:equalizer 1258:× 1146:groupoid 1104:− 1019:∘ 963:→ 935:→ 886:Groupoids 781:∘ 750:∘ 737:∘ 706:∘ 674:∘ 655:∘ 616:∘ 569:∘ 547:∘ 519:∘ 510:∘ 469:× 460:∘ 445:× 429:∘ 400:→ 376:× 329:∘ 317:∘ 298:∘ 286:∘ 260:∘ 248:∘ 216:→ 195:→ 171:× 149:→ 128:→ 101:morphisms 1537:(1984), 1460:See also 1446:-torsors 1364:prestack 896:groupoid 801:Examples 61:category 41:groupoid 1573:0772058 1297:), the 1154:schemes 1150:-scheme 902:, take 882:, etc. 499:(unit) 72:objects 1571:  204:  158:  137:  1472:Notes 1379:atlas 1368:stack 1358:from 1160:. If 874:, or 59:in a 1235:acts 1076:and 840:and 35:, a 1561:doi 1301:of 1136:). 27:In 1585:: 1569:MR 1567:, 1557:34 1555:, 1293:, 1273:, 1144:A 1034:, 987:, 910:, 810:A 695:, 644:, 55:A 1563:: 1547:K 1541:Q 1499:. 1434:) 1431:U 1425:R 1422:( 1401:] 1398:U 1392:R 1389:[ 1360:C 1352:C 1327:U 1322:s 1318:t 1309:R 1295:U 1291:R 1279:t 1275:s 1261:G 1255:U 1252:= 1249:R 1239:U 1232:G 1200:t 1197:= 1194:s 1174:S 1171:= 1168:U 1158:S 1148:S 1107:1 1100:f 1096:= 1093:) 1090:f 1087:( 1084:i 1062:x 1058:1 1054:= 1051:) 1048:x 1045:( 1042:e 1022:f 1016:g 1013:= 1010:) 1007:g 1004:, 1001:f 998:( 995:m 975:y 972:= 969:) 966:y 960:x 957:( 954:t 950:, 947:x 944:= 941:) 938:y 932:x 929:( 926:s 916:C 912:R 908:C 904:U 900:C 854:t 851:= 848:s 828:U 825:= 822:R 796:. 784:t 778:e 775:= 772:) 767:R 763:1 759:, 756:i 753:( 747:m 743:, 740:s 734:e 731:= 728:) 725:i 722:, 717:R 713:1 709:( 703:m 683:s 680:= 677:i 671:t 667:, 664:t 661:= 658:i 652:s 630:R 626:1 622:= 619:i 613:i 591:, 586:R 582:1 578:= 575:) 572:t 566:e 563:, 558:R 554:1 550:( 544:m 541:= 538:) 533:R 529:1 525:, 522:s 516:e 513:( 507:m 485:, 482:) 477:R 473:1 466:m 463:( 457:m 454:= 451:) 448:m 440:R 436:1 432:( 426:m 403:R 397:R 392:s 389:, 386:t 383:, 380:U 372:R 369:: 364:i 360:p 337:2 333:p 326:t 323:= 320:m 314:t 311:, 306:1 302:p 295:s 292:= 289:m 283:s 279:, 274:U 270:1 266:= 263:e 257:t 254:= 251:e 245:s 219:R 213:R 210:: 207:i 201:, 198:R 192:R 187:s 184:, 181:t 178:, 175:U 167:R 164:: 161:m 155:, 152:R 146:U 143:: 140:e 134:, 131:U 125:R 122:: 119:t 116:, 113:s 87:U 84:, 81:R 64:C 20:)

Index

Topological groupoid
category theory
mathematics
groupoid
group objects
category
fiber products
objects
morphisms
group object
topological groups
category of topological spaces
Lie groups
category of manifolds
category of sets
groupoid
Lie groupoid
submersions
schemes
group scheme
algebraic groups
algebraic group
acts
equalizer
coequalizer
contravariant functor
prestack
stack
stackified
atlas

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