Knowledge (XXG)

Trace (linear algebra)

Source 📝

1358: 2909: 8741: 2345: 3630: 1122: 2599: 2705: 8429: 36: 6287: 987: 3469: 2446: 681: 2193: 2012: 1353:{\displaystyle \operatorname {tr} \left(\mathbf {A} ^{\mathsf {T}}\mathbf {B} \right)=\operatorname {tr} \left(\mathbf {A} \mathbf {B} ^{\mathsf {T}}\right)=\operatorname {tr} \left(\mathbf {B} ^{\mathsf {T}}\mathbf {A} \right)=\operatorname {tr} \left(\mathbf {B} \mathbf {A} ^{\mathsf {T}}\right)=\sum _{i=1}^{m}\sum _{j=1}^{n}a_{ij}b_{ij}\;.} 2904:{\displaystyle {\begin{aligned}\operatorname {tr} (\mathbf {A} +\mathbf {B} )&=\operatorname {tr} (\mathbf {A} )+\operatorname {tr} (\mathbf {B} ),\\\operatorname {tr} (c\mathbf {A} )&=c\operatorname {tr} (\mathbf {A} ),\\\operatorname {tr} (\mathbf {A} \mathbf {B} )&=\operatorname {tr} (\mathbf {B} \mathbf {A} ),\end{aligned}}} 6128: 847: 8736:{\displaystyle \operatorname {tr} (\mathbf {A} \mathbf {B} )=\sum _{i=1}^{m}\left(\mathbf {A} \mathbf {B} \right)_{ii}=\sum _{i=1}^{m}\sum _{j=1}^{n}a_{ij}b_{ji}=\sum _{j=1}^{n}\sum _{i=1}^{m}b_{ji}a_{ij}=\sum _{j=1}^{n}\left(\mathbf {B} \mathbf {A} \right)_{jj}=\operatorname {tr} (\mathbf {B} \mathbf {A} ).} 466: 7163: 9314: 1670: 8034: 2340:{\displaystyle \operatorname {tr} (\mathbf {A} \mathbf {B} \mathbf {C} \mathbf {D} )=\operatorname {tr} (\mathbf {B} \mathbf {C} \mathbf {D} \mathbf {A} )=\operatorname {tr} (\mathbf {C} \mathbf {D} \mathbf {A} \mathbf {B} )=\operatorname {tr} (\mathbf {D} \mathbf {A} \mathbf {B} \mathbf {C} ).} 7744: 3625:{\displaystyle {\begin{aligned}\mathbf {P} _{\mathbf {X} }&=\mathbf {X} \left(\mathbf {X} ^{\mathsf {T}}\mathbf {X} \right)^{-1}\mathbf {X} ^{\mathsf {T}}\\\Longrightarrow \operatorname {tr} \left(\mathbf {P} _{\mathbf {X} }\right)&=\operatorname {rank} (\mathbf {X} ).\end{aligned}}} 1880: 2594:{\displaystyle \operatorname {tr} (\mathbf {A} \mathbf {B} \mathbf {C} )=\operatorname {tr} \left(\left(\mathbf {A} \mathbf {B} \mathbf {C} \right)^{\mathsf {T}}\right)=\operatorname {tr} (\mathbf {C} \mathbf {B} \mathbf {A} )=\operatorname {tr} (\mathbf {A} \mathbf {C} \mathbf {B} ),} 8861: 2693: 2432: 3789: 2170: 4308: 5831: 1081: 7037: 5431: 1817: 6282:{\displaystyle B(\mathbf {X} ,\mathbf {Y} )=\operatorname {tr} (\operatorname {ad} (\mathbf {X} )\operatorname {ad} (\mathbf {Y} ))\quad {\text{where }}\operatorname {ad} (\mathbf {X} )\mathbf {Y} ==\mathbf {X} \mathbf {Y} -\mathbf {Y} \mathbf {X} } 5903: 4208: 6841: 826: 9125: 1481: 397: 982:{\displaystyle {\begin{aligned}\operatorname {tr} (\mathbf {A} +\mathbf {B} )&=\operatorname {tr} (\mathbf {A} )+\operatorname {tr} (\mathbf {B} )\\\operatorname {tr} (c\mathbf {A} )&=c\operatorname {tr} (\mathbf {A} )\end{aligned}}} 6358: 5633: 7003: 4601: 8754: 6455: 7848: 4403: 676:{\displaystyle \mathbf {A} ={\begin{pmatrix}a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33}\end{pmatrix}}={\begin{pmatrix}1&0&3\\11&5&2\\6&12&-5\end{pmatrix}}} 6100: 2616: 2360: 8928: 7548: 3211: 9522:
which has complement the scalar matrices, and leaves one degree of freedom: any such map is determined by its value on scalars, which is one scalar parameter and hence all are multiple of the trace, a nonzero such
3994: 4228: 9377: 3417: 6693: 6040: 5573: 6555: 9433: 5260: 5737: 8092:
is equivalent to the expressibility of any linear map as the sum of rank-one linear maps. As such, the proof may be written in the notation of tensor products. Then one may consider the multilinear map
3474: 2007:{\displaystyle \operatorname {tr} \left(\mathbf {P} ^{-1}(\mathbf {A} \mathbf {P} )\right)=\operatorname {tr} \left((\mathbf {A} \mathbf {P} )\mathbf {P} ^{-1}\right)=\operatorname {tr} (\mathbf {A} ).} 4102: 9121: 3705: 5757: 2101: 1018: 5341: 2710: 852: 5836: 4139: 2093: 2056: 6758: 688: 4840: 283: 7391:
can be written as the sum of (finitely many) rank-one linear maps. Composing the inverse of the isomorphism with the linear functional obtained above results in a linear functional on
6599: 5679: 5575:
