Knowledge (XXG)

Toxungen

Source πŸ“

170:, which is poisonous (sequesters toad and/or firefly toxins in its nuchal gland tissues that are toxic if consumed by a predator), toxungenous (the nuchal glands are pressurized and can spray the toxins when ruptured), and venomous (toxic oral gland secretions can be injected via the teeth). Even humans can be considered facultatively poisonous, toxungenous, and venomous because they sometimes make use of toxins by all three means for research and development (e.g., biomedical purposes), agriculture (e.g., spraying insecticides), and nefarious reasons (to kill other animals, including humans). 17: 178:
Toxungen deployment offers a key evolutionary advantage compared to poisons and venoms. Poisons and venoms require direct contact with the target animal, which puts the toxin-possessing animal at risk of injury and death from a potentially dangerous enemy. Evolving the capacity to spit or spray a
118:
near their armpit) that possesses apparent toxicity. When the secretion is licked and combined with saliva, their bite introduces the secretion into a wound, which can cause sometimes severe tissue injury to conspecifics and other aggressors, thereby functioning as a venom. They can also rub the
717:
Nelsen, D. R., Nisani, Z., Cooper, A. M., Fox, G. A., Gren, E. C., Corbit, A. G., & Hayes, W. K. (2014). "Poisons, toxungens, and venoms: redefining and classifying toxic biological secretions and the organisms that employ them". Biological Reviews, 89(2), 450-465. doi:
854:
Nelsen, D. R., Nisani, Z., Cooper, A. M., Fox, G. A., Gren, E. C., Corbit, A. G., & Hayes, W. K. (2014). "Poisons, toxungens, and venoms: redefining and classifying toxic biological secretions and the organisms that employ them". Biological Reviews, 89(2), 450-465.
735:
Nelsen, D. R., Nisani, Z., Cooper, A. M., Fox, G. A., Gren, E. C., Corbit, A. G., & Hayes, W. K. (2014). "Poisons, toxungens, and venoms: redefining and classifying toxic biological secretions and the organisms that employ them". Biological Reviews, 89(2), 450-465.
288:
Nelsen, D. R., Nisani, Z., Cooper, A. M., Fox, G. A., Gren, E. C., Corbit, A. G., & Hayes, W. K. (2014). "Poisons, toxungens, and venoms: redefining and classifying toxic biological secretions and the organisms that employ them". Biological Reviews, 89(2), 450-465.
270:
Nelsen, D. R., Nisani, Z., Cooper, A. M., Fox, G. A., Gren, E. C., Corbit, A. G., & Hayes, W. K. (2014). "Poisons, toxungens, and venoms: redefining and classifying toxic biological secretions and the organisms that employ them". Biological Reviews, 89(2), 450-465.
252:
Nelsen, D. R., Nisani, Z., Cooper, A. M., Fox, G. A., Gren, E. C., Corbit, A. G., & Hayes, W. K. (2014). "Poisons, toxungens, and venoms: redefining and classifying toxic biological secretions and the organisms that employ them". Biological Reviews, 89(2), 450-465.
35:
that is transferred by one animal to the external surface of another animal via a physical delivery mechanism. Toxungens can be delivered through spitting, spraying, or smearing. As one of three categories of biological toxins, toxungens can be distinguished from
182:
Toxins used as toxungens can be acquired by several means. Many species synthesize their own toxins and store them within glands, but others acquire their toxins exogenously from other species. Two examples illustrate exogenous acquisition. Snakes of the genus
919:
Ismail,M., Al-Bekairi, A.M., El-Bedaiwy, A.M. & Abd-El Salam,M. A. (1993). "The ocular effect of spitting cobras: II. Evidence that cardiotoxins are responsible for the corneal opacification syndrome". Clinical Toxicology 31, 45–62.
506:
Nekaris, K., Moore, R. S., Rode, E. J., & Fry, B. G. (2013). Mad, bad and dangerous to know: the biochemistry, ecology and evolution of slow loris venom. Journal of Venomous Animals and Toxins including Tropical Diseases, 19, 1-10.
532:
Nekaris, K. A. I., Campera, M., Nijman, V., Birot, H., Rode-Margono, E. J., Fry, B. G., ... & Imron, M. A. (2020). Slow lorises use venom as a weapon in intraspecific competition. Current Biology, 30(20), R1252-R1253.
224:
possess a secretion used as a venom (injected for predation and/or defense) that can also be sprayed to communicate alarm among nestmates, to mark a trail used for food gathering, or to keep their brood free of parasites.
