Knowledge

Ordinal number

Source 📝

186: 261: 7068: 645:, it is a totally ordered set without any infinite decreasing sequence — though there may be infinite increasing sequences. Ordinals may be used to label the elements of any given well-ordered set (the smallest element being labelled 0, the one after that 1, the next one 2, "and so on"), and to measure the "length" of the whole set by the least ordinal that is not a label for an element of the set. This "length" is called the 2780:
subclass (such as the class of all limit ordinals with countable cofinality). Since the intersection of two closed unbounded classes is closed and unbounded, the intersection of a stationary class and a closed unbounded class is stationary. But the intersection of two stationary classes may be empty, e.g. the class of ordinals with cofinality ω with the class of ordinals with uncountable cofinality.
84: 6998: 43: 727: 552:, which measure the size of sets. Although the distinction between ordinals and cardinals is not always apparent on finite sets (one can go from one to the other just by counting labels), they are very different in the infinite case, where different infinite ordinals can correspond to sets having the same cardinal. Like other kinds of numbers, ordinals can be 4261:, "and so on", but all the subtlety lies in the "and so on"). One could try to do this systematically, but no matter what system is used to define and construct ordinals, there is always an ordinal that lies just above all the ordinals constructed by the system. Perhaps the most important ordinal that limits a system of construction in this manner is the 843:, which says, essentially, that any property that passes on from the predecessors of an element to that element itself must be true of all elements (of the given well-ordered set). If the states of a computation (computer program or game) can be well-ordered—in such a way that each step is followed by a "lower" step—then the computation will terminate. 2741:. For example, the class of all limit ordinals is closed and unbounded: this translates the fact that there is always a limit ordinal greater than a given ordinal, and that a limit of limit ordinals is a limit ordinal (a fortunate fact if the terminology is to make any sense at all!). The class of additively indecomposable ordinals, or the class of 1719:
Any nonzero ordinal has the minimum element, zero. It may or may not have a maximum element. For example, 42 has maximum 41 and ω+6 has maximum ω+5. On the other hand, ω does not have a maximum since there is no largest natural number. If an ordinal has a maximum α, then it is the next ordinal after
754:
natural numbers comes the first infinite ordinal, ω, and after that come ω+1, ω+2, ω+3, and so on. (Exactly what addition means will be defined later on: just consider them as names.) After all of these come ω·2 (which is ω+ω), ω·2+1, ω·2+2, and so on, then ω·3, and then later on ω·4. Now the set
846:
It is inappropriate to distinguish between two well-ordered sets if they only differ in the "labeling of their elements", or more formally: if the elements of the first set can be paired off with the elements of the second set such that if one element is smaller than another in the first set, then
2779:
A class is stationary if it has a nonempty intersection with every closed unbounded class. All superclasses of closed unbounded classes are stationary, and stationary classes are unbounded, but there are stationary classes that are not closed and stationary classes that have no closed unbounded
2113:
of ordinals (a collection of ordinals, possibly too large to form a set, defined by some property): any class of ordinals can be indexed by ordinals (and, when the class is unbounded in the class of all ordinals, this puts it in class-bijection with the class of all ordinals). So the
3073:
as the cardinal's representation. (However, we must then be careful to distinguish between cardinal arithmetic and ordinal arithmetic.) In set theories without the axiom of choice, a cardinal may be represented by the set of sets with that cardinality having minimal rank (see
3008:
There are three usual operations on ordinals: addition, multiplication, and exponentiation. Each can be defined in essentially two different ways: either by constructing an explicit well-ordered set that represents the operation or by using transfinite recursion. The
3798:
An ordinal that is equal to its cofinality is called regular and it is always an initial ordinal. Any limit of regular ordinals is a limit of initial ordinals and thus is also initial even if it is not regular, which it usually is not. If the Axiom of Choice, then
980:, defines the order type of a well-ordering as the set of all well-orderings similar (order-isomorphic) to that well-ordering: in other words, an ordinal number is genuinely an equivalence class of well-ordered sets. This definition must be abandoned in 1114:
of well-ordered sets, it will be defined as a particular well-ordered set that (canonically) represents the class. Thus, an ordinal number will be a well-ordered set; and every well-ordered set will be order-isomorphic to exactly one ordinal number.
5988: 1976:
that is, the smallest ordinal (it always exists) greater than any term of the sequence. In this sense, a limit ordinal is the limit of all smaller ordinals (indexed by itself). Put more directly, it is the supremum of the set of smaller ordinals.
3034:, a game-theoretic variant of numbers, ordinals can also be combined via nimber arithmetic operations. These operations are commutative but the restriction to natural numbers is generally not the same as ordinary addition of natural numbers. 3013:
provides a standardized way of writing ordinals. It uniquely represents each ordinal as a finite sum of ordinal powers of ω. However, this cannot form the basis of a universal ordinal notation due to such self-referential representations as
3068:
is equivalent to the statement that every set can be well-ordered, i.e. that every cardinal has an initial ordinal. In theories with the axiom of choice, the cardinal number of any set has an initial ordinal, and one may employ the
3155:. It may be clearer to apply Von Neumann cardinal assignment to finite cases and to use Scott's trick for sets which are infinite or do not admit well orderings. Note that cardinal and ordinal arithmetic agree for finite numbers. 1999:
Thus, every ordinal is either zero, or a successor (of a well-defined predecessor), or a limit. This distinction is important, because many definitions by transfinite recursion rely upon it. Very often, when defining a function
3063:
of that cardinal. Every finite ordinal (natural number) is initial, and no other ordinal associates with its cardinal. But most infinite ordinals are not initial, as many infinite ordinals associate with the same cardinal. The
4728:
having countably many predecessors—that is, the set of countable ordinals—is the union of these two number classes. Cantor proved that the cardinality of the second number class is the first uncountable cardinality.
3059:), then they associate with the same cardinal. Any well-ordered set having an ordinal as its order-type has the same cardinality as that ordinal. The least ordinal associated with a given cardinal is called the 1827: 2032:
nondecreasing and taking ordinal values) are called continuous. Ordinal addition, multiplication and exponentiation are continuous as functions of their second argument (but can be defined non-recursively).
779:) (to give a few examples of relatively small—countable—ordinals). This can be continued indefinitely (as every time one says "and so on" when enumerating ordinals, it defines a larger ordinal). The smallest 2134:-th element in the class (with the convention that the "0-th" is the smallest, the "1-st" is the next smallest, and so on) can be freely spoken of. Formally, the definition is by transfinite induction: the 921:. Provided there exists an order isomorphism between two well-ordered sets, the order isomorphism is unique: this makes it quite justifiable to consider the two sets as essentially identical, and to seek a 5996: 3686:. Notice that a number of authors define cofinality or use it only for limit ordinals. The cofinality of a set of ordinals or any other well-ordered set is the cofinality of the order type of that set. 3436:
is the smallest uncountable ordinal (to see that it exists, consider the set of equivalence classes of well-orderings of the natural numbers: each such well-ordering defines a countable ordinal, and
2730:(to avoid talking of topology on proper classes, one can demand that the intersection of the class with any given ordinal is closed for the order topology on that ordinal, this is again equivalent). 1974: 1891: 1228: 4257: 3025:, and the so-called "natural" arithmetical operations for surreal numbers are an alternative way to combine ordinals arithmetically. They retain commutativity at the expense of continuity. 314: 4370: 4300: 4116: 4171: 4023: 2411: 1756: 3407: 2440: 4200: 2766: 1276: 629:
Whereas the notion of cardinal number is associated with a set with no particular structure on it, the ordinals are intimately linked with the special kind of sets that are called
3741:
ranges over the natural numbers) tends to ω; but, more generally, any countable limit ordinal has cofinality ω. An uncountable limit ordinal may have either cofinality ω as does
2277: 3830: 771:
are natural numbers) must itself have an ordinal associated with it: and that is ω. Further on, there will be ω, then ω, and so on, and ω, then ω, then later ω, and even later ε
2720: 1156: 5578: 5492: 5028: 4078: 3941: 3766: 3546: 3216: 3185: 2572: 2336: 2226: 2178: 363: 4403: 1920: 3347: 839:
and there is no infinite decreasing sequence (the latter being easier to visualize). In practice, the importance of well-ordering is justified by the possibility of applying
750:
Perhaps a clearer intuition of ordinals can be formed by examining a first few of them: as mentioned above, they start with the natural numbers, 0, 1, 2, 3, 4, 5, ... After
6495: 3127: 5529: 5453: 4983: 6810: 6733: 6694: 6656: 6628: 6600: 6572: 6460: 6427: 6399: 6371: 723:). Indeed, the set of natural numbers is well-ordered—as is any set of ordinals—and since it is downward closed, it can be identified with the ordinal associated with it. 5408: 4716:
having countably many predecessors. To define this set, he defined the transfinite ordinal numbers and transformed the infinite indices into ordinals by replacing ∞ with
4327: 3912: 3883: 3604: 3573: 3517: 3488: 3461: 3434: 3374: 3315: 3286: 3251: 1996:ω is a limit ordinal because for any smaller ordinal (in this example, a natural number) there is another ordinal (natural number) larger than it, but still less than ω. 2694: 2645: 498: 468: 7532: 4047: 3852: 3791: 3729: 3707: 3682: 3656: 3636: 2992: 2970: 2945: 2921: 2901: 2881: 2861: 2841: 2821: 2801: 2665: 2616: 2504: 2378: 2358: 2307: 2251: 2152: 2132: 2105: 2081: 2059: 1847: 925:
of the isomorphism type (class). This is exactly what the ordinals provide, and it also provides a canonical labeling of the elements of any well-ordered set. Every
810: 721: 699: 522: 440: 4222: 4138: 2526: 2198: 847:
the partner of the first element is smaller than the partner of the second element in the second set, and vice versa. Such a one-to-one correspondence is called an
3151: 3099: 2596: 2546: 2474: 336: 956:
of "being order-isomorphic". There is a technical difficulty involved, however, in the fact that the equivalence class is too large to be a set in the usual
6111: 2028:
does not take ordinal values). Thus, the interesting step in the definition is the successor step, not the limit ordinals. Such functions (especially for
1009: 4439:
if and only if the ordinal is a countable cardinal, i.e. at most ω. A subset of ω + 1 is open in the order topology if and only if either it is
6251: 6227: 1407:
The class of all ordinals is not a set. If it were a set, one could show that it was an ordinal and thus a member of itself, which would contradict its
1984:
There is an ordinal less than α and whenever ζ is an ordinal less than α, then there exists an ordinal ξ such that ζ < ξ < α.
6321: 4512:
as the intersection of these sets. Then he iterated the derived set operation and intersections to extend his sequence of sets into the infinite:
933:,<) is order-isomorphic to the set of ordinals less than one specific ordinal number under their natural ordering. This canonical set is the 2783:
Rather than formulating these definitions for (proper) classes of ordinals, one can formulate them for sets of ordinals below a given ordinal
1629:(β). It then follows by transfinite induction that there is one and only one function satisfying the recursion formula up to and including α. 5907: 5863: 5792: 5691: 5130: 660:
the set of ordinals that precede it. For example, the ordinal 42 is generally identified as the set {0, 1, 2, ..., 41}. Conversely, any set
7221: 7034: 30:
This article is about the mathematical concept. For number words denoting a position in a sequence ("first", "second", "third", etc.), see
1785: 422:(this is needed for giving a meaning to "the least unused element"). This more general definition allows us to define an ordinal number 7549: 618:, and the notion of position, which leads to the ordinal numbers described here. This is because while any set has only one size (its 419: 6026: 5974: 5945: 5886: 5834: 5811: 5739: 5716: 2285: 247: 229: 207: 167: 70: 2578:
when the limit of a sequence of ordinals in the class is again in the class: or, equivalently, when the indexing (class-)function
1400:, the ordinal obtained by taking the union of all the ordinals in the set. This union exists regardless of the set's size, by the 6104: 1597:
Transfinite induction can be used not only to prove things, but also to define them. Such a definition is normally said to be by
7527: 6152: 2085:. This applies, in particular, to any set of ordinals: any set of ordinals is naturally indexed by the ordinals less than some 981: 957: 7121: 6883: 3070: 1385:. Further, every set of ordinals is well-ordered. This generalizes the fact that every set of natural numbers is well-ordered. 101: 56: 3771:
The cofinality of 0 is 0. And the cofinality of any successor ordinal is 1. The cofinality of any limit ordinal is at least
5601: 4893:
Using successors, limits, and cardinality, Cantor generated an unbounded sequence of ordinal numbers and number classes. The
1929: 1422:
if and only if the opposite order is also well-ordered, which is the case if and only if each of its non-empty subsets has a
703:, which can be identified with the set of natural numbers (so that the ordinal associated with every natural number precedes 148: 105: 120: 7301: 7180: 6844: 6083: 6058: 4780:. Since there are uncountably many of these pairwise disjoint sets, their union is uncountable. This union is a subset of 2445: 776: 7544: 2024:(β) for all β<δ (either in the sense of ordinal limits, as previously explained, or for some other notion of limit if 1856: 6314: 5918: 1330:
that every well-ordered set is order-isomorphic to exactly one of these ordinals, that is, there is an order preserving
922: 7537: 6191: 7175: 7138: 6470: 6097: 6053: 5993:
Acta litterarum ac scientiarum Ragiae Universitatis Hungaricae Francisco-Josephinae, Sectio scientiarum mathematicarum
1632:
Here is an example of definition by transfinite recursion on the ordinals (more will be given later): define function
1557:
Any property that passes from the set of ordinals smaller than a given ordinal α to α itself, is true of all ordinals.
1488: 1173: 127: 5239:, p. 52 attributes the idea to unpublished work of Zermelo in 1916 and several papers by von Neumann the 1920s. 5044:
is a non-limit ordinal. Therefore, the non-limit number classes partition the ordinals into pairwise disjoint sets.
4229: 6073: 6070: 269: 4724:. The second number class is the set of ordinals whose predecessors form a countably infinite set. The set of all 4329:
in the name, this ordinal is countable), which is the smallest ordinal that cannot in any way be represented by a
4262: 2340:. The technique of indexing classes of ordinals is often useful in the context of fixed points: for example, the 7226: 7111: 7099: 7094: 6878: 6834: 6284: 5063: 4833: 4459: 4338: 4268: 4087: 1532: 832: 784: 642: 568: 134: 7687: 7682: 7027: 7001: 6873: 5708: 4887: 4143: 3995: 2383: 1460: 652:
Any ordinal is defined by the set of ordinals that precede it. In fact, the most common definition of ordinals
200: 194: 988:
because these equivalence classes are too large to form a set. However, this definition still can be used in
2776:
cardinals, however, is unbounded but not closed, and any finite set of ordinals is closed but not unbounded.