of operators/matrices into traceless operators/matrices and scalars operators/matrices. The projection map onto scalar operators can be expressed in terms of the trace, concretely as:
6299: 9483: 5578: 9030: 5948: 9520: 4875: 9564: 5490: 5294: 5073: 3030: 1758: 1093:
The trace of a square matrix which is the product of two matrices can be rewritten as the sum of entry-wise products of their elements, i.e. as the sum of all elements of their
3096: 6485: 6924: 6753: 6722: 6623: 4543: 1720:
The symmetry of the Frobenius inner product may be phrased more directly as follows: the matrices in the trace of a product can be switched without changing the result. If
2990: 6919: 6365: 4655:
as a matrix relative to this basis, and taking the trace of this square matrix. The result will not depend on the basis chosen, since different bases will give rise to
3825: 3059: 4330: 9056: 6049: 4980: 3878: 8983: 7158:{\displaystyle \operatorname {tr} (Z)=\operatorname {tr} _{A}\left(\operatorname {tr} _{B}(Z)\right)=\operatorname {tr} _{B}\left(\operatorname {tr} _{A}(Z)\right).} 5019: 6643: 8866: 5980: 4920: 5328: 3845: 3116: 3010: 2933: 9309:{\displaystyle f(\mathbf {A} )=\sum _{i,j}_{ij}f\left(e_{ij}\right)=\sum _{i}_{ii}f\left(e_{11}\right)=f\left(e_{11}\right)\operatorname {tr} (\mathbf {A} ).} 3338:
Conversely, any square matrix with zero trace is a linear combination of the commutators of pairs of matrices. Moreover, any square matrix with zero trace is
1665:{\displaystyle 0\leq \left^{2}\leq \operatorname {tr} \left(\mathbf {A} ^{2}\right)\operatorname {tr} \left(\mathbf {B} ^{2}\right)\leq \left^{2}\left^{2}\ ,} 8363: 2601:
where the first equality is because the traces of a matrix and its transpose are equal. Note that this is not true in general for more than three factors.
8029:{\displaystyle \operatorname {tr} (S\circ T)=\sum _{i}\sum _{j}\psi _{j}(v_{i})\varphi _{i}(w_{j})=\sum _{j}\sum _{i}\varphi _{i}(w_{j})\psi _{j}(v_{i}).} 6046:
th root times scalars, and this does not in general define a function, so the determinant does not split and the general linear group does not decompose:
9319: 3373: 7739:{\displaystyle (S\circ T)(u)=\sum _{i}\varphi _{i}\left(\sum _{j}\psi _{j}(u)w_{j}\right)v_{i}=\sum _{i}\sum _{j}\psi _{j}(u)\varphi _{i}(w_{j})v_{i}} 6515: 3148: 9676: 5338:
is Abelian (the Lie bracket vanishes), the fact that this is a map of Lie algebras is exactly the statement that the trace of a bracket vanishes:
53: 4050: 3335:). In particular, using similarity invariance, it follows that the identity matrix is never similar to the commutator of any pair of matrices. 8856:{\displaystyle \mathbf {A} ={\begin{pmatrix}0&1\\0&0\end{pmatrix}},\quad \mathbf {B} ={\begin{pmatrix}0&0\\1&0\end{pmatrix}},} 10016: 3942: 3245:
is a real matrix and some (or all) of the eigenvalues are complex numbers. This may be regarded as a consequence of the existence of the
2688:{\displaystyle \operatorname {tr} (\mathbf {A} \otimes \mathbf {B} )=\operatorname {tr} (\mathbf {A} )\operatorname {tr} (\mathbf {B} ).} 10052: 2427:{\displaystyle \operatorname {tr} (\mathbf {A} \mathbf {B} \mathbf {C} )\neq \operatorname {tr} (\mathbf {A} \mathbf {C} \mathbf {B} ).} 6648: 5985: 5518: 9887: 9382: 9935: 9776: 9751: 9697: 4323:
From this (or from the connection between the trace and the eigenvalues), one can derive a relation between the trace function, the
119: 8403: 5219: 100: 5688: 72: 7350:. The universal property of the tensor product, just as used previously, says that this bilinear map is induced by a linear map 9061: 3784:{\displaystyle \operatorname {tr} \left(\mathbf {I} _{n}^{k}\right)=\operatorname {tr} \left(\mathbf {I} _{n}\right)=n\equiv 0} 8373: 2165:{\displaystyle \operatorname {tr} \left(\mathbf {b} \mathbf {a} ^{\textsf {T}}\right)=\mathbf {a} ^{\textsf {T}}\mathbf {b} } 57: 4303:{\displaystyle d\det(\mathbf {A} )=\operatorname {tr} {\big (}\operatorname {adj} (\mathbf {A} )\cdot d\mathbf {A} {\big )}} 1475: 79: 10080: 9915: 1085:
This follows immediately from the fact that transposing a square matrix does not affect elements along the main diagonal.