44:, which are delivered through a wound generated by a bite, sting, or other such action. Toxungen use offers the evolutionary advantage of delivering toxins into the target's tissues without the need for physical contact. 207:, the highly toxic non-proteinaceous component of their salivary glands that can be ejected into the water to subdue nearby prey, via accumulation from food resources and/or symbiotic tetrodotoxin-producing bacteria. 157:
Animals that deploy toxungens are referred to as toxungenous. Some animals use their toxins in multiple ways, and can be classified as poisonous, toxungenous, and/or venomous. Examples include the scorpion
131:
spray a noxious and potentially injurious secretion from their anal sac when threatened. High concentrations of the spray can be toxic, with rare accounts of spray victims suffering injury and even death.
625:
Fierro, B. R., Agnew, D. W., Duncan, A. E., Lehner, A. F., & Scott, M. A. (2013). Skunk musk causes methemoglobin and Heinz body formation in vitro. Veterinary Clinical Pathology, 42(3), 291-300.
753:
Hutchinson, D. A., Mori, A., Savitzky, A. H., Burghardt, G. M., Wu, X., Meinwald, J., & Schroeder, F. C. (2007). "Dietary sequestration of defensive steroids in nuchal glands of the Asian snake
600:
Zaks, K. L., Tan, E. O., & Thrall, M. A. (2005). Heinz body anemia in a dog that had been sprayed with skunk musk. Journal of the American Veterinary Medical Association, 226(9), 1516-1518.
416:
BerthΓ©, R. A., De Pury, S., Bleckmann, H., & Westhoff, G. (2009). "Spitting cobras adjust their venom distribution to target distance". Journal of Comparative Physiology A, 195(8), 753-757.
441:
J.P. Dumbacher and Pruett-Jones, S. (1996). "Avian chemical defense". In: Nolan, V., Jr., and Ketterson, E. D. (Eds.), Current Ornithology, vol. 13, Plenum Press, New York (1996), pp. 137-174.
704:
Mori, A., Burghardt, G. M., Savitzky, A. H., Roberts, K. A., Hutchinson, D. A., & Goris, R. C. (2012). "Nuchal glands: a novel defensive system in snakes". Chemoecology, 22(3), 187-198.
220:
that cooperatively subdue their prey by seizing, spread-eagling, and then smearing their toxins onto the prey's surface. Toxungens can also be used for communication and hygiene. Many
403:
Brodie, E. D. & Smatresk,N. J. (1990). "The antipredator arsenal of fire salamanders: spraying of secretions from highly pressurized dorsal skin glands". Herpetologica 46, 1–7.
872:
Eisner, T., Meinwald, J., Monro, A. & Ghent, R. (1961). "Defence mechanisms of Arthropods. I. The composition and function of the spray of the whipscorpion,
344:
Eisner, T., Aneshansley, D. J., Eisner, M., Attygalle, A. B., Alsop, D. W. & Meinwald, J. (2000a). "Spray mechanism of the most primitive bombardier beetle (
820:
Sutherland, S. & Lane, W. (1969). "Toxins and mode of envenomation of the common ringed or blue-banded octopus". Medical Journal of Australia 1, 893–898.
787:
Sutherland, S. & Lane, W. (1969). "Toxins and mode of envenomation of the common ringed or blue-banded octopus". Medical Journal of Australia 1, 893–898.
386:
Sutherland, S. & Lane, W. (1969). "Toxins and mode of envenomation of the common ringed or blue-banded octopus". Medical Journal of Australia 1, 893–898.
558:
Stankowich, T., Caro, T., & Cox, M. (2011). Bold coloration and the evolution of aposematism in terrestrial carnivores. Evolution, 65(11), 3090-3099.
232:
that spray or smear their secretion onto insect prey enhance toxin penetration by including a spreading agent that additionally enhances toxicity. Some
210:
Toxungens are most commonly used for defensive purposes, but can be used in other contexts as well. Examples of toxungen use for predation include the
481:". In Alterman, L.; Doyle, G.A.; Izard, M.K (eds.). Creatures of the Dark: The Nocturnal Prosimians. New York, New York: Plenum Press. Pp. 413–424. 486: 119:
secretion on their fur or lick their offspring before stashing them in a secure location, thereby functioning potentially as a toxungen.
149:
movies as capable of spitting a toxic secretion, no evidence exists to suggest that any dinosaur possessed either a toxungen or venom.
16: 327:
caterpillars (Lep., Saturniidae) spray an irritant secretion from defensive glands. Journal of Chemical Ecology 20, 2127–2138.