1729: 730:
A graphical "matchstick" representation of the ordinal ω. Each stick corresponds to an ordinal of the form ω·
7646: 7564: 7439: 7391: 7205: 7128: 6307: 6120: 5731: 3977: 3379: 2418: 1726:, namely the successor of α, written α+1. In the von Neumann definition of ordinals, the successor of α is 960:(ZF) formalization of set theory. But this is not a serious difficulty. The ordinal can be said to be the 679:
This definition of ordinals in terms of sets allows for infinite ordinals. The smallest infinite ordinal is
614:
When dealing with infinite sets, however, one has to distinguish between the notion of size, which leads to
94: 4178: 2744: 1243: 116: 7598: 7479: 7291: 7104: 6961: 6465: 5413: 5040:-th number class consists of ordinals different from those in the preceding number classes if and only if 4751: 2256: 415: 211: 3802: 7514: 7428: 7348: 7328: 7306: 6946: 6782: 6510: 6505: 5606: 5058: 4120:, etc. Many ordinals can be defined in such a manner as fixed points of certain ordinal functions (the 3659: 2699: 1598: 1544: 1327: 1125: 976: 875: 840: 6208: 5556: 5470: 5006: 4056: 3919: 3744: 3524: 3194: 3163: 2551: 2314: 2205: 2157: 1704:
is exactly transfinite induction). It turns out that this example is not very exciting, since provably
341: 4413:
can also be defined above the Church-Kleene ordinal, which are of interest in various parts of logic.
4381: 1896: 442:(omega) to be the least element that is greater than every natural number, along with ordinal numbers 264:
Representation of the ordinal numbers up to ω. One turn of the spiral corresponds to the mapping
7588: 7578: 7412: 7343: 7296: 7236: 7116: 6699: 6432: 6270: 6181: 6171: 5758: 4901:-th number class is the set of ordinals whose predecessors form a set of the same cardinality as the 3320: 1664:; this apparent vicious circle is exactly what definition by transfinite recursion permits. In fact, 1412: 997: 985: 953: 856: 572: 557: 6476: 6048: 3106: 641:
set such that, given two distinct elements, one is less than the other). Equivalently, assuming the
603:
of an element in a sequence. When restricted to finite sets, these two concepts coincide, since all
7583: 7494: 7407: 7402: 7397: 7211: 7153: 7084: 7020: 6910: 6820: 6777: 6759: 6537: 5501: 5425: 4955: 4330: 3317:
is used when writing cardinals, and ω when writing ordinals (this is important since, for example,
1528: 1495:, one has to further make sure that the definition excludes urelements from appearing in ordinals. 1435: 260: 62: 6793: 6716: 6677: 6639: 6611: 6583: 6555: 6443: 6410: 6382: 6354: 7506: 7501: 7286: 7241: 7148: 6815: 6527: 6256: 5671: 5656: 5623: 5386: 4410: 4305: 3983: 3890: 3861: 3582: 3551: 3495: 3466: 3439: 3412: 3352: 3293: 3264: 3229: 3010: 3003: 2280: 1331: 553: 4458:
The transfinite ordinal numbers, which first appeared in 1883, originated in Cantor's work with
3579:(any limit of cardinals is a cardinal, so this limit is indeed the first cardinal after all the 2670: 2621: 477: 447: 7363: 7200: 7192: 7163: 7133: 7057: 6973: 6936: 6900: 6839: 6825: 6520: 6500: 6161: 6022: 5970: 5941: 5903: 5882: 5859: 5830: 5807: 5788: 5735: 5728:
From Immanuel Kant to David Hilbert: A Source Book in the Foundations of Mathematics, Volume 2
5712: 5687: 5679: 5126: 4595: 4436: 4428: 2723: 2061:; in other words, its elements can be indexed in increasing fashion by the ordinals less than 1722: 1159: 949: 945: 848: 608: 596: 4032: 3837: 3776: 3714: 3692: 3667: 3641: 3621: 2977: 2955: 2930: 2906: 2886: 2866: 2846: 2826: 2806: 2786: 2650: 2601: 2489: 2363: 2343: 2292: 2236: 2137: 2117: 2090: 2066: 2044: 1832: 795: 706: 684: 507: 425: 7651: 7641: 7626: 7621: 7489: 7143: 6920: 6895: 6829: 6738: 6704: 6545: 6515: 6437: 6340: 6014: 6010: 5984: 5844: 5767: 5648: 5615: 5172: 4207: 4123: 3075: 2863:
is less than some ordinal in the set. More generally, one can call a subset of any ordinal
2511: 2183: 1980:
Another way of defining a limit ordinal is to say that α is a limit ordinal if and only if:
1434:
There are other modern formulations of the definition of ordinal. For example, assuming the
1231: 1013: 887: 409: 141: 5184: 4720:, the first transfinite ordinal number. Cantor called the set of finite ordinals the first 1311:
The natural numbers are thus ordinals by this definition. For instance, 2 is an element of
7520: 7458: 7276: 7089: 6868: 6772: 6404: 6131: 5959: 5955: 5878: 5665:
English translation: Contributions to the Founding of the Theory of Transfinite Numbers II
5180: 4333:(this can be made rigorous, of course). Considerably large ordinals can be defined below 3065: 3048: 993: 836: 780: 665: 634: 615: 549: 542: 534: 382: 31: 1527:. An ordinary sequence corresponds to the case α = ω, while a finite α corresponds to a 418:
that include the natural numbers and have the property that every set of ordinals has a
7656: 7453: 7434: 7323: 7280: 7216: 7158: 6915: 6890: 6709: 6577: 6348: 6140: 5934: 5929: 5823: 5750: 5675: 5076:, a generalization of ordinals which includes negative, real, and infinitesimal values. 5073: 5068: 4447: 4432: 4422: 3136: 3084: 3022: 2727: 2581: 2531: 2459: 1776: 1456: 1401: 1337:
Furthermore, the elements of every ordinal are ordinals themselves. Given two ordinals
1289: 584: 401: 321: 2289:(meaning a nonzero ordinal that is not the sum of two strictly smaller ordinals): the 996:
and related systems (where it affords a rather surprising alternative solution to the
7676: 7661: 7631: 7463: 7377: 7372: 6978: 6951: 6860: 5784: 5700: 5660: 5627: 4375: 2574:(then the class must be a proper class, i.e., it cannot be a set). It is said to be 1767: 1553:
set, but it is so important in relation to ordinals that it is worth restating here.
1358: 863: 638: 637:
set in which every non-empty subset has a least element (a totally ordered set is an
623: 412: 5163:
Hallett, Michael (1979), "Towards a theory of mathematical research programmes. I",
5032:. Therefore, the cardinalities of the number classes correspond one-to-one with the 537:
implies that every set can be well-ordered, and given two well-ordered sets, one is
400:
A finite set can be enumerated by successively labeling each element with the least
17: 7611: 7606: 7424: 7353: 7311: 7170: 7067: 6941: 6743: 5597: 5199: 5033: 4670: 4406: 1296: 604: 564: 405: 394: 5781:
Labyrinth of Thought: A History of Set Theory and Its Role in Mathematical Thought
4535:
The superscripts containing ∞ are just indices defined by the derivation process.
2154:-th element of the class is defined (provided it has already been defined for all 6065: 5897: 5120: 4761:
be countable, and assume there is no such α. This assumption produces two cases.
7636: 7271: 6767: 6549: 4474: 1772: 1474: 1382: 989: 619: 529:
A linear order such that every non-empty subset has a least element is called a
390: 83: 2283:
for the definition of multiplication of ordinals). Similarly, one can consider
7616: 7484: 7387: 7043: 6748: 6605: 5094: 3965: 3615: 2041:
Any well-ordered set is similar (order-isomorphic) to a unique ordinal number
1550: 1419: 1238:: "each ordinal is the well-ordered set of all smaller ordinals". In symbols, 962: 828: 630: 588: 571:, which he had previously introduced in 1872 while studying the uniqueness of 538: 530: 370: 5751:"'What fermented in me for years': Cantor's discovery of transfinite numbers" 4939:. Its cardinality is the limit of the cardinalities of these number classes. 1711:
for all ordinals α, which can be shown, precisely, by transfinite induction.
831:
set, every non-empty subset contains a distinct smallest element. Given the
7419: 7382: 7333: 7231: 1601:– the proof that the result is well-defined uses transfinite induction. Let 1585:
for all ordinals α, one can assume that it is already known for all smaller
1492: 891: 6089: 5771: 1230:
ordered by inclusion. This motivates the standard definition, suggested by
5176: 6856: 6787: 6633: 5053: 4440: 2734: 1524: 1397: 5664: 2233:
This could be applied, for example, to the class of limit ordinals: the
6376: 5848: 5652: 5619: 3081:
One issue with Scott's trick is that it identifies the cardinal number
2974:, i.e. a limit of ordinals in the set is either in the set or equal to 1423: 726: 4913:-th number class is the cardinality immediately following that of the 3051:, its cardinality. If there is a bijection between two ordinals (e.g. 7444: 7266: 6991: 6330: 3030: 1692:(1) makes sense (it is the smallest ordinal not in the singleton set 1415:. The class of all ordinals is variously called "Ord", "ON", or "∞". 974:
The original definition of ordinal numbers, found for example in the
404:
that has not been previously used. To extend this process to various
5640: 6019:
From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931
5925:
Also defines ordinal operations in terms of the Cantor Normal Form.
4374:, however, which measure the "proof-theoretic strength" of certain 851:, and the two well-ordered sets are said to be order-isomorphic or 545:
of the other. So ordinal numbers exist and are essentially unique.
365:
as least fixed point, larger ordinal numbers cannot be represented.
7316: 7076: 6080: 1822:{\displaystyle \langle \alpha _{\iota }|\iota <\gamma \rangle } 725: 259: 6299: 4886:. Cantor's work with derived sets and ordinal numbers led to the 3733:. For example, the cofinality of ω is ω, because the sequence ω· 1771:. One justification for this term is that a limit ordinal is the 1609:
to be defined on the ordinals. The idea now is that, in defining
1299:
well-ordered with respect to set membership and every element of
2733:
Of particular importance are those classes of ordinals that are
1392:
is a set having as elements precisely the ordinals smaller than
567:
in 1883 in order to accommodate infinite sequences and classify
7016: 6303: 6093: 6076:
free software for computing with ordinals and ordinal notations
5854:, in Gabbay, Dov M.; Kanamori, Akihiro; Woods, John H. (eds.), 3956:
is a regular ordinal, i.e. the cofinality of the cofinality of
2927:
some ordinal in the set. The subset is said to be closed under
179: 77: 36: 7012: 5825:
Numbers, Sets, and Axioms : the Apparatus of Mathematics
6482: 6021:(3rd ed.), Harvard University Press, pp. 346–354, 5960:"Frege versus Cantor and Dedekind: On the Concept of Number" 5705:
Georg Cantor: His Mathematics and Philosophy of the Infinite