6868: 5500:
of matrices with determinant 1. The special linear group consists of the matrices which do not change volume, while the
4313: 10075: 5205: 3463: 2061: 2024: 1377: 1094: 86: 10008: 9978: 5512: 5501: 4804: 4629: 4107: 7219:. Such a trace is not uniquely defined; it can always at least be modified by multiplication by a nonzero scalar. 46: 3881: 3439: 68: 8276:. The established symmetry upon composition with the trace map then establishes the equality of the two traces. 7168: 6562: 5644: 3421: 1685: 10070: 5126: 5102: 9570:
and thus every element in it is a linear combination of commutators of some pairs of elements, otherwise the
9438: 7418:
is straightforward to prove, and was given above. In the present perspective, one is considering linear maps
5826:{\displaystyle 0\to {\mathfrak {sl}}_{n}\to {\mathfrak {gl}}_{n}{\overset {\operatorname {tr} }{\to }}K\to 0} 1076:{\displaystyle \operatorname {tr} (\mathbf {A} )=\operatorname {tr} \left(\mathbf {A} ^{\mathsf {T}}\right).} 10097: 8988: 8074:
The above proof can be regarded as being based upon tensor products, given that the fundamental identity of
5908: 5426:{\displaystyle \operatorname {tr} ()=0{\text{ for each }}\mathbf {A} ,\mathbf {B} \in {\mathfrak {gl}}_{n}.} 5133: 5076: 3884:, possibly changed of sign, according to the convention in the definition of the characteristic polynomial. 1700: 1447: 9488: 4845: 1812:{\displaystyle \operatorname {tr} (\mathbf {A} \mathbf {B} )=\operatorname {tr} (\mathbf {B} \mathbf {A} )} 10102: 9567: 9535: 5461: 5265: 5024: 4644: 3933: 5898:{\displaystyle 1\to \operatorname {SL} _{n}\to \operatorname {GL} _{n}{\overset {\det }{\to }}K^{*}\to 1} 4203:{\displaystyle \det(\mathbf {I} +\mathbf {\Delta A} )\approx 1+\operatorname {tr} (\mathbf {\Delta A} ).} 3015: 10107: 10000: 6836:{\displaystyle \phi (\mathbf {X} ,\mathbf {Y} )={\text{tr}}_{V}(\rho (\mathbf {X} )\rho (\mathbf {Y} ))} 5682: 4636: 3659: 3246: 2015: 1847: 9833:"Randomized algorithms for estimating the trace of an implicit symmetric positive semi-definite matrix" 3064: 821:{\displaystyle \operatorname {tr} (\mathbf {A} )=\sum _{i=1}^{3}a_{ii}=a_{11}+a_{22}+a_{33}=1+5+(-5)=1} 6463: 6727: 6698: 6604: 5751: 5497: 5137: 1704: 1002: 8383: 7179: 4663: 4221: 3332: 443: 392:{\displaystyle \operatorname {tr} (\mathbf {A} )=\sum _{i=1}^{n}a_{ii}=a_{11}+a_{22}+\dots +a_{nn}} 247: 2942: 93: 9860: 8398: 7377:. This fundamental fact is a straightforward consequence of the existence of a (finite) basis of 7374: 7234: 6884: 6353:{\displaystyle (\mathbf {X} ,\mathbf {Y} )\mapsto \operatorname {tr} (\mathbf {X} \mathbf {Y} ).} 5456: 4471: 4324: 3435: 1467: 239:
into itself, since all matrices describing such an operator with respect to a basis are similar.