114:), which comprise several species of nocturnal primates in Southeast Asia, produce a secretion in their brachial glands (a 804:
Yamate, Y., Takatani, T., & Takegaki, T. (2021). "Levels and distribution of tetrodotoxin in the blue-lined octopus
837:
Richard, F. J., Fabre, A. & Dejean, A. (2001). "Predatory behavior in dominant arboreal ant species: the case of
944: 890: 228:
Because of their unique delivery system, toxungens may be chemically designed to better penetrate body surfaces.
808:
in Japan, with special reference to within-body allocation." Journal of Molluscan Studies, 87(1), eyaa042. doi:
99:, plant materials, and even manufactured pesticides. Some of the described substances may be toxic, at least to 821: 788: 387: 160: 925: 146: 583:
Wood, W. F. (1999). The history of skunk defensive secretion research. The Chemical Educator, 4(2), 44-50.
164:, which is both toxungenous (can spray its toxins) and venomous (can inject its toxins), and the snake 692: 142: 889:
Prestwich, G. D. (1984). "Defense-mechanisms of termites". Annual Review of Entomology 29, 201–232.
877: 671: 370: 311: 211: 199: 166: 214:, which can squirt its secretion into water to immobilize or kill its prey, and ants of the genus 40:, which are passively transferred via ingestion, inhalation, or absorption across the skin, and 778:, have chemical preference for a skin toxin of toads?" Current Herpetology, 40(1), 1-9. doi: . 634: 609: 567: 542: 516: 490: 482: 457:
Morozov, N. S. (2015). Why do birds practice anting? Biology Bulletin Reviews, 5(4), 353-365.
425: 921: 705: 306:
Koopowitz, H. (1970). "Feeding behaviour and the role of the brain in the polyclad flatworm,
719: 626: 601: 584: 559: 534: 508: 458: 442: 417: 236:
have modified their secretion so that the cardiotoxins are more injurious to eye membranes.
650: 949: 84: 842: 758: 473:
Alterman, L. (1995). "Toxins and toothcombs: potential allospecific chemical defenses in
349: 233: 938: 907: 563: 216: 137: 87:, or cloacas, and some anoint themselves with heterogenously acquired chemicals from 204: 902:
Eisner, T., Rossini, C. & Eisner, M. (2000b). "Chemical defense of an earwig (
691:
scorpions: risk assessment and venom metering". Animal Behaviour, 81(3), 627-633.
666:
Nisani, Z., & Hayes, W. K. (2015). "Venom-spraying behavior of the scorpion
605: 446: 365:
Nisani, Z., & Hayes, W. K. (2015). "Venom-spraying behavior of the scorpion
221: 115: 92: 65: 328: 179:
toxic secretion can reduce this risk by delivering the toxins from a distance.
538: 462: 421: 229: 185: 128: 124: 107: 100: 69: 856: 737: 290: 272: 254: 860: 762: 741: 723: 675: 512: 374: 353: 332: 294: 276: 258: 88: 61: 53: 876:(Lucas)(Arachnida, Pedipalpida)". Journal of Insect Physiology 6, 272–298. 825: 792: 638: 613: 571: 546: 520: 429: 391: 588: 83:, as a number of species deploy defensive secretions from their stomachs, 809: 494: 73: 841:
sp. (Hymenoptera: Formicidae)". Journal of Insect Behavior 14, 271–282.
757:". Proceedings of the National Academy of Sciences, 104(7), 2265-2270. 404: 194: 57: 630: 96: 37: 774:
Fukuda, M., & Mori, A. (2021). "Does an Asian natricine snake,
120: 41: 32: 15: 190: 80: 687:
Nisani, Z., & Hayes, W. K. (2011). "Defensive stinging by
670:(Arachnida: Buthidae)". Behavioural Processes, 115, 46-52. 369:(Arachnida: Buthidae)". Behavioural Processes, 115, 46-52. 52:
Toxungens have evolved in a variety of animals, including
31:
comprises a secretion or other body fluid of one or more
20:
Experimentally induced toxungen spraying by the scorpion
106:
Toxungen use might also exist in several mammal groups.