5095:"Ordinal Number - Examples and Definition of Ordinal Number" 4493:. In 1880, he pointed out that these sets form the sequence 5821:
Hamilton, A. G. (1982), "6. Ordinal and cardinal numbers",
3259:(all are countable ordinals). So ω can be identified with 3189:, it is always a limit ordinal. Its cardinality is written 2016:(α) is defined, and then, for limit ordinals δ one defines 783:
ordinal is the set of all countable ordinals, expressed as
5641:"Beitrage zur Begrundung der transfiniten Mengenlehre. II" 5221: 5219: 3490:
is the smallest ordinal whose cardinality is greater than
1775:
in a topological sense of all smaller ordinals (under the
1684:(0) is equal to 0 (the smallest ordinal of all). Now that 4875:
being countable. Therefore, there is a countable ordinal
3832:
is regular for each α. In this case, the ordinals 0, 1,
5602:"Ueber unendliche, lineare Punktmannichfaltigkeiten. 5." 4701:
The second theorem requires proving the existence of an
944:
Essentially, an ordinal is intended to be defined as an
5967:
Early Analytic Philosophy: Frege, Russell, Wittgenstein
5923:(2nd ed.), Warszawa: Państwowe Wydawnictwo Naukowe 1969:{\displaystyle \{\alpha _{\iota }|\iota <\gamma \},} 1581:α. Or, more practically: in order to prove a property 2004:
by transfinite recursion on all ordinals, one defines
1613:(α) for an unspecified ordinal α, one may assume that 6796: 6719: 6680: 6642: 6614: 6586: 6558: 6479: 6446: 6413: 6385: 6357: 5559: 5504: 5473: 5428: 5389: 5009: 4958: 4691:
is the countable union of countable sets. Therefore,
4384: 4341: 4308: 4271: 4232: 4210: 4181: 4146: 4126: 4090: 4059: 4035: 3998: 3922: 3893: 3864: 3840: 3805: 3779: 3747: 3717: 3695: 3670: 3644: 3624: 3585: 3554: 3527: 3498: 3469: 3442: 3415: 3382: 3355: 3323: 3296: 3267: 3232: 3197: 3166: 3139: 3109: 3087: 2980: 2958: 2933: 2909: 2889: 2869: 2849: 2829: 2809: 2789: 2747: 2702: 2673: 2653: 2624: 2604: 2584: 2554: 2534: 2514: 2492: 2462: 2421: 2386: 2366: 2346: 2317: 2295: 2259: 2239: 2208: 2186: 2160: 2140: 2120: 2093: 2069: 2047: 1932: 1899: 1859: 1835: 1788: 1732: 1246: 1176: 1128: 798: 709: 687: 510: 480: 450: 428: 344: 324: 272: 4673:, so they are countable. Proof of first theorem: If 4508:
and he continued the derivation process by defining
2309:-th additively indecomposable ordinal is indexed as 7597: 7560: 7472: 7362: 7250: 7191: 7075: 7050: 6929: 6855: 6757: 6665: 6536: 6338: 5633:
Grundlagen einer allgemeinen Mannigfaltigkeitslehre
3131:, which in some formulations is the ordinal number 2109:. The same holds, with a slight modification, for 1886:{\displaystyle \alpha _{\iota }<\alpha _{\rho }} 1829:is an ordinal-indexed sequence, indexed by a limit 676:— is (or can be identified with) an ordinal. 408:, ordinal numbers are defined more generally using 108:. Unsourced material may be challenged and removed. 6804: 6727: 6688: 6650: 6622: 6594: 6566: 6489: 6454: 6421: 6393: 6365: 5933: 5822: 5572: 5523: 5486: 5447: 5402: 5022: 4977: 4712:. To prove this, Cantor considered the set of all 4397: 4364: 4321: 4294: 4251: 4216: 4194: 4165: 4132: 4110: 4072: 4041: 4017: 3935: 3906: 3877: 3846: 3824: 3785: 3760: 3723: 3701: 3676: 3650: 3630: 3598: 3567: 3540: 3511: 3482: 3455: 3428: 3401: 3368: 3341: 3309: 3280: 3245: 3210: 3179: 3145: 3121: 3093: 2986: 2964: 2939: 2915: 2895: 2875: 2855: 2835: 2815: 2795: 2760: 2714: 2688: 2659: 2639: 2610: 2590: 2566: 2540: 2520: 2498: 2468: 2434: 2405: 2372: 2352: 2330: 2301: 2271: 2245: 2220: 2192: 2172: 2146: 2126: 2099: 2075: 2053: 1968: 1914: 1885: 1841: 1821: 1750: 1270: 1222: 1150: 804: 715: 693: 516: 492: 462: 434: 357: 330: 308: 5165:The British Journal for the Philosophy of Science 3709:-indexed strictly increasing sequence with limit 1381:, or they are equal. So every set of ordinals is 4739:is countable, then there is a countable ordinal 2722:; this is also the same as being closed, in the 2253:-th ordinal, which is either a limit or zero is 1758:since its elements are those of α and α itself. 1223:{\displaystyle T_{<a}:=\{x\in T\mid x<a\}} 970:Definition of an ordinal as an equivalence class 591:) can be used for two purposes: to describe the 5995:, vol. 1, pp. 199–208, archived from 4409:). Large countable ordinals such as countable 1926:is defined as the least upper bound of the set 1507:is a set, an α-indexed sequence of elements of 870:, and a partial order ≤' is defined on the set 835:, this is equivalent to saying that the set is 6252:the theories of iterated inductive definitions 5647:, vol. 49, no. 2, pp. 207–246, 4252:{\displaystyle \varepsilon _{\alpha }=\alpha } 2667:-th ordinal in the class) is the limit of all 7028: 6315: 6105: 6086:on set theory is an introduction to ordinals. 5858:, Cambridge University Press, pp. 1–71, 3158:The α-th infinite initial ordinal is written 2947:provided it is closed for the order topology 587:(which, in this context, includes the number 309:{\displaystyle f(\alpha )=\omega (1+\alpha )} 8: 6015:"On the introduction of transfinite numbers" 5856:Sets and Extensions in the Twentieth Century 3116: 3110: 2180:), as the smallest element greater than the 1960: 1933: 1816: 1789: 1745: 1739: 1217: 1193: 6033: 5804:Cantorian Set Theory and Limitation of Size 5225: 4365:{\displaystyle \omega _{1}^{\mathrm {CK} }} 4295:{\displaystyle \omega _{1}^{\mathrm {CK} }} 4111:{\displaystyle \omega ^{\omega ^{\omega }}} 4027:, so it is the limit of the sequence 0, 1, 3949:are initial ordinals that are not regular. 2823:is said to be unbounded (or cofinal) under 2769: 1640:(α) be the smallest ordinal not in the set 1396:. For example, every set of ordinals has a 1234:at the age of 19, now called definition of 1010:Set-theoretic definition of natural numbers 71:Learn how and when to remove these messages 7035: 7021: 7013: 6997: 6322: 6308: 6300: 6112: 6098: 6090: 5534: 4587:These theorems are proved by partitioning 4466:is a set of real numbers, the derived set 4204:, then one could go on trying to find the 1668:(0) makes sense since there is no ordinal 1660:(β) known in the very process of defining 1523:, is a generalization of the concept of a 1017: 668:— meaning that for any ordinal α in 27:Generalization of "n-th" to infinite cases 6798: 6797: 6795: 6721: 6720: 6718: 6682: 6681: 6679: 6644: 6643: 6641: 6616: 6615: 6613: 6588: 6587: 6585: 6560: 6559: 6557: 6481: 6480: 6478: 6448: 6447: 6445: 6415: 6414: 6412: 6387: 6386: 6384: 6359: 6358: 6356: 5564: 5558: 5509: 5503: 5478: 5472: 5433: 5427: 5394: 5388: 5333: 5309: 5305: 5293: 5289: 5277: 5265: 5261: 5014: 5008: 4963: 4957: 4905:-th number class. The cardinality of the 4538:Cantor used these sets in the theorems: 4450:section of the "Order topology" article. 4389: 4383: 4352: 4351: 4346: 4340: 4313: 4307: 4282: 4281: 4276: 4270: 4237: 4231: 4209: 4186: 4180: 4166:{\displaystyle \omega ^{\alpha }=\alpha } 4151: 4145: 4125: 4100: 4095: 4089: 4064: 4058: 4034: 4018:{\displaystyle \omega ^{\alpha }=\alpha } 4003: 3997: 3927: 3921: 3898: 3892: 3869: 3863: 3839: 3810: 3804: 3778: 3752: 3746: 3716: 3694: 3689:Thus for a limit ordinal, there exists a 3669: 3643: 3623: 3590: 3584: 3559: 3553: 3532: 3526: 3503: 3497: 3474: 3468: 3447: 3441: 3420: 3414: 3387: 3381: 3360: 3354: 3333: 3328: 3322: 3301: 3295: 3272: 3266: 3255:, which is also the cardinality of ω or ε 3237: 3231: 3202: 3196: 3171: 3165: 3138: 3108: 3086: 2979: 2957: 2932: 2908: 2888: 2868: 2848: 2828: 2808: 2788: 2752: 2746: 2701: 2672: 2652: 2623: 2603: 2583: 2553: 2533: 2513: 2491: 2461: 2426: 2420: 2406:{\displaystyle \omega ^{\alpha }=\alpha } 2391: 2385: 2365: 2345: 2322: 2316: 2294: 2258: 2238: 2207: 2185: 2159: 2139: 2119: 2092: 2068: 2046: 1946: 1940: 1931: 1898: 1877: 1864: 1858: 1834: 1802: 1796: 1787: 1731: 1438:, the following are equivalent for a set 1245: 1181: 1175: 1139: 1127: 797: 708: 686: 626:of any infinite set, as explained below. 509: 479: 449: 427: 349: 343: 323: 271: 248:Learn how and when to remove this message 230:Learn how and when to remove this message 168:Learn how and when to remove this message 5989:"Zur Einführung der transfiniten Zahlen" 5829:, New York: Cambridge University Press, 4443:or it does not contain ω as an element. 3990:is the smallest satisfying the equation 3021:Ordinals are a subclass of the class of 1688:(0) is known, the definition applied to 855:(with the understanding that this is an 556:, although none of these operations are 193:This article includes a list of general 5465:-th number classes, its cardinality is 5381:The first number class has cardinality 5357: 5086: 2772:, are all closed unbounded; the set of 1751:{\displaystyle \alpha \cup \{\alpha \}} 1483:is a transitive set of transitive sets. 672:and any ordinal β < α, β is also in 5345: 5321: 4917:-th number class. For a limit ordinal 4669:have no limit points. Hence, they are 4485:by applying the derived set operation 4427:Any ordinal number can be made into a 3402:{\displaystyle \omega ^{2}>\omega } 2435:{\displaystyle \varepsilon _{\gamma }} 1110:Rather than defining an ordinal as an 897:that preserves the ordering. That is, 755:of ordinals formed in this way (the ω· 5461:-th number class is the union of the 5249: 4925:-th number class is the union of the 4571:is countable, then there is an index 4481:. In 1872, Cantor generated the sets 4195:{\displaystyle \varepsilon _{\iota }} 2761:{\displaystyle \varepsilon _{\cdot }} 2598:is continuous in the sense that, for 1648:, that is, the set consisting of all 1271:{\displaystyle \lambda =[0,\lambda )} 948:of well-ordered sets: that is, as an 7: 5369: 5236: 5150: 5146: 5145:Thorough introductions are given by 4732:Cantor's second theorem becomes: If 3220:. For example, the cardinality of ω 2272:{\displaystyle \omega \cdot \gamma } 1487:These definitions cannot be used in 1411:ordering by membership. This is the 992:and in Quine's axiomatic set theory 554:added, multiplied, and exponentiated 502:, etc., which are even greater than 106:adding citations to reliable sources 6511:Set-theoretically definable numbers 3825:{\displaystyle \omega _{\alpha +1}} 1549:Transfinite induction holds in any 1019:First several von Neumann ordinals 579:Ordinals extend the natural numbers 5561: 5506: 5475: 5430: 5391: 5248:Cantor 1883. English translation: 5011: 4960: 4868:is uncountable, which contradicts 4356: 4353: 4286: 4283: 3964:. So the cofinality operation is 3500: 3357: 3325: 3298: 3269: 3234: 3199: 3113: 2715:{\displaystyle \gamma <\delta } 2286:additively indecomposable ordinals 1151:{\displaystyle a\mapsto T_{<a}} 1004:Von Neumann definition of ordinals 799: 548:Ordinal numbers are distinct from 199:it lacks sufficient corresponding 25: 6228:Takeuti–Feferman–Buchholz ordinal 5849:"Set Theory from Cantor to Cohen" 5686:, Springer, pp. 266–7, 274, 5573:{\displaystyle \aleph _{\alpha }} 5551:-th number class has cardinality 5487:{\displaystyle \aleph _{\omega }} 5420:-th number class has cardinality 5188:. See the footnote on p. 12. 