9882:. Graduate Studies in Mathematics. Vol. 157 (2nd ed.). American Mathematical Society. 5628:{\displaystyle \mathbf {A} \mapsto {\frac {1}{n}}\operatorname {tr} (\mathbf {A} )\mathbf {I} .} 4659:, allowing for the possibility of a basis-independent definition for the trace of a linear map. 9793: 7012:
is another generalization of the trace that is operator-valued. The trace of a linear operator
6493:), every such bilinear form is proportional to each other; in particular, to the Killing form. 4106:
Everything in the present section applies as well to any square matrix with coefficients in an
3804: 3038: 10048: 10012: 9931: 9883: 9852: 9813: 9772: 9747: 9693: 9681: 9667: 9636: 8342: 6879: 4656: 4014: 3645: 2936: 2610: 1714: 228: 9794:"A Stochastic Estimator of the Trace of the Influence Matrix for Laplacian Smoothing Splines" 9035: 4925: 3850: 10044: 9966: 9949: 9923: 9844: 9805: 9711: 9685: 8958: 8358: 6856: 4989: 3666: 3428: 3339: 2440: 10026: 9986: 9945: 9707: 6628: 10022: 9982: 9953: 9941: 9919: 9715: 9703: 9571: 8346: 5091: 4317: 4131: 3362: 1689: 841: 439: 232: 5957: 5109:
equal to one. Then, if the square of the trace is 4, the corresponding transformation is
4880: 2014:
Similarity invariance is the crucial property of the trace in order to discuss traces of
6998:{\displaystyle \operatorname {tr} (K)=\sum _{n}\left\langle e_{n},Ke_{n}\right\rangle ,} 10036: 9595: 8423: 8393: 8378: 7284: 7280: 6864: 5313: 5098: 4006: 3903: 3830: 3101: 2995: 2918: 2183: 1471: 193: 133: 4596:{\displaystyle d\operatorname {tr} (\mathbf {X} )=\operatorname {tr} (d\mathbf {X} ).} 10091: 7009: 6860: 6110: 4744:; the trace of a general element is defined by linearity. The trace of a linear map 1432: 272: 158: 141: 6450:{\displaystyle \operatorname {tr} (\mathbf {X} )=\operatorname {tr} (\mathbf {Z} ).} 9864: 7227: 6290: 4632: 4502: 4408: 3316: 1463: 236: 7426:, and viewing them as sums of rank-one maps, so that there are linear functionals 7406:
Using the definition of trace as the sum of diagonal elements, the matrix formula
7296:
automatically implies that this bilinear map is induced by a linear functional on
9671: 4443:. The components of this vector field are linear functions (given by the rows of 4398:{\displaystyle \det(\exp(\mathbf {A} ))=\exp(\operatorname {tr} (\mathbf {A} )).} 17: 9974: 8388: 8368: 6852: 6095:{\displaystyle \operatorname {GL} _{n}\neq \operatorname {SL} _{n}\times K^{*}.} 5493: 5106: 4784:, one can show that this gives the same definition of the trace as given above. 4316:
of the determinant at an arbitrary square matrix, in terms of the trace and the
4217: 4034: 4010: 3899: 1393: 435: 243: 35: 3671:
When the characteristic of the base field is zero, the converse also holds: if
9996: 9927: 9809: 7223: 5436: 4697: 4450: 4213: 3923: 3331:
from operators to scalars", as the commutator of scalars is trivial (it is an
3280: 3230: 1693: 200: 9856: 9817: 8923:{\displaystyle \mathbf {AB} ={\begin{pmatrix}1&0\\0&0\end{pmatrix}},} 4773:
under the above mentioned canonical isomorphism. Using an explicit basis for
3206:{\displaystyle \operatorname {tr} (\mathbf {A} )=\sum _{i=1}^{n}\lambda _{i}} 9848: 5951: 1012: 1688:
of the same size. The Frobenius inner product and norm arise frequently in
1474:, and it satisfies a submultiplicative property, as can be proven with the 1407:
is a sum of squares and hence is nonnegative, equal to zero if and only if
9832: 9689: 1431:. These demonstrate the positive-definiteness and symmetry required of an 6362:
The form is symmetric, non-degenerate and associative in the sense that:
4758:
can then be defined as the trace, in the above sense, of the element of
3249:, together with the similarity-invariance of the trace discussed above. 1877:
of the same dimensions, is a fundamental consequence. This is proved by
5082:
More sophisticated stochastic estimators of trace have been developed.
4540:
The trace is a linear operator, hence it commutes with the derivative:
3989:{\displaystyle \operatorname {tr} (\mathbf {A} )=\sum _{i}\lambda _{i}} 5638: 4635:), we can define the trace of this map by considering the trace of a 4530: 2095:, the trace of the outer product is equivalent to the inner product: 231:
have the same trace. As a consequence one can define the trace of a
7167:
For more properties and a generalization of the partial trace, see
9372:{\displaystyle {\mathfrak {gl}}_{n}={\mathfrak {sl}}_{n}\oplus k,} 5121:. Finally, if the square is greater than 4, the transformation is 3412:{\displaystyle \operatorname {tr} \left(\mathbf {I} _{n}\right)=n} 2912: 6688:{\displaystyle \rho :{\mathfrak {g}}\rightarrow {\text{End}}(V).} 6035:{\displaystyle {\mathfrak {gl}}_{n}={\mathfrak {sl}}_{n}\oplus K} 5568:{\displaystyle {\mathfrak {gl}}_{n}={\mathfrak {sl}}_{n}\oplus K} 6550:{\displaystyle \operatorname {tr} (\mathbf {X} \mathbf {Y} )=0.} 9428:{\displaystyle \operatorname {tr} (AB)=\operatorname {tr} (BA)} 9637:"Rank, trace, determinant, transpose, and inverse of matrices" 4797:
The trace can be estimated unbiasedly by "Hutchinson's trick":
199:
It can be proven that the trace of a matrix is the sum of its
29: 5255:{\displaystyle \operatorname {tr} :{\mathfrak {gl}}_{n}\to K} 5732:{\displaystyle {\mathfrak {gl}}_{n}\to {\mathfrak {gl}}_{n}} 3442:
of the corresponding permutation, because the diagonal term
2443:
matrices are considered, any permutation is allowed, since:
1834:, and also since the trace of either does not usually equal 8047:
reversed, one finds exactly the same formula, proving that
7403:. This linear functional is exactly the same as the trace. 5204:
The trace also plays a central role in the distribution of
4407:
A related characterization of the trace applies to linear
4097:{\displaystyle \det(\mathbf {A} )=\prod _{i}\lambda _{i}.} 3342:
to a square matrix with diagonal consisting of all zeros.