189:
sequester their nuchal gland toxins from their diet of
348:)". Journal of Experimental Biology 203, 1265–1275. 655:." At Blogosaur, Phillip J. Curie Dinosaur Museum 8: 103:, which would qualify them as toxungens. 891:doi:10.1146/annurev.en.29.010184.001221 245: 822:doi:10.5694/j.1326-5377.1969.tb49778.x 789:doi:10.5694/j.1326-5377.1969.tb49778.x 388:doi:10.5694/j.1326-5377.1969.tb49778.x 7: 405:https://www.jstor.org/stable/3892595 323:Deml, R. & Dettner, K. (1994). 153:Classification of toxin deployment 14: 693:doi:10.1016/j.anbehav.2010.12.010 878:doi:10.1016/0022-1910(61)90054-3 672:doi:10.1016/j.beproc.2015.03.002 564:10.1111/j.1558-5646.2011.01334.x 371:doi:10.1016/j.beproc.2015.03.002 312:doi:10.1016/0003-3472(70)90066-7 79:Toxungen use possibly exists in 197:, Blue-ringed octopuses (genus 651:Carter, N. Undated. "The real 310:". Animal Behavior 18, 31–35. 141:was portrayed in the original 135:Although the extinct theropod 1: 922:doi:10.3109/15563659309000373 706:doi:10.1007/s00049-011-0086-2 123:and several other members of 906:)". Chemoecology 10, 81–87. 843:doi:10.1023/A:1007845929801 759:doi:10.1073/pnas.0610785104 606:10.2460/javma.2005.226.1516 447:10.1007/978-1-4615-5881-1_4 966: 350:doi:10.1242/jeb.203.8.1265 908:doi:10.1007/s000490050011 539:10.1016/j.cub.2020.08.084 463:10.1134/S2079086415040076 422:10.1007/s00359-009-0451-6 874:Mastigoproctus giganteus 689:Parabuthus transvaalicus 668:Parabuthus transvaalicus 367:Parabuthus transvaalicus 161:Parabuthus transvaalicus 22:Parabuthus transvaalicus 513:10.1186/1678-9199-19-21 147:Jurassic World Dominion 806:Hapalochlaena fasciata 329:doi:10.1007/BF02066249 174:Evolution and function 48:Taxonomic distribution 25: 857:doi:10.1111/brv.12062 738:doi:10.1111/brv.12062 589:10.1007/s00897990286a 291:doi:10.1111/brv.12062 273:doi:10.1111/brv.12062 255:doi:10.1111/brv.12062 19: 308:Planocera gilchristi 776:Rhabdophis tigrinus 755:Rhabdophis tigrinus 212:blue-ringed octopus 167:Rhabdophis tigrinus 346:Metrius contractus 26: 945:Animal physiology 720:10.1111/brv.12062 631:10.1111/vcp.12074 487:978-0-306-45183-6 33:biological toxins 957: 929: 917: 911: 900: 894: 887: 881: 870: 864: 852: 846: 835: 829: 818: 812: 802: 796: 785: 779: 772: 766: 751: 745: 733: 727: 715: 709: 702: 696: 685: 679: 664: 658: 648: 642: 623: 617: 598: 592: 581: 575: 556: 550: 530: 524: 504: 498: 471: 465: 455: 449: 439: 433: 414: 408: 401: 395: 384: 378: 363: 357: 342: 336: 321: 315: 304: 298: 286: 280: 268: 262: 250: 85:uropygial glands 965: 964: 960: 959: 958: 956: 955: 954: 935: 934: 933: 932: 918: 914: 901: 897: 888: 884: 871: 867: 853: 849: 836: 832: 819: 815: 803: 799: 786: 782: 773: 769: 752: 748: 734: 730: 716: 712: 703: 699: 686: 682: 665: 661: 649: 645: 624: 620: 599: 595: 582: 578: 557: 553: 531: 527: 505: 501: 472: 468: 456: 452: 440: 436: 415: 411: 402: 398: 385: 381: 364: 360: 343: 339: 322: 318: 305: 301: 287: 283: 269: 265: 251: 247: 242: 234:Spitting cobras 176: 155: 50: 12: 11: 5: 963: 961: 953: 952: 947: 937: 936: 931: 930: 912: 904:Doru taeniatum 895: 882: 865: 847: 830: 813: 797: 780: 767: 746: 728: 710: 697: 680: 659: 643: 618: 593: 576: 551: 525: 499: 466: 450: 434: 409: 396: 379: 358: 337: 316: 299: 281: 263: 244: 243: 241: 238: 200:Hapalochlaeana 175: 172: 154: 151: 49: 46: 13: 10: 9: 6: 4: 3: 2: 962: 951: 948: 946: 943: 942: 940: 927: 923: 916: 913: 909: 905: 899: 896: 892: 886: 