5023:{\displaystyle \aleph _{\alpha }} 5001:-th number class has cardinality 4950:-th number class has cardinality 4073:{\displaystyle \omega ^{\omega }} 3960:is the same as the cofinality of 3936:{\displaystyle \omega _{\omega }} 3761:{\displaystyle \omega _{\omega }} 3541:{\displaystyle \omega _{\omega }} 3211:{\displaystyle \aleph _{\alpha }} 3180:{\displaystyle \omega _{\alpha }} 3047:Each ordinal associates with one 2903:provided every ordinal less than 2567:{\displaystyle \alpha <\beta } 2452:Closed unbounded sets and classes 2331:{\displaystyle \omega ^{\gamma }} 2221:{\displaystyle \beta <\gamma } 2173:{\displaystyle \beta <\gamma } 358:{\displaystyle \omega ^{\omega }} 52:This article has multiple issues. 7066: 6996: 6017:, in Jean van Heijenoort (ed.), 5969:, Open Court, pp. 213–248, 5119:Sterling, Kristin (2007-09-01). 4398:{\displaystyle \varepsilon _{0}} 3463:is the order type of that set), 1915:{\displaystyle \iota <\rho ,} 1104:{∅,{∅},{∅,{∅}},{∅,{∅},{∅,{∅}}}} 622:), there are many nonisomorphic 184: 82: 41: 5726:Ewald, William B., ed. (1996), 4776:is non-empty for all countable 3972:Some "large" countable ordinals 3342:{\displaystyle \aleph _{0}^{2}} 3071:Von Neumann cardinal assignment 2843:provided any ordinal less than 2803:: A subset of a limit ordinal 2773: 1617:(β) is already defined for all 93:needs additional citations for 60:or discuss these issues on the 6490:{\displaystyle {\mathcal {P}}} 4836:, so it is uncountable. Since 3952:The cofinality of any ordinal 3768:or an uncountable cofinality. 3122:{\displaystyle \{\emptyset \}} 2683: 2677: 2634: 2628: 1988:So in the following sequence: 1947: 1803: 1656:. This definition assumes the 1265: 1253: 1166:and the set of all subsets of 1132: 303: 291: 282: 276: 1: 6845:Plane-based geometric algebra 6259: < ω‍ 5524:{\displaystyle \aleph _{n-1}} 5448:{\displaystyle \aleph _{n-1}} 4978:{\displaystyle \aleph _{n-1}} 4655:contains the limit points of 3043:Initial ordinal of a cardinal 1489:non-well-founded set theories 6805:{\displaystyle \mathbb {S} } 6728:{\displaystyle \mathbb {C} } 6689:{\displaystyle \mathbb {R} } 6651:{\displaystyle \mathbb {O} } 6623:{\displaystyle \mathbb {H} } 6595:{\displaystyle \mathbb {C} } 6567:{\displaystyle \mathbb {R} } 6455:{\displaystyle \mathbb {A} } 6422:{\displaystyle \mathbb {Q} } 6394:{\displaystyle \mathbb {Z} } 6366:{\displaystyle \mathbb {N} } 6250:Proof-theoretic ordinals of 5965:, in William W. Tait (ed.), 5920:Cardinal and Ordinal Numbers 4804:is empty for some countable 3658:that is the order type of a 2037:Indexing classes of ordinals 1715:Successor and limit ordinals 1621:and thus give a formula for 1388:Consequently, every ordinal 563:Ordinals were introduced by 6054:Encyclopedia of Mathematics 5806:, Oxford University Press, 5631:. Published separately as: 5403:{\displaystyle \aleph _{0}} 4322:{\displaystyle \omega _{1}} 3914:are regular, whereas 2, 3, 3907:{\displaystyle \omega _{2}} 3878:{\displaystyle \omega _{1}} 3599:{\displaystyle \omega _{n}} 3568:{\displaystyle \omega _{n}} 3512:{\displaystyle \aleph _{1}} 3483:{\displaystyle \omega _{2}} 3456:{\displaystyle \omega _{1}} 3429:{\displaystyle \omega _{1}} 3369:{\displaystyle \aleph _{0}} 3310:{\displaystyle \aleph _{0}} 3290:, except that the notation 3281:{\displaystyle \aleph _{0}} 3246:{\displaystyle \aleph _{0}} 1449:is a (von Neumann) ordinal, 420:least or "smallest" element 7704: 7533:von Neumann–Bernays–Gödel 6273: ≥ ω‍ 5902:(2nd ed.), Springer, 5680:"Cantor's Ordinal Numbers" 4420: 3975: 3001: 2768:ordinals, or the class of 2689:{\displaystyle F(\gamma )} 2640:{\displaystyle F(\delta )} 2476:of ordinals is said to be 1761:A nonzero ordinal that is 1605:denote a (class) function 1542: 1118:For each well-ordered set 1007: 923:"canonical" representative 633:. A well-ordered set is a 389:th, etc.) aimed to extend 29: 7334:One-to-one correspondence 7064: 6987: 6835:Algebra of physical space 6285:First uncountable ordinal 6127: 6032:- English translation of 5802:Hallett, Michael (1986), 5064:First uncountable ordinal 4405:measures the strength of 2484:, when given any ordinal 1319:and so it is a subset of 1091: 1074: 1057: 1040: 1023: 1000:of the largest ordinal). 966:of any set in the class. 833:axiom of dependent choice 643:axiom of dependent choice 493:{\displaystyle \omega +2} 463:{\displaystyle \omega +1} 381:, is a generalization of 6891:Extended complex numbers 6874:Extended natural numbers 6153:Feferman–Schütte ordinal 6121:Large countable ordinals 5783:(2nd revised ed.), 5779:Ferreirós, José (2007), 5749:Ferreirós, José (1995), 5709:Harvard University Press 4888:Cantor-Bendixson theorem 4431:by endowing it with the 3982:As mentioned above (see 3638:is the smallest ordinal 2444:. These are called the " 2020:(δ) as the limit of the 1765:a successor is called a 1521:ordinal-indexed sequence 1511:is a function from α to 1503:If α is any ordinal and 1459:, and set membership is 866:≤ is defined on the set 6192:Bachmann–Howard ordinal 5917:Sierpiński, W. (1965), 5732:Oxford University Press 4929:-th number classes for 4042:{\displaystyle \omega } 3978:Large countable ordinal 3847:{\displaystyle \omega } 3786:{\displaystyle \omega } 3724:{\displaystyle \alpha } 3702:{\displaystyle \delta } 3677:{\displaystyle \alpha } 3651:{\displaystyle \delta } 3631:{\displaystyle \alpha } 2987:{\displaystyle \alpha } 2965:{\displaystyle \alpha } 2940:{\displaystyle \alpha } 2916:{\displaystyle \alpha } 2896:{\displaystyle \alpha } 2876:{\displaystyle \alpha } 2856:{\displaystyle \alpha } 2836:{\displaystyle \alpha } 2816:{\displaystyle \alpha } 2796:{\displaystyle \alpha } 2660:{\displaystyle \delta } 2611:{\displaystyle \delta } 2499:{\displaystyle \alpha } 2373:{\displaystyle \alpha } 2353:{\displaystyle \gamma } 2302:{\displaystyle \gamma } 2246:{\displaystyle \gamma } 2147:{\displaystyle \gamma } 2127:{\displaystyle \gamma } 2100:{\displaystyle \alpha } 2076:{\displaystyle \alpha } 2054:{\displaystyle \alpha } 1842:{\displaystyle \gamma } 1491:. In set theories with 984:and related systems of 805:{\displaystyle \Omega } 716:{\displaystyle \omega } 694:{\displaystyle \omega } 517:{\displaystyle \omega } 435:{\displaystyle \omega } 214:more precise citations. 7292:Constructible universe 7112:Constructibility (V=L) 6947:Transcendental numbers 6806: 6783:Hyperbolic quaternions 6729: 6690: 6652: 6624: 6596: 6568: 6491: 6456: 6423: 6395: 6367: 6132:First infinite ordinal 6066:Ordinals at ProvenMath 5772:10.1006/hmat.1995.1003 5639:Cantor, Georg (1897), 5574: 5525: 5488: 5449: 5414:Mathematical induction 5404: 5024: 4979: 4752:proof by contradiction 4399: 4366: 4323: 4296: 4253: 4224:-th ordinal such that 4218: 4217:{\displaystyle \iota } 4196: 4167: 4140:-th ordinal such that 4134: 4133:{\displaystyle \iota } 4112: 4074: 4043: 4019: 3937: 3908: 3879: 3848: 3826: 3787: 3762: 3725: 3703: 3678: 3652: 3632: 3600: 3569: 3542: 3513: 3484: 3457: 3430: 3403: 3370: 3343: 3311: 3282: 3247: 3212: 3181: 3147: 3123: 3095: 3038:Ordinals and cardinals 2998:Arithmetic of ordinals 2988: 2966: 2941: 2917: 2897: 2877: 2857: 2837: 2817: 2797: 2762: 2716: 2690: 2661: 2641: 2612: 2592: 2568: 2542: 2522: 2521:{\displaystyle \beta } 2500: 2470: 2436: 2407: 2374: 2354: 2332: 2303: 2273: 2247: 2222: 2194: 2193:{\displaystyle \beta } 2174: 2148: 2128: 2101: 2077: 2055: 1970: 1916: 1887: 1843: 1823: 1752: 1720:α, and it is called a 1625:(α) in terms of these 1519:(if α is infinite) or 1272: 1224: 1152: 806: 747: 717: 695: 518: 494: 464: 436: 366: 359: 332: 310: 7515:Principia Mathematica 7349:Transfinite induction 7208:(i.e. set difference) 6879:Extended real numbers 6807: 6730: 6700:Split-complex numbers 6691: 6653: 6625: 6597: 6569: 6492: 6457: 6433:Constructible numbers 6424: 6396: 6368: 5896:Jech, Thomas (2013), 5645:Mathematische Annalen 5607:Mathematische Annalen 5575: 5535:Transfinite induction 5526: 5489: 5450: 5405: 5268:, pp. 159, 204–5 5204:mathworld.wolfram.com 5059:Even and odd ordinals 5025: 4980: 4448:Topology and ordinals 4421:Further information: 4417:Topology and ordinals 4400: 4367: 4324: 4297: 4263:Church–Kleene ordinal 4254: 4219: 4197: 4168: 4135: 4113: 4075: 4044: 4020: 3976:Further information: 3938: 3909: 3880: 3849: 3827: 3788: 3763: 3726: 3704: 3679: 3653: 3633: 3601: 3570: 3543: 3514: 3485: 3458: 3431: 3404: 3371: 3344: 3312: 3283: 3248: 3213: 3182: 3148: 3124: 3096: 2989: 2967: 2942: 2918: 2898: 2878: 2858: 2838: 2818: 2798: 2763: 2717: 2691: 2662: 2642: 2613: 2593: 2569: 2543: 2523: 2501: 2471: 2437: 2408: 2375: 2355: 2333: 2304: 2274: 2248: 2223: 2195: 2175: 2149: 2129: 2102: 2078: 2056: 1971: 1917: 1888: 1844: 1824: 1753: 1599:transfinite recursion 1593:Transfinite recursion 1565:(α) is true whenever 1545:Transfinite induction 1539:Transfinite induction 1328:transfinite induction 1273: 1225: 1153: 977:Principia Mathematica 841:transfinite induction 807: 729: 718: 696: 599:, or to describe the 519: 495: 465: 437: 360: 333: 311: 263: 7589:Burali-Forti paradox 7344:Set-builder notation 7297:Continuum hypothesis 7237:Symmetric difference 6911:Supernatural numbers 6821:Multicomplex numbers 6794: 6778:Dual-complex numbers 6717: 6678: 6640: 6612: 6584: 6556: 6538:Composition algebras 6506:Arithmetical numbers 6477: 6444: 6411: 6383: 6355: 6271:Nonrecursive ordinal 6182:large Veblen ordinal 6172:small Veblen ordinal 5936:Axiomatic Set Theory 5759:Historia Mathematica 5557: 5502: 5471: 5426: 5387: 5372:, p. 5 footnote 5007: 4956: 4382: 4339: 4306: 4269: 4230: 4208: 4179: 4144: 4124: 4088: 4057: 4033: 3996: 3920: 3891: 3862: 3838: 3803: 3777: 3745: 3715: 3693: 3668: 3642: 3622: 3583: 3575:for natural numbers 3552: 3548:is the limit of the 3525: 3496: 3467: 3440: 3413: 3380: 3353: 3321: 3294: 3265: 3230: 3195: 3164: 3137: 3107: 3085: 2978: 2956: 2931: 2907: 2887: 2867: 2847: 2827: 2807: 2787: 2745: 2735:closed and unbounded 2700: 2671: 2651: 2622: 2602: 2582: 2552: 2532: 2512: 2490: 2460: 2419: 2384: 2364: 2344: 2315: 2293: 2257: 2237: 2206: 2200:-th element for all 2184: 2158: 2138: 2118: 2091: 2067: 2045: 1992:0, 1, 2, ..., ω, ω+1 1930: 1897: 1857: 1849:and the sequence is 1833: 1786: 1730: 1569:(β) is true for all 1517:transfinite sequence 1499:Transfinite sequence 1473:is a transitive set 1413:Burali-Forti paradox 1303:is also a subset of 1244: 1236:von Neumann ordinals 1174: 1126: 998:Burali-Forti paradox 986:axiomatic set theory 954:equivalence relation 857:equivalence relation 796: 746:are natural numbers. 