203:(counted with multiplicities). It can also be proven that 9798:
Communications in Statistics - Simulation and Computation
9116:{\displaystyle f\left(e_{jj}\right)=f\left(e_{11}\right)} 8300:; in the language of linear maps, it assigns to a scalar 8250:. It can be seen that this coincides with the linear map 8176:, and this is unchanged if one were to have started with 8157:. Further composition with the trace map then results in 3898:
is a linear operator represented by a square matrix with
7381:, and can also be phrased as saying that any linear map 7005:
and is finite and independent of the orthonormal basis.
6293:, which is used for the classification of Lie algebras. 3315:
is linear. One can state this as "the trace is a map of
9316:
More abstractly, this corresponds to the decomposition
6851:
The concept of trace of a matrix is generalized to the
6042:, but the splitting of the determinant would be as the 5090:
If a 2 x 2 real matrix has zero trace, its square is a
3431:
is real, because the elements on the diagonal are real.
8886: 8819: 8771: 6559:
There is a generalization to a general representation
1707:
of all complex matrices of a fixed size, by replacing
612: 483: 192:. This is a misnomer, but widely used, such as in the 9538: 9491: 9441: 9385: 9322: 9128: 9064: 9038: 8991: 8961: 8869: 8757: 8432: 7851: 7551: 7040: 6927: 6887: 6761: 6730: 6701: 6651: 6631: 6607: 6565: 6518: 6466: 6368: 6302: 6131: 6052: 5988: 5960: 5911: 5839: 5760: 5747:
makes this a projection, yielding the formula above.
5691: 5647: 5581: 5521: 5464: 5344: 5316: 5268: 5222: 5027: 4992: 4928: 4883: 4848: 4807: 4546: 4333: 4231: 4142: 4053: 3945: 3853: 3833: 3807: 3708: 3472: 3376: 3151: 3104: 3067: 3041: 3018: 2998: 2945: 2921: 2708: 2619: 2449: 2363: 2196: 2104: 2064: 2027: 1883: 1761: 1484: 1413:
is zero. Furthermore, as noted in the above formula,
1125: 1021: 850: 691: 469: 286: 2357:
Arbitrary permutations are not allowed: in general,
449:. The trace is not defined for non-square matrices. 9742:Lipschutz, Seymour; Lipson, Marc (September 2005). 7226:is the generalization of a trace to the setting of 3239:counted with multiplicity. This holds true even if 60:. Unsourced material may be challenged and removed. 9558: 9514: 9477: 9427: 9371: 9308: 9115: 9050: 9024: 8977: 8922: 8855: 8735: 8028: 7738: 7157: 6997: 6913: 6835: 6747: 6716: 6687: 6637: 6617: 6593: 6549: 6479: 6449: 6352: 6281: 6094: 6034: 5974: 5942: 5897: 5825: 5731: 5673: 5627: 5567: 5484: 5425: 5322: 5288: 5254: 5067: 5013: 4974: 4914: 4869: 4834: 4595: 4397: 4302: 4202: 4096: 3988: 3872: 3839: 3819: 3783: 3624: 3411: 3205: 3110: 3090: 3053: 3024: 3004: 2984: 2927: 2903: 2687: 2593: 2426: 2339: 2164: 2087: 2050: 2006: 1811: 1664: 1352: 1075: 981: 820: 675: 391: 9737: 9735: 9733: 9731: 8359:Trace of a tensor with respect to a metric tensor 7373:is finite-dimensional, then this linear map is a 1699:The Frobenius inner product may be extended to a 167:. The trace is only defined for a square matrix ( 8341:. These structures can be axiomatized to define 8196:instead. One may also consider the bilinear map 5874: 5435:The kernel of this map, a matrix whose trace is 4459:is a constant function, whose value is equal to 4334: 4235: 4143: 4054: 2613:of two matrices is the product of their traces: 2088:{\displaystyle \mathbf {b} \in \mathbb {R} ^{n}} 2051:{\displaystyle \mathbf {a} \in \mathbb {R} ^{n}} 4723:. Then the trace of the indecomposable element 4485:represents the velocity of a fluid at location 4474:, one can interpret this in terms of flows: if 2939:on the space of square matrices that satisfies 5105:. First, the matrix is normalized to make its 1470:derived from this inner product is called the 1466:of all real matrices of fixed dimensions. The 242:The trace is related to the derivative of the 157:, is defined to be the sum of elements on the 8422:This is immediate from the definition of the 6843:is symmetric and invariant due to cyclicity. 