883: 879: 875: 869: 866: 862: 858: 851: 848: 844: 840: 839:Crematogaster 834: 831: 827: 823: 817: 814: 810: 807: 801: 798: 794: 790: 784: 781: 777: 771: 768: 764: 760: 756: 750: 747: 743: 739: 732: 729: 725: 721: 714: 711: 707: 701: 698: 694: 690: 684: 681: 677: 673: 669: 663: 660: 656: 654: 653:Dilophosaurus 647: 644: 640: 636: 632: 628: 622: 619: 615: 611: 607: 603: 597: 594: 590: 586: 580: 577: 573: 569: 565: 561: 555: 552: 548: 544: 540: 536: 529: 526: 522: 518: 514: 510: 503: 500: 496: 492: 488: 484: 480: 476: 470: 467: 464: 460: 454: 451: 448: 444: 438: 435: 431: 427: 423: 419: 413: 410: 406: 400: 397: 393: 389: 383: 380: 376: 372: 368: 362: 359: 355: 351: 347: 341: 338: 334: 330: 326: 325:Attacus atlas 320: 317: 313: 309: 303: 300: 296: 292: 285: 282: 278: 274: 267: 264: 260: 256: 249: 246: 239: 237: 235: 231: 226: 223: 222:hymenopterans 219: 218: 217:Crematogaster 213: 208: 206: 202: 201: 196: 192: 188: 187: 180: 173: 171: 169: 168: 163: 162: 152: 150: 148: 144: 143:Jurassic Park 140: 139: 138:Dilophosaurus 133: 130: 126: 122: 117: 113: 109: 104: 102: 101:ectoparasites 98: 94: 90: 86: 82: 77: 75: 71: 67: 63: 59: 55: 47: 45: 43: 39: 34: 30: 23: 18: 915: 903: 898: 885: 873: 868: 850: 838: 833: 816: 805: 800: 783: 775: 770: 754: 749: 731: 713: 700: 688: 683: 667: 662: 652: 646: 621: 596: 579: 554: 528: 502: 479:Perodicticus 478: 474: 469: 453: 437: 412: 399: 382: 366: 361: 345: 340: 324: 319: 307: 302: 284: 266: 248: 227: 215: 209: 205:tetrodotoxin 198: 184: 181: 177: 165: 159: 156: 136: 134: 111: 108:Slow lorises 105: 93:caterpillars 78: 51: 28: 27: 21: 116:scent gland 66:cephalopods 939:Categories 475:Nycticebus 240:References 230:Arthropods 203:) acquire 186:Rhabdophis 129:Mustelidae 125:Mephitidae 112:Nycticebus 89:millipedes 70:amphibians 195:fireflies 62:arachnids 54:flatworms 924:. PMID: 861:24102715 859:. PMID: 824:. PMID: 791:. PMID: 763:17284596 761:. PMID: 742:24102715 740:. PMID: 724:24102715 722:. PMID: 676:25748565 674:. PMID: 639:24033800 614:15882003 572:22023577 547:33080192 521:31074351 495:33441731 430:19462171 390:. PMID: 375:25748565 373:. PMID: 354:10729276 352:. PMID: 333:24242735 331:. PMID: 295:24102715 293:. PMID: 277:24102715 275:. PMID: 259:24102715 257:. PMID: 74:reptiles 29:Toxungen 926:8433415 826:4977737 793:4977737 392:4977737 193:and/or 110:(genus 97:beetles 58:insects 38:poisons 950:Toxins 637:  612:  570:  545:  519:  493:  485:  428:  121:Skunks 72:, and 42:venoms 191:toads 81:birds 635:PMID 610:PMID 568:PMID 543:PMID 517:PMID 491:OCLC 483:ISBN 477:and 426:PMID 145:and 127:and 627:doi 602:doi 585:doi 560:doi 535:doi 509:doi 459:doi 443:doi 418:doi 941:: 633:. 608:. 566:. 541:. 515:. 489:. 424:. 95:, 91:, 76:. 68:, 64:, 60:, 56:, 928:. 910:. 893:. 880:. 863:. 845:. 828:. 811:. 795:. 765:. 744:. 726:. 708:. 695:. 678:. 657:. 641:. 629:: 616:. 604:: 591:. 587:: 574:. 562:: 549:. 537:: 523:. 511:: 497:. 461:: 445:: 432:. 420:: 407:. 394:. 377:. 356:. 335:. 314:. 297:. 279:. 261:. 24:.

Index


biological toxins
poisons
venoms
flatworms
insects
arachnids
cephalopods
amphibians
reptiles
birds
uropygial glands
millipedes
caterpillars
beetles
ectoparasites
Slow lorises
scent gland
Skunks
Mephitidae
Mustelidae
Dilophosaurus
Jurassic Park
Jurassic World Dominion
Parabuthus transvaalicus
Rhabdophis tigrinus
Rhabdophis
toads
fireflies
Hapalochlaeana

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