707: 685: 664:of ordinals that is 607:of a finite set are 573:trigonometric series 508: 478: 448: 426: 342: 322: 270: 102:improve this article 18:Transfinite sequence 7550:Tarski–Grothendieck 6816:Split-biquaternions 6528:Eisenstein integers 6466:Closed-form numbers 6257:Computable ordinals 5684:The Book of Numbers 5496:, the limit of the 5198:Weisstein, Eric W. 5177:10.1093/bjps/30.1.1 5125:. LernerClassroom. 4435:; this topology is 4411:admissible ordinals 4361: 4331:computable function 4291: 3338: 2737:, sometimes called 1515:. This concept, a 1436:axiom of regularity 1365:. Moreover, either 1326:It can be shown by 1020: 7139:Limitation of size 6974:Profinite integers 6937:Irrational numbers 6802: 6725: 6686: 6648: 6620: 6592: 6564: 6521:Gaussian rationals 6501:Computable numbers 6487: 6452: 6419: 6391: 6363: 6209:Buchholz's ordinal 6071:Ordinal calculator 5940:, D.Van Nostrand, 5873:Levy, A. (2002) , 5653:10.1007/BF01444205 5620:10.1007/bf01446819 5570: 5521: 5484: 5445: 5400: 5308:, pp. 36–37; 5292:, pp. 35–36; 5264:, pp. 34–35; 5252:, pp. 881–920 5020: 4975: 4395: 4362: 4342: 4319: 4292: 4272: 4249: 4214: 4192: 4163: 4130: 4108: 4070: 4039: 4015: 3984:Cantor normal form 3933: 3904: 3875: 3844: 3822: 3783: 3758: 3721: 3699: 3674: 3648: 3628: 3596: 3565: 3538: 3509: 3480: 3453: 3426: 3399: 3366: 3339: 3324: 3307: 3278: 3243: 3208: 3177: 3143: 3119: 3091: 3011:Cantor normal form 3004:Ordinal arithmetic 2984: 2962: 2937: 2913: 2893: 2873: 2853: 2833: 2813: 2793: 2758: 2712: 2686: 2657: 2637: 2608: 2588: 2564: 2538: 2518: 2496: 2466: 2432: 2403: 2370: 2350: 2328: 2299: 2281:ordinal arithmetic 2269: 2243: 2218: 2190: 2170: 2144: 2124: 2097: 2073: 2051: 1966: 1912: 1883: 1839: 1819: 1748: 1700:), and so on (the 1332:bijective function 1315:and 2 is equal to 1268: 1220: 1148: 1018: 802: 748: 713: 691: 514: 490: 460: 432: 367: 355: 328: 306: 7670: 7669: 7579:Russell's paradox 7528:Zermelo–Fraenkel 7429:Dedekind-infinite 7302:Diagonal argument 7201:Cartesian product 7058:Set (mathematics) 7010: 7009: 6921:Superreal numbers 6901:Levi-Civita field 6896:Hyperreal numbers 6840:Spacetime algebra 6826:Geometric algebra 6739:Bicomplex numbers 6705:Split-quaternions 6546:Division algebras 6516:Gaussian integers 6438:Algebraic numbers 6341:definable numbers 6297: 6296: 6162:Ackermann ordinal 6013:(January 2002) , 6011:von Neumann, John 5985:von Neumann, John 5909:978-3-662-22400-7 5865:978-0-444-51621-3 5845:Kanamori, Akihiro 5794:978-3-7643-8349-7 5693:978-1-4612-4072-3 5132:978-0-8225-8846-7 4750:. Its proof uses 4596:pairwise disjoint 4429:topological space 3521:, and so on, and 3146:{\displaystyle 1} 3094:{\displaystyle 0} 2618:a limit ordinal, 2591:{\displaystyle F} 2541:{\displaystyle C} 2469:{\displaystyle C} 1723:successor ordinal 1477:by set inclusion, 1430:Other definitions 1377:is an element of 1369:is an element of 1349:is an element of 1313:4 = {0, 1, 2, 3}, 1160:order isomorphism 1112:equivalence class 1108: 1107: 950:equivalence class 946:isomorphism class 913:) if and only if 849:order isomorphism 823:Well-ordered sets 331:{\displaystyle f} 258: 257: 250: 240: 239: 232: 178: 177: 170: 152: 75: 16:(Redirected from 7695: 7652:Bertrand Russell 7642:John von Neumann 7627:Abraham Fraenkel 7622:Richard Dedekind 7584:Suslin's problem 7495:Cantor's theorem 7212:De Morgan's laws 7070: 7037: 7030: 7023: 7014: 7000: 6999: 6967: 6957: 6869:Cardinal numbers 6830:Clifford algebra 6811: 6809: 6808: 6803: 6801: 6773:Dual quaternions 6734: 6732: 6731: 6726: 6724: 6695: 6693: 6692: 6687: 6685: 6657: 6655: 6654: 6649: 6647: 6629: 6627: 6626: 6621: 6619: 6601: 6599: 6598: 6593: 6591: 6573: 6571: 6570: 6565: 6563: 6496: 6494: 6493: 6488: 6486: 6485: 6461: 6459: 6458: 6453: 6451: 6428: 6426: 6425: 6420: 6418: 6405:Rational numbers 6400: 6398: 6397: 6392: 6390: 6372: 6370: 6369: 6364: 6362: 6324: 6317: 6310: 6301: 6281: 6280: 6267: 6266: 6114: 6107: 6100: 6091: 6062: 6049:"Ordinal number" 6034:von Neumann 1923 6031: 6006: 6005: 6004: 5979: 5964: 5956:Tait, William W. 5950: 5939: 5924: 5912: 5891: 5875:Basic Set Theory 5868: 5853: 5839: 5828: 5816: 5797: 5774: 5755: 5744: 5721: 5696: 5663: 5630: 5583: 5581: 5579: 5577: 5576: 5571: 5569: 5568: 5546: 5532: 5530: 5528: 5527: 5522: 5520: 5519: 5495: 5493: 5491: 5490: 5485: 5483: 5482: 5456: 5454: 5452: 5451: 5446: 5444: 5443: 5416:proves that the 5411: 5409: 5407: 5406: 5401: 5399: 5398: 5379: 5373: 5367: 5361: 5360:, pp. 61–62 5355: 5349: 5348:, pp. 97–98 5343: 5337: 5336:, pp. 207–8 5331: 5325: 5319: 5313: 5303: 5297: 5287: 5281: 5275: 5269: 5259: 5253: 5246: 5240: 5234: 5228: 5226:von Neumann 1923 5223: 5214: 5213: 5211: 5210: 5200:"Ordinal Number" 5195: 5189: 5187: 5160: 5154: 5143: 5137: 5136: 5116: 5110: 5109: 5107: 5106: 5099:Literary Devices 5091: 5031: 5029: 5027: 5026: 5021: 5019: 5018: 4996: 4986: 4984: 4982: 4981: 4976: 4974: 4973: 4938: 4912: 4900: 4885: 4873: 4866: 4854: 4848: 4846: 4827: 4817: 4803: 4785: 4775: 4759: 4749: 4737: 4711: 4696: 4689: 4679: 4668: 4654: 4648: 4637: 4611: 4604: 4592: 4581: 4569: 4559: 4549: 4534: 4507: 4471: 4407:Peano arithmetic 4404: 4402: 4401: 4396: 4394: 4393: 4373: 4371: 4369: 4368: 4363: 4360: 4359: 4350: 4328: 4326: 4325: 4320: 4318: 4317: 4301: 4299: 4298: 4293: 4290: 4289: 4280: 4260: 4258: 4256: 4255: 4250: 4242: 4241: 4223: 4221: 4220: 4215: 4203: 4201: 4199: 4198: 4193: 4191: 4190: 4172: 4170: 4169: 4164: 4156: 4155: 4139: 4137: 4136: 4131: 4119: 4117: 4115: 4114: 4109: 4107: 4106: 4105: 4104: 4081: 4079: 4077: 4076: 4071: 4069: 4068: 4050: 4048: 4046: 4045: 4040: 4026: 4024: 4022: 4021: 4016: 4008: 4007: 3986:), the ordinal ε 3944: 3942: 3940: 3939: 3934: 3932: 3931: 3913: 3911: 3910: 3905: 3903: 3902: 3886: 3884: 3882: 3881: 3876: 3874: 3873: 3855: 3853: 3851: 3850: 3845: 3831: 3829: 3828: 3823: 3821: 3820: 3794: 3792: 3790: 3789: 3784: 3767: 3765: 3764: 3759: 3757: 3756: 3732: 3730: 3728: 3727: 3722: 3708: 3706: 3705: 3700: 3685: 3683: 3681: 3680: 3675: 3657: 3655: 3654: 3649: 3637: 3635: 3634: 3629: 3605: 3603: 3602: 3597: 3595: 3594: 3574: 3572: 3571: 3566: 3564: 3563: 3547: 3545: 3544: 3539: 3537: 3536: 3520: 3518: 3516: 3515: 3510: 3508: 3507: 3489: 3487: 3486: 3481: 3479: 3478: 3462: 3460: 3459: 3454: 3452: 3451: 3435: 3433: 3432: 3427: 3425: 3424: 3408: 3406: 3405: 3400: 3392: 3391: 3375: 3373: 3372: 3367: 3365: 3364: 3348: 3346: 3345: 3340: 3337: 3332: 3316: 3314: 3313: 3308: 3306: 3305: 3289: 3287: 3285: 3284: 3279: 3277: 3276: 3254: 3252: 3250: 3249: 3244: 3242: 3241: 3219: 3217: 3215: 3214: 3209: 3207: 3206: 3188: 3186: 3184: 3183: 3178: 3176: 3175: 3154: 3152: 3150: 3149: 3144: 3130: 3128: 3126: 3125: 3120: 3100: 3098: 3097: 3092: 3058: 3054: 2993: 2991: 2990: 2985: 2973: 2971: 2969: 2968: 2963: 2946: 2944: 2943: 2938: 2922: 2920: 2919: 2914: 2902: 2900: 2899: 2894: 2882: 2880: 2879: 2874: 2862: 2860: 2859: 2854: 2842: 2840: 2839: 2834: 2822: 2820: 2819: 2814: 2802: 2800: 2799: 2794: 2767: 2765: 2764: 2759: 2757: 2756: 2721: 2719: 2718: 2713: 2695: 2693: 2692: 2687: 2666: 2664: 2663: 2658: 2646: 2644: 2643: 2638: 2617: 2615: 2614: 2609: 2597: 2595: 2594: 2589: 2573: 2571: 2570: 2565: 2547: 2545: 2544: 2539: 2527: 2525: 2524: 2519: 2507: 2505: 2503: 2502: 2497: 2475: 2473: 2472: 2467: 2443: 2441: 2439: 2438: 2433: 2431: 2430: 2412: 2410: 2409: 2404: 2396: 2395: 2379: 2377: 2376: 2371: 2359: 2357: 2356: 2351: 2339: 2337: 2335: 2334: 2329: 2327: 2326: 2308: 2306: 2305: 2300: 2278: 2276: 2275: 2270: 2252: 2250: 2249: 2244: 2229: 2227: 2225: 2224: 2219: 2199: 2197: 2196: 2191: 2179: 2177: 2176: 2171: 2153: 2151: 2150: 2145: 2133: 2131: 2130: 2125: 2108: 2106: 2104: 2103: 2098: 2084: 2082: 2080: 2079: 2074: 2060: 2058: 2057: 2052: 1975: 1973: 1972: 1967: 1950: 1945: 1944: 1921: 1919: 1918: 1913: 1892: 1890: 1889: 1884: 1882: 1881: 1869: 1868: 1848: 1846: 1845: 1840: 1828: 1826: 1825: 1820: 1806: 1801: 1800: 1757: 1755: 1754: 1749: 1710: 1699: 1679: 1671: 1655: 1647: 1620: 1588: 1577:(α) is true for 1572: 1322: 1318: 1314: 1279: 1277: 1275: 1274: 1269: 1232:John von Neumann 1229: 1227: 1226: 1221: 1189: 1188: 1170:having the form 1169: 1165: 1157: 1155: 1154: 1149: 1147: 1146: 1121: 1087:{∅,{∅},{∅,{∅}}} 1021: 1014:Zermelo ordinals 958:Zermelo–Fraenkel 888:order isomorphic 813: 811: 809: 808: 803: 722: 720: 719: 714: 702: 700: 698: 697: 692: 616:cardinal numbers 550:cardinal numbers 525: 523: 521: 520: 515: 501: 499: 497: 496: 491: 471: 469: 467: 466: 461: 441: 439: 438: 433: 410:linearly ordered 388: 385:(first, second, 383:ordinal numerals 364: 362: 361: 356: 354: 353: 337: 335: 334: 329: 317: 315: 313: 312: 307: 253: 246: 235: 228: 224: 221: 215: 210:this article by 201:inline citations 188: 187: 180: 173: 166: 162: 159: 153: 151: 117:"Ordinal number" 110: 86: 78: 67: 45: 44: 37: 21: 7703: 7702: 7698: 7697: 7696: 7694: 7693: 7692: 7688:Wellfoundedness 7683:Ordinal numbers 7673: 7672: 7671: 7666: 7593: 7572: 7556: 7521:New Foundations 7468: 7358: 7277:Cardinal number 7260: 7246: 7187: 7071: 7062: 7046: 7041: 7011: 7006: 6983: 6962: 6952: 6925: 6916:Surreal numbers 6906:Ordinal numbers 6851: 6792: 6791: 6753: 6715: 6714: 6712: 6710:Split-octonions 6676: 6675: 6667: 6661: 6638: 6637: 6610: 6609: 6582: 6581: 6578:Complex numbers 6554: 6553: 6532: 6475: 6474: 6442: 6441: 6409: 6408: 6381: 6380: 6353: 6352: 6349:Natural numbers 6334: 6328: 6298: 6293: 6279: 6276: 6275: 6274: 6265: 6262: 6261: 6260: 6246: 6244: 6223: 6217: 6204: 6158: 6149: 6141:Epsilon numbers 6123: 6118: 6047: 6044: 6039: 6029: 6009: 6002: 6000: 5983: 5977: 5962: 5954: 5948: 5930:Suppes, Patrick 5928: 5916: 5910: 5895: 5889: 5879:Springer-Verlag 5872: 5866: 5851: 5843: 5837: 5820: 5814: 5801: 5795: 5778: 5753: 5748: 5742: 5725: 5719: 5699: 5694: 5672:Conway, John H. 5670: 5638: 5596: 5592: 5587: 5586: 5560: 5555: 5554: 5552: 5538: 5537:proves that if 5505: 5500: 5499: 5497: 5474: 5469: 5468: 5466: 5429: 5424: 5423: 5421: 5390: 5385: 5384: 5382: 5380: 5376: 5368: 5364: 5356: 5352: 5344: 5340: 5332: 5328: 5320: 5316: 5304: 5300: 5288: 5284: 5276: 5272: 5260: 5256: 5247: 5243: 5235: 5231: 5224: 5217: 5208: 5206: 5197: 5196: 5192: 5162: 5161: 5157: 5144: 5140: 5133: 5122:Ordinal Numbers 5118: 5117: 5113: 5104: 5102: 5093: 5092: 5088: 5083: 5050: 5010: 5005: 5004: 5002: 4988: 4959: 4954: 4953: 4951: 4946:is finite, the 4930: 4906: 4894: 4880: 4871: 4864: 4861:In both cases, 4859: 4856:is uncountable. 