5504:is the matrices which do not alter volume of 4835:{\displaystyle W\in \mathbb {R} ^{n\times n}} 4295: 4260: 3797:Relationship to the characteristic polynomial 2915:a scalar multiple in the following sense: If 1752:real or complex matrices, respectively, then 8: 9771:(2nd ed.). Cambridge University Press. 9767:Horn, Roger A.; Johnson, Charles R. (2013). 7237:generalizes the trace to arbitrary tensors. 5937: 5931: 5056: 5028: 3279:matrices, the trace of the (ring-theoretic) 161:(from the upper left to the lower right) of 7309:Similarly, there is a natural bilinear map 5954:. However, the trace splits naturally (via 4986:Usually, the random vector is sampled from 4982:. (Proof: expand the expectation directly.) 4212:Precisely this means that the trace is the 6459:For a complex simple Lie algebra (such as 4124:is a square matrix with small entries and 1346: 9905: 9903: 9901: 9899: 9880:Mathematical Methods in Quantum Mechanics 9831:Avron, Haim; Toledo, Sivan (2011-04-11). 9550: 9541: 9540: 9537: 9503: 9494: 9493: 9490: 9440: 9384: 9354: 9345: 9344: 9334: 9325: 9324: 9321: 9295: 9276: 9252: 9232: 9223: 9214: 9194: 9174: 9165: 9150: 9135: 9127: 9103: 9076: 9063: 9037: 9003: 8990: 8966: 8960: 8881: 8870: 8868: 8814: 8806: 8766: 8758: 8756: 8722: 8717: 8696: 8686: 8681: 8669: 8658: 8642: 8629: 8619: 8608: 8598: 8587: 8571: 8558: 8548: 8537: 8527: 8516: 8500: 8490: 8485: 8473: 8462: 8447: 8442: 8431: 8014: 8001: 7988: 7975: 7965: 7955: 7939: 7926: 7913: 7900: 7890: 7880: 7850: 7730: 7717: 7704: 7685: 7675: 7665: 7652: 7637: 7618: 7608: 7593: 7583: 7550: 7241:Traces in the language of tensor products 7129: 7111: 7081: 7063: 7039: 6981: 6965: 6950: 6926: 6905: 6895: 6886: 6822: 6808: 6793: 6788: 6776: 6768: 6760: 6731: 6729: 6708: 6703: 6700: 6668: 6659: 6658: 6650: 6630: 6609: 6608: 6606: 6594:{\displaystyle (\rho ,{\mathfrak {g}},V)} 6576: 6575: 6564: 6533: 6528: 6517: 6468: 6467: 6465: 6436: 6428: 6420: 6394: 6386: 6378: 6367: 6339: 6334: 6314: 6306: 6301: 6274: 6269: 6261: 6256: 6245: 6237: 6226: 6218: 6204: 6192: 6175: 6146: 6138: 6130: 6083: 6070: 6057: 6051: 6020: 6011: 6010: 6000: 5991: 5990: 5987: 5964: 5959: 5916: 5910: 5883: 5869: 5863: 5850: 5838: 5804: 5798: 5789: 5788: 5778: 5769: 5768: 5759: 5739:mapping onto scalars, and multiplying by 5723: 5714: 5713: 5703: 5694: 5693: 5690: 5674:{\displaystyle K\to {\mathfrak {gl}}_{n}} 5665: 5656: 5655: 5646: 5637:Formally, one can compose the trace (the 5617: 5609: 5590: 5582: 5580: 5553: 5544: 5543: 5533: 5524: 5523: 5520: 5476: 5467: 5466: 5463: 5414: 5405: 5404: 5395: 5387: 5382: 5365: 5357: 5343: 5315: 5280: 5271: 5270: 5267: 5240: 5231: 5230: 5221: 5167:are equivalent (up to change of basis on 5059: 5045: 5038: 5026: 4991: 4939: 4927: 4897: 4882: 4861: 4857: 4856: 4847: 4820: 4816: 4815: 4806: 4662:Such a definition can be given using the 4582: 4559: 4545: 4381: 4349: 4332: 4294: 4293: 4288: 4274: 4259: 4258: 4241: 4230: 4186: 4157: 4149: 4141: 4085: 4075: 4060: 4052: 3980: 3970: 3955: 3944: 3858: 3852: 3832: 3806: 3759: 3754: 3730: 3725: 3720: 3707: 3607: 3580: 3579: 3574: 3549: 3548: 3543: 3533: 3523: 3516: 3515: 3510: 3498: 3484: 3483: 3478: 3473: 3471: 3393: 3388: 3375: 