4852: 4844: 4837: 4819: 4818:, this implies 4809: 4795: 4791:is uncountable. 4783: 4767: 4757: 4744: 4735: 4706: 4694: 4687: 4680:for some index 4674: 4660: 4650: 4639: 4609: 4602: 4599: 4590: 4585: 4576: 4567: 4564:Conversely, if 4557: 4550:for some index 4544: 4513: 4494: 4469: 4456: 4425: 4419: 4385: 4380: 4379: 4337: 4336: 4334: 4309: 4304: 4303: 4267: 4266: 4233: 4228: 4227: 4225: 4206: 4205: 4182: 4177: 4176: 4174: 4147: 4142: 4141: 4122: 4121: 4096: 4091: 4086: 4085: 4083: 4060: 4055: 4054: 4052: 4031: 4030: 4028: 3999: 3994: 3993: 3991: 3989: 3980: 3974: 3948: 3923: 3918: 3917: 3915: 3894: 3889: 3888: 3865: 3860: 3859: 3857: 3836: 3835: 3833: 3806: 3801: 3800: 3775: 3774: 3772: 3748: 3743: 3742: 3713: 3712: 3710: 3691: 3690: 3666: 3665: 3663: 3640: 3639: 3620: 3619: 3612: 3586: 3581: 3580: 3555: 3550: 3549: 3528: 3523: 3522: 3499: 3494: 3493: 3491: 3470: 3465: 3464: 3443: 3438: 3437: 3416: 3411: 3410: 3383: 3378: 3377: 3356: 3351: 3350: 3319: 3318: 3297: 3292: 3291: 3268: 3263: 3262: 3260: 3258: 3233: 3228: 3227: 3225: 3223: 3198: 3193: 3192: 3190: 3167: 3162: 3161: 3159: 3135: 3134: 3132: 3105: 3104: 3102: 3083: 3082: 3066:axiom of choice 3061:initial ordinal 3056: 3052: 3045: 3040: 3028:Interpreted as 3023:surreal numbers 3017: 3006: 3000: 2976: 2975: 2954: 2953: 2951: 2929: 2928: 2905: 2904: 2885: 2884: 2865: 2864: 2845: 2844: 2825: 2824: 2805: 2804: 2785: 2784: 2748: 2743: 2742: 2726:sense, for the 2698: 2697: 2669: 2668: 2649: 2648: 2620: 2619: 2600: 2599: 2580: 2579: 2550: 2549: 2530: 2529: 2510: 2509: 2488: 2487: 2485: 2458: 2457: 2454: 2446:epsilon numbers 2422: 2417: 2416: 2414: 2387: 2382: 2381: 2362: 2361: 2342: 2341: 2318: 2313: 2312: 2310: 2291: 2290: 2255: 2254: 2235: 2234: 2204: 2203: 2201: 2182: 2181: 2156: 2155: 2136: 2135: 2116: 2115: 2089: 2088: 2086: 2065: 2064: 2062: 2043: 2042: 2039: 2012:(α+1) assuming 1936: 1928: 1927: 1895: 1894: 1873: 1860: 1855: 1854: 1831: 1830: 1792: 1784: 1783: 1728: 1727: 1717: 1705: 1693: 1678:(β) | β < 0} 1673: 1669: 1653: 1646:(β) | β < α} 1641: 1618: 1595: 1586: 1570: 1547: 1541: 1501: 1475:totally ordered 1432: 1383:totally ordered 1353:if and only if 1320: 1316: 1312: 1242: 1241: 1239: 1177: 1172: 1171: 1167: 1163: 1135: 1124: 1123: 1119: 1016: 1006: 994:New Foundations 972: 862:Formally, if a 837:totally ordered 825: 820: 794: 793: 791: 788: 774: 705: 704: 683: 682: 680: 666:downward closed 635:totally ordered 581: 543:initial segment 535:axiom of choice 506: 505: 503: 476: 475: 473: 446: 445: 443: 424: 423: 386: 345: 340: 339: 320: 319: 268: 267: 265: 254: 243: 242: 241: 236: 225: 219: 216: 206:Please help to 205: 189: 185: 174: 163: 157: 154: 111: 109: 99: 87: 46: 42: 35: 32:Ordinal numeral 28: 23: 22: 15: 12: 11: 5: 7701: 7699: 7691: 7690: 7685: 7675: 7674: 7668: 7667: 7665: 7664: 7659: 7657:Thoralf Skolem 7654: 7649: 7644: 7639: 7634: 7629: 7624: 7619: 7614: 7609: 7603: 7601: 7595: 7594: 7592: 7591: 7586: 7581: 7575: 7573: 7571: 7570: 7567: 7561: 7558: 7557: 7555: 7554: 7553: 7552: 7547: 7542: 7541: 7540: 7525: 7524: 7523: 7511: 7510: 7509: 7498: 7497: 7492: 7487: 7482: 7476: 7474: 7470: 7469: 7467: 7466: 7461: 7456: 7451: 7442: 7437: 7432: 7422: 7417: 7416: 7415: 7410: 7405: 7395: 7385: 7380: 7375: 7369: 7367: 7360: 7359: 7357: 7356: 7351: 7346: 7341: 7339:Ordinal number 7336: 7331: 7326: 7321: 7320: 7319: 7314: 7304: 7299: 7294: 7289: 7284: 7274: 7269: 7263: 7261: 7259: 7258: 7255: 7251: 7248: 7247: 7245: 7244: 7239: 7234: 7229: 7224: 7219: 7217:Disjoint union 7214: 7209: 7203: 7197: 7195: 7189: 7188: 7186: 7185: 7184: 7183: 7178: 7167: 7166: 7164:Martin's axiom 7161: 7156: 7151: 7146: 7141: 7136: 7131: 7129:Extensionality 7126: 7125: 7124: 7114: 7109: 7108: 7107: 7102: 7097: 7087: 7081: 7079: 7073: 7072: 7065: 7063: 7061: 7060: 7054: 7052: 7048: 7047: 7042: 7040: 7039: 7032: 7025: 7017: 7008: 7007: 7005: 7004: 6994: 6992:Classification 6988: 6985: 6984: 6982: 6981: 6979:Normal numbers 6976: 6971: 6949: 6944: 6939: 6933: 6931: 6927: 6926: 6924: 6923: 6918: 6913: 6908: 6903: 6898: 6893: 6888: 6887: 6886: 6876: 6871: 6865: 6863: 6861:infinitesimals 6853: 6852: 6850: 6849: 6848: 6847: 6842: 6837: 6823: 6818: 6813: 6800: 6785: 6780: 6775: 6770: 6764: 6762: 6755: 6754: 6752: 6751: 6746: 6741: 6736: 6723: 6707: 6702: 6697: 6684: 6671: 6669: 6663: 6662: 6660: 6659: 6646: 6631: 6618: 6603: 6590: 6575: 6562: 6542: 6540: 6534: 6533: 6531: 6530: 6525: 6524: 6523: 6513: 6508: 6503: 6498: 6484: 6468: 6463: 6450: 6435: 6430: 6417: 6402: 6389: 6374: 6361: 6345: 6343: 6336: 6335: 6329: 6327: 6326: 6319: 6312: 6304: 6295: 6294: 6292: 6291: 6282: 6277: 6268: 6263: 6254: 6248: 6240: 6238: 6225: 6219: 6215: 6206: 6202: 6189: 6179: 6169: 6159: 6156: 6150: 6147: 6138: 6128: 6125: 6124: 6119: 6117: 6116: 6109: 6102: 6094: 6088: 6087: 6077: 6068: 6063: 6043: 6042:External links 6040: 6038: 6037: 6027: 6007: 5981: 5975: 5952: 5946: 5926: 5914: 5908: 5893: 5887: 5870: 5864: 5841: 5835: 5818: 5812: 5799: 5793: 5776: 5746: 5740: 5723: 5717: 5701:Dauben, Joseph 5697: 5692: 5668: 5636: 5614:(4): 545–591, 5593: 5591: 5588: 5585: 5584: 5567: 5563: 5518: 5515: 5512: 5508: 5481: 5477: 5442: 5439: 5436: 5432: 5397: 5393: 5374: 5362: 5350: 5338: 5334:Ferreirós 2007 5326: 5314: 5310:Ferreirós 2007 5306:Ferreirós 1995 5298: 5294:Ferreirós 2007 5290:Ferreirós 1995 5282: 5278:Ferreirós 2007 5270: 5266:Ferreirós 2007 5262:Ferreirós 1995 5254: 5241: 5229: 5215: 5190: 5155: 5138: 5131: 5111: 5085: 5084: 5082: 5079: 5078: 5077: 5074:Surreal number 5071: 5066: 5061: 5056: 5049: 5046: 5017: 5013: 4972: 4969: 4966: 4962: 4858: 4857: 4792: 4763: 4698:is countable. 4584: 4583: 4562: 4540: 4473:is the set of 4455: 4452: 4433:order topology 4423:Order topology 4418: 4415: 4392: 4388: 4378:(for example, 4376:formal systems 4358: 4355: 4349: 4345: 4316: 4312: 4288: 4285: 4279: 4275: 4248: 4245: 4240: 4236: 4213: 4189: 4185: 4162: 4159: 4154: 4150: 4129: 4103: 4099: 4094: 4067: 4063: 4038: 4014: 4011: 4006: 4002: 3987: 3973: 3970: 3946: 3930: 3926: 3901: 3897: 3872: 3868: 3843: 3819: 3816: 3813: 3809: 3782: 3755: 3751: 3720: 3698: 3673: 3647: 3627: 3618:of an ordinal 3611: 3608: 3593: 3589: 3562: 3558: 3535: 3531: 3506: 3502: 3477: 3473: 3450: 3446: 3423: 3419: 3398: 3395: 3390: 3386: 3363: 3359: 3336: 3331: 3327: 3304: 3300: 3275: 3271: 3256: 3240: 3236: 3221: 3205: 3201: 3174: 3170: 3142: 3118: 3115: 3112: 3090: 3044: 3041: 3039: 3036: 3015: 3002:Main article: 2999: 2996: 2983: 2961: 2936: 2912: 2892: 2872: 2852: 2832: 2812: 2792: 2755: 2751: 2728:order topology 2711: 2708: 2705: 2685: 2682: 2679: 2676: 2656: 2636: 2633: 2630: 2627: 2607: 2587: 2563: 2560: 2557: 2537: 2517: 2495: 2465: 2453: 2450: 2429: 2425: 2402: 2399: 2394: 2390: 2369: 2349: 2325: 2321: 2298: 2268: 2265: 2262: 2242: 2217: 2214: 2211: 2189: 2169: 2166: 2163: 2143: 2123: 2096: 2072: 2050: 2038: 2035: 1994: 1993: 1986: 1985: 1965: 1962: 1959: 1956: 1953: 1949: 1943: 1939: 1935: 1911: 1908: 1905: 1902: 1880: 1876: 1872: 1867: 1863: 1838: 1818: 1815: 1812: 1809: 1805: 1799: 1795: 1791: 1777:order topology 1747: 1744: 1741: 1738: 1735: 1716: 1713: 1672:, and the set 1594: 1591: 1559: 1558: 1543:Main article: 1540: 1537: 1500: 1497: 1485: 1484: 1478: 1468: 1457:transitive set 1450: 1431: 1428: 1418:An ordinal is 1402:axiom of union 1334:between them. 1309: 1308: 1290:if and only if 1288:is an ordinal 1267: 1264: 1261: 1258: 1255: 1252: 1249: 1219: 1216: 1213: 1210: 1207: 1204: 1201: 1198: 1195: 1192: 1187: 1184: 1180: 1145: 1142: 1138: 1134: 1131: 1106: 1105: 1102: 1099: 1096: 1093: 1089: 1088: 1085: 1082: 1079: 1076: 1072: 1071: 1068: 1065: 1062: 1059: 1055: 1054: 1051: 1048: 1045: 1042: 1038: 1037: 1034: 1031: 1028: 1025: 1005: 1002: 971: 968: 890:if there is a 824: 821: 819: 816: 801: 786: 777:epsilon nought 772: 712: 690: 624:well-orderings 585:natural number 580: 577: 513: 489: 486: 483: 459: 456: 453: 431: 402:natural number 375:ordinal number 352: 348: 327: 305: 302: 299: 296: 293: 290: 287: 284: 281: 278: 275: 256: 255: 238: 237: 192: 190: 183: 176: 175: 90: 88: 81: 76: 50: 49: 47: 40: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 7700: 7689: 7686: 7684: 7681: 7680: 7678: 7663: 7662:Ernst Zermelo 7660: 7658: 7655: 7653: 7650: 7648: 7647:Willard Quine 7645: 7643: 7640: 7638: 7635: 7633: 7630: 7628: 7625: 7623: 7620: 7618: 7615: 7613: 7610: 7608: 7605: 7604: 7602: 7600: 7599:Set theorists 7596: 7590: 7587: 7585: 7582: 7580: 7577: 7576: 7574: 7568: 7566: 7563: 7562: 7559: 7551: 7548: 7546: 7545:Kripke–Platek 7543: 7539: 7536: 7535: 7534: 7531: 7530: 7529: 7526: 7522: 7519: 7518: 7517: 7516: 7512: 7508: 7505: 7504: 7503: 7500: 7499: 7496: 7493: 7491: 7488: 7486: 7483: 7481: 7478: 7477: 7475: 7471: 7465: 7462: 7460: 7457: 7455: 7452: 7450: 7448: 7443: 7441: 7438: 7436: 7433: 7430: 7426: 7423: 7421: 7418: 7414: 7411: 7409: 7406: 7404: 7401: 7400: 7399: 7396: 7393: 7389: 7386: 7384: 7381: 7379: 7376: 7374: 7371: 7370: 7368: 7365: 7361: 7355: 7352: 7350: 7347: 7345: 7342: 7340: 7337: 7335: 7332: 7330: 7327: 7325: 7322: 7318: 7315: 7313: 7310: 7309: 7308: 7305: 7303: 7300: 7298: 7295: 7293: 7290: 7288: 7285: 7282: 7278: 7275: 7273: 7270: 7268: 7265: 7264: 7262: 7256: 7253: 7252: 7249: 7243: 7240: 7238: 7235: 7233: 7230: 7228: 7225: 7223: 7220: 7218: 7215: 7213: 7210: 7207: 7204: 7202: 7199: 7198: 7196: 7194: 7190: 7182: 7181:specification 7179: 7177: 7174: 7173: 7172: 7169: 7168: 7165: 7162: 7160: 7157: 7155: 7152: 7150: 7147: 7145: 7142: 7140: 7137: 7135: 7132: 7130: 7127: 7123: 7120: 7119: 7118: 7115: 7113: 7110: 7106: 7103: 7101: 7098: 7096: 7093: 7092: 7091: 7088: 7086: 7083: 7082: 7080: 7078: 7074: 7069: 7059: 7056: 7055: 7053: 7049: 7045: 7038: 7033: 7031: 7026: 7024: 7019: 7018: 7015: 7003: 6995: 6993: 6990: 6989: 6986: 6980: 6977: 6975: 6972: 6969: 6965: 6959: 6955: 6950: 6948: 6945: 6943: 6942:Fuzzy numbers 6940: 6938: 6935: 6934: 6932: 6928: 6922: 6919: 6917: 6914: 6912: 6909: 6907: 6904: 6902: 6899: 6897: 6894: 6892: 6889: 6885: 6882: 6881: 6880: 6877: 6875: 6872: 6870: 6867: 6866: 6864: 6862: 6858: 6854: 6846: 6843: 6841: 6838: 6836: 6833: 6832: 6831: 6827: 6824: 6822: 6819: 6817: 6814: 6789: 6786: 6784: 6781: 6779: 6776: 6774: 6771: 6769: 6766: 6765: 6763: 6761: 6756: 6750: 6747: 6745: 6744:Biquaternions 6742: 6740: 6737: 6711: 6708: 6706: 6703: 6701: 6698: 6673: 6672: 6670: 6664: 6635: 6632: 6607: 6604: 6579: 6576: 6551: 6547: 6544: 6543: 6541: 6539: 6535: 6529: 6526: 6522: 6519: 6518: 6517: 6514: 6512: 6509: 6507: 6504: 6502: 6499: 6472: 6469: 6467: 6464: 6439: 6436: 6434: 6431: 6406: 6403: 6378: 6375: 6350: 6347: 6346: 6344: 6342: 6337: 6332: 6325: 6320: 6318: 6313: 6311: 6306: 6305: 6302: 6290: 6286: 6283: 6272: 6269: 6258: 6255: 6253: 6249: 6243: 6237: 6233: 6229: 6226: 6222: 6214: 6210: 6207: 6201: 6197: 6193: 6190: 6187: 6183: 6180: 6177: 6173: 6170: 6167: 6163: 6160: 6154: 6151: 6146: 6142: 6139: 6137: 6133: 6130: 6129: 6126: 6122: 6115: 6110: 6108: 6103: 6101: 6096: 6095: 6092: 6085: 6084:lecture notes 6082: 6079:Chapter 4 of 6078: 6075: 6072: 6069: 6067: 6064: 6060: 6056: 6055: 6050: 6046: 6045: 6041: 6035: 6030: 6028:0-674-32449-8 6024: 6020: 6016: 6012: 6008: 5999:on 2014-12-18 5998: 5994: 5990: 5986: 5982: 5978: 5976:0-8126-9344-2 5972: 5968: 5961: 5957: 5953: 5949: 5947:0-486-61630-4 5943: 5938: 5937: 5931: 5927: 5922: 5921: 5915: 5911: 5905: 5901: 5900: 5894: 5890: 5888:0-486-42079-5 5884: 5880: 5876: 5871: 5867: 5861: 5857: 5850: 5846: 5842: 5838: 5836:0-521-24509-5 5832: 5827: 5826: 5819: 5815: 5813:0-19-853283-0 5809: 5805: 5800: 5796: 5790: 5786: 5782: 5777: 5773: 5769: 5765: 5761: 5760: 5752: 5747: 5743: 5741:0-19-850536-1 5737: 5733: 5729: 5724: 5720: 5718:0-674-34871-0 5714: 5710: 5706: 5702: 5698: 5695: 5689: 5685: 5681: 5677: 5673: 5669: 5666: 5662: 5658: 5654: 5650: 5646: 5642: 5637: 5634: 5629: 5625: 5621: 5617: 5613: 5609: 5608: 5603: 5599: 5598:Cantor, Georg 5595: 5594: 5589: 5565: 5550: 5545: 5541: 5536: 5516: 5513: 5510: 5479: 5464: 5460: 5440: 5437: 5434: 5419: 5415: 5395: 5378: 5375: 5371: 5366: 5363: 5359: 5354: 5351: 5347: 5342: 5339: 5335: 5330: 5327: 5324:, p. 111 5323: 5318: 5315: 5312:, p. 271 5311: 5307: 5302: 5299: 5296:, p. 207 5295: 5291: 5286: 5283: 5280:, p. 269 5279: 5274: 5271: 5267: 5263: 5258: 5255: 5251: 5245: 5242: 5238: 5233: 5230: 5227: 5222: 5220: 5216: 5205: 5201: 5194: 5191: 5186: 5182: 5178: 5174: 5170: 5166: 5159: 5156: 5152: 5148: 5142: 5139: 5134: 5128: 5124: 5123: 5115: 5112: 5100: 5096: 5090: 5087: 5080: 5075: 5072: 5070: 5069:Ordinal space 5067: 5065: 5062: 5060: 5057: 5055: 5052: 5051: 5047: 5045: 5043: 5039: 5035: 5034:aleph numbers 5015: 5000: 4995: 4991: 4970: 4967: 4964: 4949: 4945: 4940: 4937: 4933: 4928: 4924: 4920: 4916: 4910: 4904: 4898: 4891: 4889: 4883: 4878: 4874: 4867: 4855: 4847: 4840: 4835: 4831: 4826: 4822: 4816: 4812: 4807: 4802: 4798: 4793: 4790: 4786: 4779: 4774: 4770: 4765: 4764: 4762: 4760: 4753: 4747: 4742: 4738: 4730: 4727: 4723: 4719: 4715: 4709: 4704: 4699: 4697: 4690: 4683: 4677: 4672: 4671:discrete sets 4667: 4663: 4658: 4653: 4646: 4642: 4636: 4632: 4628: 4624: 4620: 4616: 4612: 4605: 4597: 4593: 4579: 4574: 4570: 4563: 4561:is countable; 4560: 4553: 4547: 4542: 4541: 4539: 4536: 4532: 4528: 4524: 4520: 4516: 4511: 4505: 4501: 4497: 4492: 4488: 4484: 4480: 4476: 4472: 4465: 4461: 4453: 4451: 4449: 4444: 4442: 4438: 4434: 4430: 4424: 4416: 4414: 4412: 4408: 4390: 4386: 4377: 4347: 4343: 4332: 4314: 4310: 4302:(despite the 4277: 4273: 4264: 4246: 4243: 4238: 4234: 4211: 4187: 4183: 4160: 4157: 4152: 4148: 4127: 4101: 4097: 4092: 4065: 4061: 4036: 4012: 4009: 4004: 4000: 3985: 3979: 3971: 3969: 3967: 3963: 3959: 3955: 3950: 3928: 3924: 3899: 3895: 3870: 3866: 3841: 3817: 3814: 3811: 3807: 3796: 3780: 3769: 3753: 3749: 3740: 3736: 3718: 3696: 3687: 3671: 3661: 3645: 3625: 3617: 3609: 3607: 3591: 3587: 3578: 3560: 3556: 3533: 3529: 3504: 3475: 3471: 3448: 3444: 3421: 3417: 3396: 3393: 3388: 3384: 3361: 3334: 3329: 3302: 3273: 3238: 3203: 3172: 3168: 3156: 3140: 3088: 3079: 3077: 3076:Scott's trick 3072: 3067: 3062: 3050: 3042: 3037: 3035: 3033: 3032: 3026: 3024: 3019: 3012: 3005: 2997: 2995: 2981: 2959: 2950: 2934: 2926: 2923:is less than 2910: 2890: 2870: 2850: 2830: 2810: 2790: 2781: 2777: 2775: 2771: 2753: 2749: 2740: 2736: 2731: 2729: 2725: 2709: 2706: 2703: 2680: 2674: 2654: 2631: 2625: 2605: 2585: 2577: 2561: 2558: 2555: 2535: 2515: 2508:, there is a 2493: 2483: 2479: 2463: 2451: 2449: 2447: 2427: 2423: 2400: 2397: 2392: 2388: 2367: 2347: 2323: 2319: 2296: 2288: 2287: 2282: 2266: 2263: 2260: 2240: 2231: 2215: 2212: 2209: 2187: 2167: 2164: 2161: 2141: 2121: 2112: 2094: 2070: 2048: 2036: 2034: 2031: 2027: 2023: 2019: 2015: 2011: 2007: 2003: 1997: 1991: 1990: 1989: 1983: 1982: 1981: 1978: 1963: 1957: 1954: 1951: 1941: 1937: 1925: 1909: 1906: 1903: 1900: 1878: 1874: 1870: 1865: 1861: 1852: 1836: 1813: 1810: 1807: 1797: 1793: 1780: 1778: 1774: 1770: 1769: 1768:limit ordinal 1764: 1759: 1742: 1736: 1733: 1725: 1724: 1714: 1712: 1708: 1703: 1697: 1691: 1687: 1683: 1680:is empty. So 1677: 1667: 1663: 1659: 1651: 1645: 1639: 1635: 1630: 1628: 1624: 1616: 1612: 1608: 1604: 1600: 1592: 1590: 1584: 1580: 1576: 1568: 1564: 1556: 1555: 1554: 1552: 1546: 1538: 1536: 1534: 1530: 1526: 1522: 1518: 1514: 1510: 1506: 1498: 1496: 1494: 1490: 1482: 1479: 1476: 1472: 1469: 1466: 1462: 1458: 1454: 1451: 1448: 1445: 1444: 1443: 1441: 1437: 1429: 1427: 1425: 1421: 1416: 1414: 1410: 1405: 1403: 1399: 1395: 1391: 1386: 1384: 1380: 1376: 1372: 1368: 1364: 1360: 1359:proper subset 1356: 1352: 1348: 1344: 1340: 1335: 1333: 1329: 1324: 1306: 1302: 1298: 1294: 1291: 1287: 1283: 1282: 1281: 1262: 1259: 1256: 1250: 1247: 1237: 1233: 1214: 1211: 1208: 1205: 1202: 1199: 1196: 1190: 1185: 1182: 1178: 1161: 1143: 1140: 1136: 1129: 1116: 1113: 1103: 1100: 1097: 1094: 1090: 1086: 1083: 1080: 1077: 1073: 1069: 1066: 1063: 1060: 1056: 1052: 1049: 1046: 1043: 1039: 1035: 1032: 1029: 1026: 1022: 1015: 1011: 1003: 1001: 999: 995: 991: 987: 983: 979: 978: 969: 967: 965: 964: 959: 955: 951: 947: 942: 940: 936: 932: 928: 924: 920: 916: 912: 908: 904: 900: 896: 893: 889: 885: 881: 877: 873: 869: 865: 864:partial order 860: 858: 854: 850: 844: 842: 838: 834: 830: 822: 817: 815: 789: 782: 778: 770: 766: 762: 758: 753: 745: 741: 737: 733: 728: 724: 710: 688: 677: 675: 671: 667: 663: 659: 656:each ordinal 655: 650: 648: 644: 640: 636: 632: 627: 625: 621: 617: 612: 610: 606: 605:linear orders 602: 598: 594: 590: 586: 578: 576: 574: 570: 566: 561: 559: 555: 551: 546: 544: 540: 536: 532: 527: 511: 487: 484: 481: 457: 454: 451: 429: 421: 417: 414: 411: 407: 406:infinite sets 403: 398: 396: 395:infinite sets 392: 384: 380: 376: 372: 350: 346: 325: 300: 297: 294: 288: 285: 279: 273: 262: 252: 249: 234: 231: 223: 213: 209: 203: 202: 196: 191: 182: 181: 172: 169: 161: 150: 147: 143: 140: 136: 133: 129: 126: 122: 119: –  118: 114: 113:Find sources: 107: 103: 97: 96: 91:This article 89: 85: 80: 79: 74: 72: 65: 64: 59: 58: 53: 48: 39: 38: 33: 19: 7612:Georg Cantor 7607:Paul Bernays 7538:Morse–Kelley 7513: 7446: 7445:Subset  7392:hereditarily 7354:Venn diagram 7338: 7312:ordered pair 7227:Intersection 7171:Axiom schema 6963: 6953: 6905: 6768:Dual numbers 6760:hypercomplex 6550:Real numbers 6288: 6241: 6235: 6231: 6220: 6212: 6199: 6195: 6185: 6175: 6165: 6144: 6135: 6052: 6018: 6001:, retrieved 5997:the original 5992: 5966: 5935: 5919: 5898: 5874: 5855: 5824: 5803: 5780: 5763: 5757: 5727: 5704: 5683: 5676:Guy, Richard 5644: 5632: 5611: 5605: 5548: 5543: 5539: 5462: 5458: 5457:. Since the 5417: 5377: 5365: 5358:Hallett 1986 5353: 5341: 5329: 5317: 5301: 5285: 5273: 5257: 5244: 5232: 5207:. Retrieved 5203: 5193: 5168: 5164: 5158: 5141: 5121: 5114: 5103:. Retrieved 5101:. 2017-05-21 5098: 5089: 5041: 5037: 5036:. Also, the 4998: 4993: 4989: 4947: 4943: 4941: 4935: 4931: 4926: 4922: 4918: 4914: 4908: 4902: 4896: 4892: 4881: 4876: 4869: 4862: 4860: 4850: 4842: 4838: 4829: 4824: 4820: 4814: 4810: 4805: 4800: 4796: 4788: 4781: 4777: 4772: 4768: 4755: 4745: 4740: 4733: 4731: 4725: 4722:number class 4721: 4717: 4713: 4707: 4702: 4700: 4692: 4685: 4681: 4675: 4665: 4661: 4656: 4651: 4644: 4640: 4634: 4630: 4626: 4622: 4618: 4614: 4607: 4600: 4588: 4586: 4577: 4572: 4565: 4555: 4551: 4545: 4537: 4530: 4526: 4522: 4518: 4514: 4509: 4503: 4499: 4495: 4490: 4486: 4482: 4478: 4475:limit points 4467: 4463: 4460:derived sets 4457: 4445: 4426: 3981: 3961: 3957: 3953: 3951: 3797: 3770: 3738: 3734: 3688: 3613: 3576: 3157: 3080: 3060: 3057:ω + 1 > ω 3046: 3029: 3027: 3020: 3007: 2948: 2924: 2782: 2778: 2738: 2732: 2575: 2481: 2477: 2455: 2360:-th ordinal 2284: 2232: 2110: 2040: 2029: 2025: 2021: 2017: 2013: 2009: 2005: 2001: 1998: 1995: 1987: 1979: 1923: 1850: 1781: 1766: 1762: 1760: 1721: 1718: 1706: 1701: 1695: 1689: 1685: 1681: 1675: 1665: 1661: 1657: 1649: 1643: 1637: 1633: 1631: 1626: 1622: 1614: 1610: 1606: 1602: 1596: 1582: 1578: 1574: 1566: 1562: 1561:That is, if 1560: 1551:well-ordered 1548: 1520: 1516: 1512: 1508: 1504: 1502: 1486: 1480: 1470: 1464: 1461:trichotomous 1452: 1446: 1439: 1433: 1417: 1408: 1406: 1393: 1389: 1387: 1378: 1374: 1370: 1366: 1362: 1354: 1350: 1346: 1342: 1338: 1336: 1325: 1321:{0, 1, 2, 3} 1310: 1304: 1300: 1292: 1285: 1280:. Formally: 1235: 1117: 1111: 1109: 975: 973: 961: 943: 938: 934: 930: 927:well-ordered 926: 918: 914: 910: 906: 902: 898: 894: 883: 879: 871: 867: 861: 852: 845: 829:well-ordered 826: 768: 764: 760: 756: 751: 749: 743: 739: 735: 731: 678: 673: 669: 661: 657: 653: 651: 649:of the set. 646: 631:well-ordered 628: 613: 600: 592: 582: 569:derived sets 565:Georg Cantor 562: 547: 528: 413:greek letter 399: 378: 374: 368: 244: 226: 217: 198: 164: 155: 145: 138: 131: 124: 112: 100:Please help 95:verification 92: 68: 61: 55: 54:Please help 51: 7637:Thomas Jech 7480:Alternative 7459:Uncountable 7413:Ultrafilter 7272:Cardinality 7176:replacement 7117:Determinacy 6930:Other