3197: 3187: 3176: 3161: 3150: 3103: 3074: 3066: 3040: 3017: 2997: 2944: 2920: 2886: 2881: 2857: 2852: 2828: 2801: 2774: 2754: 2730: 2722: 2709: 2707: 2674: 2657: 2637: 2629: 2618: 2580: 2575: 2570: 2550: 2545: 2540: 2517: 2516: 2506: 2501: 2496: 2469: 2464: 2459: 2448: 2413: 2408: 2403: 2383: 2378: 2373: 2362: 2326: 2321: 2316: 2311: 2291: 2286: 2281: 2276: 2256: 2251: 2246: 2241: 2221: 2216: 2211: 2206: 2195: 2157: 2151: 2150: 2149: 2144: 2129: 2128: 2127: 2122: 2116: 2103: 2079: 2075: 2074: 2065: 2063: 2042: 2038: 2037: 2028: 2026: 1993: 1967: 1962: 1953: 1948: 1918: 1913: 1901: 1896: 1882: 1801: 1796: 1776: 1771: 1760: 1650: 1637: 1616: 1603: 1575: 1570: 1549: 1544: 1524: 1511: 1506: 1483: 1462:. This is a natural inner product on the 1337: 1324: 1314: 1303: 1293: 1282: 1263: 1262: 1257: 1251: 1227: 1220: 1219: 1214: 1187: 1186: 1181: 1175: 1151: 1144: 1143: 1138: 1124: 1059: 1058: 1053: 1031: 1020: 967: 940: 916: 896: 872: 864: 851: 849: 779: 766: 753: 737: 727: 716: 701: 690: 607: 590: 578: 566: 552: 540: 528: 514: 502: 490: 478: 470: 468: 380: 361: 348: 332: 322: 311: 296: 285: 120:Learn how and when to remove this message 8279:For any finite dimensional vector space 8234:, which is then induced by a linear map 6878:is a trace-class operator, then for any 5127:classification of Möbius transformations 3422:generalizations of dimension using trace 227:of appropriate sizes. This implies that 9677:CRC Concise Encyclopedia of Mathematics 9619: 9478:{\displaystyle \operatorname {tr} ()=0} 8415: 6755:is defined as above. The bilinear form 5928: 4033:on the main diagonal. In contrast, the 1822:This is notable both for the fact that 9025:{\displaystyle f\left(e_{ij}\right)=0} 5943:{\displaystyle K^{*}=K\setminus \{0\}} 3550: 3517: 3466:is the dimension of the target space. 3365:is the dimension of the space, namely 2518: 2021:Additionally, for real column vectors 1264: 1221: 1188: 1145: 1060: 9744:Theory and Problems of Linear Algebra 9515:{\displaystyle {\mathfrak {sl}}_{n},} 4870:{\displaystyle u\in \mathbb {R} ^{n}} 4777:and the corresponding dual basis for 3061:matrices, imposing the normalization 1396:. According to the above expression, 7: 9662: 9660: 9658: 9656: 9631: 9629: 9627: 9625: 9623: 9559:{\displaystyle {\mathfrak {sl}}_{n}} 7026:is equal to the partial traces over 5485:{\displaystyle {\mathfrak {sl}}_{n}} 5289:{\displaystyle {\mathfrak {gl}}_{n}} 5068:{\displaystyle \{\pm n^{-1/2}\}^{n}} 3791:, but the identity is not nilpotent. 58:adding citations to reliable sources 27:Sum of elements on the main diagonal 10041:Linear Algebra and its Applications 9545: 9542: 9498: 9495: 9349: 9346: 9329: 9326: 6660: 6610: 6577: 6472: 6469: 6296:The trace defines a bilinear form: 6015: 6012: 5995: 5992: 5793: 5790: 5773: 5770: 5718: 5715: 5698: 5695: 5660: 5657: 5548: 5545: 5528: 5525: 5471: 5468: 5409: 5406: 5275: 5272: 5235: 5232: 5216:The trace is a map of Lie algebras 5113:. If the square is in the interval 3702:dimensions is a counterexample, as 3346:Traces of special kinds of matrices 3025:{\displaystyle \operatorname {tr} } 8039:Following the same procedure with 7249:, there is a natural bilinear map 6645:is a homomorphism of Lie algebras 4610:In general, given some linear map 4312:is more general and describes the 3459:th point is fixed and 0 otherwise. 442:, or more generally elements of a 188:= 0 then the matrix is said to be 180:In mathematical physics texts, if 25: 9792:Hutchinson, M.F. (January 1989). 9746:. Schaum's Outline. McGraw-Hill. 8985:the standard basis and note that 4220:function at the identity matrix. 