types 6749:Bioctonions 6606:Quaternions 5346:Dauben 1979 5322:Dauben 1979 5171:(1): 1–25, 4834:perfect set 4659:, the sets 4625:) ∪ ··· ∪ ( 2925:or equal to 2883:cofinal in 2724:topological 2413:is written 1636:by letting 1158:defines an 990:type theory 874:, then the 818:Definitions 781:uncountable 620:cardinality 558:commutative 391:enumeration 220:August 2022 212:introducing 158:August 2022 7677:Categories 7632:Kurt Gödel 7617:Paul Cohen 7454:Transitive 7222:Identities 7206:Complement 7193:Operations 7154:Regularity 7122:projective 7085:Adjunction 7044:Set theory 6884:Projective 6857:Infinities 6081:Don Monk's 6003:2013-09-15 5899:Set Theory 5785:Birkhäuser 5590:References 5250:Ewald 1996 5209:2020-08-12 5105:2021-08-31 4879:such that 4849:, the set 4743:such that 4705:such that 4633:) ∪ ··· ∪ 4575:such that 4173:is called 3966:idempotent 3662:subset of 3616:cofinality 3610:Cofinality 3409:). Also, 2548:such that 2380:such that 1851:increasing 1698:(0)} = {0} 1493:urelements 1098:{0,1,2,3} 1008:See also: 963:order type 935:order type 654:identifies 647:order type 609:isomorphic 539:isomorphic 531:well-order 371:set theory 195:references 128:newspapers 57:improve it 7565:Paradoxes 7485:Axiomatic 7464:Universal 7440:Singleton 7435:Recursive 7378:Countable 7373:Amorphous 7232:Power set 7149:Power set 7100:dependent 7095:countable 6968:solenoids 6788:Sedenions 6634:Octonions 6059:EMS Press 5766:: 33–42, 5678:(2012) , 5661:121665994 5628:121930608 5566:α 5562:ℵ 5514:− 5507:ℵ 5480:ω 5476:ℵ 5438:− 5431:ℵ 5392:ℵ 5370:Tait 1997 5237:Levy 1979 5151:Jech 2003 5147:Levy 1979 5016:α 5012:ℵ 4968:− 4961:ℵ 4489:times to 4387:ε 4344:ω 4311:ω 4274:ω 4247:α 4239:α 4235:ε 4212:ι 4188:ι 4184:ε 4161:α 4153:α 4149:ω 4128:ι 4102:ω 4098:ω 4093:ω 4066:ω 4062:ω 4037:ω 4013:α 4005:α 4001:ω 3929:ω 3925:ω 3896:ω 3867:ω 3842:ω 3812:α 3808:ω 3781:ω 3754:ω 3750:ω 3719:α 3697:δ 3672:α 3646:δ 3626:α 3588:ω 3557:ω 3534:ω 3530:ω 3501:ℵ 3472:ω 3445:ω 3418:ω 3397:ω 3385:ω 3358:ℵ 3326:ℵ 3299:ℵ 3270:ℵ 3235:ℵ 3204:α 3200:ℵ 3173:α 3169:ω 3114:∅ 3053:ω = 1 + ω 2982:α 2960:α 2935:α 2911:α 2891:α 2871:α 2851:α 2831:α 2811:α 2791:α 2770:cardinals 2754:⋅ 2750:ε 2710:δ 2704:γ 2681:γ 2655:δ 2632:δ 2606:δ 2562:β 2556:α 2516:β 2494:α 2478:unbounded 2428:γ 2424:ε 2401:α 2393:α 2389:ω 2368:α 2348:γ 2324:γ 2320:ω 2297:γ 2267:γ 2264:⋅ 2261:ω 2241:γ 2216:γ 2210:β 2188:β 2168:γ 2162:β 2142:γ 2122:γ 2095:α 2071:α 2049:α 2008:(0), and 1958:γ 1952:ι 1942:ι 1938:α 1907:ρ 1901:ι 1893:whenever 1879:ρ 1875:α 1866:ι 1862:α 1837:γ 1817:⟩ 1814:γ 1808:ι 1798:ι 1794:α 1790:⟨ 1743:α 1737:∪ 1734:α 1702:and so on 1531:, a.k.a. 1263:λ 1248:λ 1206:∣ 1200:∈ 1133:↦ 892:bijection 886:,≤') are 882:,≤) and ( 800:Ω 711:ω 689:ω 512:ω 482:ω 452:ω 430:ω 416:variables 351:ω 347:ω 301:α 289:ω 280:α 63:talk page 7569:Problems 7473:Theories 7449:Superset 7425:Infinite 7254:Concepts 7134:Infinity 7051:Overview 6377:Integers 6339:Sets of 5987:(1923), 5958:(1997), 5932:(1960), 5847:(2012), 5703:(1979), 5600:(1883), 5054:Counting 5048:See also 4828:. Thus, 4808:. Since 4794:Case 2: 4766:Case 1: 4529:⊇ ··· ⊇ 4525:⊇ ··· ⊇ 4498:⊇ ··· ⊇ 4446:See the 4441:cofinite 4437:discrete 3376:whereas 3049:cardinal 2994:itself. 2456:A class 1670:β < 0 1654:β < α 1652:(β) for 1619:β < α 1587:β < α 1571:β < α 1525:sequence 1398:supremum 1297:strictly 1162:between 1081:{0,1,2} 1070:{∅,{∅}} 952:for the 941:,<). 763:, where 601:position 318:. Since 7507:General 7502:Zermelo 7408:subbase 7390: ( 7329:Forcing 7307:Element 7279: ( 7257:Methods 7144:Pairing 6958:numbers 6790: ( 6636: ( 6608: ( 6580: ( 6552: ( 6473: ( 6471:Periods 6440: ( 6407: ( 6379: ( 6351: ( 6333:systems 6155: Γ 6061:, 2001 5580:⁠ 5553:⁠ 5531:⁠ 5498:⁠ 5494:⁠ 5467:⁠ 5455:⁠ 5422:⁠ 5410:⁠ 5383:⁠ 5185:0532548 5030:⁠ 5003:⁠ 4985:⁠ 4952:⁠ 4684:, then 4554:, then 4454:History 4372:⁠ 4335:⁠ 4259:⁠ 4226:⁠ 4202:⁠ 4175:⁠ 4118:⁠ 4084:⁠ 4080:⁠ 4053:⁠ 4049:⁠ 4029:⁠ 4025:⁠ 3992:⁠ 3945:, and ω 3943:⁠ 3916:⁠ 3885:⁠ 3858:⁠ 3854:⁠ 3834:⁠ 3793:⁠ 3773:⁠ 3737:(where 3731:⁠ 3711:⁠ 3684:⁠ 3664:⁠ 3660:cofinal 3519:⁠ 3492:⁠ 3288:⁠ 3261:⁠ 3253:⁠ 3226:⁠ 3224:= ω is 3218:⁠ 3191:⁠ 3187:⁠ 3160:⁠ 3153:⁠ 3133:⁠ 3129:⁠ 3103:⁠ 3031:nimbers 2972:⁠ 2952:⁠ 2774:regular 2506:⁠ 2486:⁠ 2482:cofinal 2442:⁠ 2415:⁠ 2338:⁠ 2311:⁠ 2228:⁠ 2202:⁠ 2111:classes 2107:⁠ 2087:⁠ 2083:⁠ 2063:⁠ 1853:, i.e. 1709:(α) = α 1573:, then 1424:maximum 1278:⁠ 1240:⁠ 853:similar 812:⁠ 792:⁠ 701:⁠ 681:⁠ 639:ordered 524:⁠ 504:⁠ 500:⁠ 474:⁠ 470:⁠ 444:⁠ 379:ordinal 316:⁠ 266:⁠ 208:improve 142:scholar 7398:Filter 7388:Finite 7324:Family 7267:Almost 7105:global 7090:Choice 7077:Axioms 6758:Other 6331:Number 6287:  6230:  6211:  6194:  6184:  6174:  6164:  6143:  6134:  6025:  5973:  5944:  5906:  5885:  5862:  5833:  5810:  5791:  5738:  5715:  5690:  5659:  5626:  5547:, the 5183:  5129:  4997:, the 4921:, the 4754:. Let 4649:since 4638:. For 4598:sets: 4533:⊇ ···. 4506:⊇ ···, 3887:, and 2576:closed 1533:string 1420:finite 1409:strict 1317:{0, 1} 1284:A set 1064:{0,1} 876:posets 738:where 541:to an 533:. The 197:, but 144:  137:  130:  123:  115:  7490:Naive 7420:Fuzzy 7383:Empty 7366:types 7317:tuple 7287:Class 7281:large 7242:Union 7159:Union 6966:-adic 6956:-adic 6713:Over 6674:Over 6668:types 6666:Split 6074:GPL'd 5963:(PDF) 5852:(PDF) 5754:(PDF) 5657:S2CID 5624:S2CID 5081:Notes 4987:. If 4934:< 4832:is a 4787:, so 4643:< 4617:) ∪ ( 4594:into 4462:. If 3101:with 3018:= ω. 2739:clubs 2647:(the 2480:, or 2279:(see 1924:limit 1782:When 1773:limit 1529:tuple 1455:is a 1373:, or 1357:is a 929:set ( 905:) ≤' 827:In a 595:of a 377:, or 373:, an 149:JSTOR 135:books 7403:base 7002:List 6859:and 6023:ISBN 5971:ISBN 5942:ISBN 5904:ISBN 5883:ISBN 5860:ISBN 5831:ISBN 5808:ISBN 5789:ISBN 5736:ISBN 5713:ISBN 5688:ISBN 5149:and 5127:ISBN 4911:+ 1) 4899:+ 1) 3614:The 3394:> 3055:and 2707:< 2696:for 2559:< 2213:< 2165:< 1955:< 1922:its 1904:< 1871:< 1811:< 1341:and 1212:< 1183:< 1141:< 1053:{∅} 1047:{0} 1012:and 937:of ( 767:and 742:and 593:size 338:has 121:news 7364:Set 6203:Ω+1 6188:(Ω) 6178:(Ω) 6168:(Ω) 5768:doi 5649:doi 5616:doi 5173:doi 4942:If 4884:= ∅ 4789:P' 4748:= ∅ 4710:= ∅ 4678:= ∅ 4606:= ( 4580:= ∅ 4548:= ∅ 4543:If 4496:P' 4477:of 3947:ω·2 3606:). 3078:). 2528:in 2448:". 1779:). 1763:not 1579:all 1463:on 1361:of 1295:is 1030:{} 884:S' 872:S' 859:). 790:or 752:all 597:set 393:to 369:In 104:by 7679:: 6548:: 6245:+1 6218:(Ω 6057:, 6051:, 5991:, 5881:, 5877:, 5787:, 5764:22 5762:, 5756:, 5734:, 5730:, 5711:, 5707:, 5682:, 5674:; 5655:, 5643:, 5622:, 5612:21 5610:, 5604:, 5542:≥ 5533:. 5412:. 5218:^ 5202:. 5181:MR 5179:, 5169:30 5167:, 5097:. 4992:≥ 4890:. 4841:⊆ 4823:= 4813:⊆ 4799:\ 4771:\ 4664:\ 4629:\ 4621:\ 4613:\ 4521:⊇ 4517:⊇ 4502:⊇ 4265:, 4082:, 4051:, 3968:. 3856:, 3795:. 3349:= 2949:in 2230:. 1589:. 1535:. 1442:: 1426:. 1404:. 1345:, 1323:. 1191::= 1122:, 1092:4 1075:3 1058:2 1041:1 1036:∅ 1024:0 982:ZF 917:≤ 814:. 658:as 611:. 583:A 575:. 560:. 526:. 472:, 397:. 66:. 7447:· 7431:) 7427:( 7394:) 7283:) 7036:e 7029:t 7022:v 6970:) 6964:p 6960:( 6954:p 6828:/ 6812:) 6799:S 6735:: 6722:C 6696:: 6683:R 6658:) 6645:O 6630:) 6617:H 6602:) 6589:C 6574:) 6561:R 6497:) 6483:P 6462:) 6449:A 6429:) 6416:Q 6401:) 6388:Z 6373:) 6360:N 6323:e 6316:t 6309:v 6289:Ω 6278:1 6264:1 6247:) 6242:ω 6239:Ω 6236:ε 6234:( 6232:ψ 6224:) 6221:ω 6216:0 6213:ψ 6205:) 6200:ε 6198:( 6196:ψ 6186:θ 6176:θ 6166:θ 6157:0 6148:0 6145:ε 6136:ω 6113:e 6106:t 6099:v 6036:. 5980:. 5951:. 5913:. 5892:. 5869:. 5840:. 5817:. 5798:. 5775:. 5770:: 5745:. 5722:. 5667:. 5651:: 5635:. 5618:: 5582:. 5549:α 5544:ω 5540:α 5517:1 5511:n 5463:n 5459:ω 5441:1 5435:n 5418:n 5396:0 5212:. 5175:: 5153:. 5135:. 5108:. 5042:α 5038:α 4999:α 4994:ω 4990:α 4971:1 4965:n 4948:n 4944:n 4936:α 4932:β 4927:β 4923:α 4919:α 4915:α 4909:α 4907:( 4903:α 4897:α 4895:( 4882:P 4877:α 4872:′ 4870:P 4865:′ 4863:P 4853:′ 4851:P 4845:′ 4843:P 4839:P 4830:P 4825:P 4821:P 4815:P 4811:P 4806:β 4801:P 4797:P 4784:′ 4782:P 4778:β 4773:P 4769:P 4758:′ 4756:P 4746:P 4741:α 4736:′ 4734:P 4726:α 4718:ω 4714:α 4708:P 4703:α 4695:′ 4693:P 4688:′ 4686:P 4682:α 4676:P 4666:P 4662:P 4657:P 4652:P 4647:: 4645:α 4641:β 4635:P 4631:P 4627:P 4623:P 4619:P 4615:P 4610:′ 4608:P 4603:′ 4601:P 4591:′ 4589:P 4582:. 4578:P 4573:α 4568:′ 4566:P 4558:′ 4556:P 4552:α 4546:P 4531:P 4527:P 4523:P 4519:P 4515:P 4510:P 4504:P 4500:P 4491:P 4487:n 4483:P 4479:P 4470:′ 4468:P 4464:P 4391:0 4357:K 4354:C 4348:1 4315:1 4287:K 4284:C 4278:1 4244:= 4158:= 4010:= 3988:0 3962:α 3958:α 3954:α 3900:2 3871:1 3818:1 3815:+ 3739:m 3735:m 3592:n 3577:n 3561:n 3505:1 3476:2 3449:1 3422:1 3389:2 3362:0 3335:2 3330:0 3303:0 3274:0 3257:0 3239:0 3222:0 3141:1 3117:} 3111:{ 3089:0 3016:0 3014:ε 2684:) 2678:( 2675:F 2635:) 2629:( 2626:F 2586:F 2536:C 2464:C 2398:= 2030:F 2026:F 2022:F 2018:F 2014:F 2010:F 2006:F 2002:F 1964:, 1961:} 1948:| 1934:{ 1910:, 1804:| 1746:} 1740:{ 1707:F 1696:F 1694:{ 1690:F 1686:F 1682:F 1676:F 1674:{ 1666:F 1662:F 1658:F 1650:F 1644:F 1642:{ 1638:F 1634:F 1627:F 1623:F 1615:F 1611:F 1607:F 1603:F 1583:P 1575:P 1567:P 1563:P 1513:X 1509:X 1505:X 1481:x 1471:x 1467:, 1465:x 1453:x 1447:x 1440:x 1394:S 1390:S 1379:S 1375:T 1371:T 1367:S 1363:T 1355:S 1351:T 1347:S 1343:T 1339:S 1307:. 1305:S 1301:S 1293:S 1286:S 1266:) 1260:, 1257:0 1254:[ 1251:= 1218:} 1215:a 1209:x 1203:T 1197:x 1194:{ 1186:a 1179:T 1168:T 1164:T 1144:a 1137:T 1130:a 1120:T 1101:= 1095:= 1084:= 1078:= 1067:= 1061:= 1050:= 1044:= 1033:= 1027:= 939:S 931:S 919:b 915:a 911:b 909:( 907:f 903:a 901:( 899:f 895:f 880:S 878:( 868:S 787:1 785:ω 775:( 773:0 769:n 765:m 761:n 759:+ 757:m 744:n 740:m 736:n 734:+ 732:m 674:S 670:S 662:S 589:0 488:2 485:+ 458:1 455:+ 387:n 326:f 304:) 298:+ 295:1 292:( 286:= 283:) 277:( 274:f 251:) 245:( 233:) 227:( 222:) 218:( 204:. 171:) 165:( 160:) 156:( 146:· 139:· 132:· 125:· 98:. 73:) 69:( 34:. 20:)

Index

Transfinite sequence
Ordinal numeral
improve it
talk page
Learn how and when to remove these messages

verification
improve this article
adding citations to reliable sources
"Ordinal number"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
references
inline citations
improve
introducing
Learn how and when to remove this message
Learn how and when to remove this message

set theory
ordinal numerals
enumeration
infinite sets
natural number
infinite sets
linearly ordered

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.