3644:More generally, the trace of any 3091:{\displaystyle f(\mathbf {I} )=n} 9680:(2nd ed.). Boca Raton, FL: 9583:This follows from the fact that 9296: 9224: 9166: 9136: 8874: 8871: 8807: 8759: 8723: 8718: 8687: 8682: 8491: 8486: 8448: 8443: 8283:, there is a natural linear map 6823: 6809: 6777: 6769: 6534: 6529: 6480:{\displaystyle {\mathfrak {sl}}} 6437: 6429: 6421: 6395: 6387: 6379: 6340: 6335: 6315: 6307: 6275: 6270: 6262: 6257: 6246: 6238: 6227: 6219: 6193: 6176: 6147: 6139: 5618: 5610: 5583: 5396: 5388: 5366: 5358: 4583: 4560: 4382: 4350: 4289: 4275: 4242: 4190: 4187: 4161: 4158: 4150: 4061: 3999:This follows from the fact that 3956: 3755: 3721: 3608: 3581: 3575: 3544: 3524: 3511: 3499: 3485: 3479: 3389: 3162: 3075: 2887: 2882: 2858: 2853: 2829: 2802: 2775: 2755: 2731: 2723: 2702:The following three properties: 2675: 2658: 2638: 2630: 2581: 2576: 2571: 2551: 2546: 2541: 2507: 2502: 2497: 2470: 2465: 2460: 2414: 2409: 2404: 2384: 2379: 2374: 2327: 2322: 2317: 2312: 2292: 2287: 2282: 2277: 2257: 2252: 2247: 2242: 2222: 2217: 2212: 2207: 2158: 2145: 2123: 2117: 2066: 2029: 1994: 1963: 1954: 1949: 1919: 1914: 1897: 1802: 1797: 1777: 1772: 1638: 1604: 1571: 1545: 1512: 1507: 1258: 1252: 1228: 1215: 1182: 1176: 1152: 1139: 1054: 1032: 968: 941: 917: 897: 873: 865: 702: 471: 297: 34: 10007:(2nd ed.). Cambridge, UK: 9674:. In Weisstein, Eric W. (ed.). 8805: 7201:which vanishes on commutators; 7190:is often defined to be any map 7016:which lives on a product space 6748:{\displaystyle {\text{End}}(V)} 6717:{\displaystyle {\text{tr}}_{V}} 6618:{\displaystyle {\mathfrak {g}}} 6203: 5097:The trace of a 2 × 2 3122:Trace as the sum of eigenvalues 1686:positive semi-definite matrices 45:needs additional citations for 9878:Teschl, G. (30 October 2014). 9466: 9463: 9451: 9448: 9422: 9413: 9401: 9392: 9300: 9292: 9229: 9220: 9171: 9162: 9140: 9132: 8727: 8714: 8452: 8439: 8404:von Neumann's trace inequality 8020: 8007: 7994: 7981: 7945: 7932: 7919: 7906: 7870: 7858: 7723: 7710: 7697: 7691: 7630: 7624: 7573: 7567: 7564: 7552: 7144: 7138: 7096: 7090: 7053: 7047: 6940: 6934: 6902: 6888: 6830: 6827: 6819: 6813: 6805: 6799: 6781: 6765: 6742: 6736: 6679: 6673: 6665: 6588: 6566: 6538: 6525: 6441: 6433: 6417: 6414: 6402: 6399: 6383: 6375: 6344: 6331: 6322: 6319: 6303: 6250: 6234: 6223: 6215: 6200: 6197: 6189: 6180: 6172: 6163: 6151: 6135: 5889: 5871: 5856: 5843: 5817: 5806: 5784: 5764: 5709: 5651: 5614: 5606: 5587: 5511:In fact, there is an internal 5455:, and these matrices form the 5373: 5370: 5354: 5351: 5246: 5008: 4996: 4969: 4963: 4951: 4932: 4903: 4887: 4587: 4576: 4564: 4556: 4389: 4386: 4378: 4369: 4357: 4354: 4346: 4337: 4327:function, and the determinant: 4279: 4271: 4246: 4238: 4194: 4183: 4165: 4146: 4065: 4057: 3960: 3952: 3612: 3604: 3560: 3166: 3158: 3079: 3071: 2976: 2967: 2958: 2949: 2891: 2878: 2862: 2849: 2833: 2825: 2806: 2795: 2779: 2771: 2759: 2751: 2735: 2719: 2679: 2671: 2662: 2654: 2642: 2626: 2585: 2567: 2555: 2537: 2474: 2456: 2418: 2400: 2388: 2370: 2331: 2308: 2296: 2273: 2261: 2238: 2226: 2203: 1998: 1990: 1958: 1945: 1923: 1910: 1806: 1793: 1781: 1768: 1642: 1634: 1608: 1600: 1516: 1503: 1380:) then the above operation on 1036: 1028: 972: 964: 945: 934: 921: 913: 901: 893: 877: 861: 809: 800: 706: 698: 301: 293: 1: 9916:Graduate Texts in Mathematics 4134:, then we have approximately 4047:of its eigenvalues; that is, 3698:is positive, the identity in 2698:Characterization of the trace 2180:More generally, the trace is 1372:matrix as a vector of length 235:mapping a finite-dimensional 5132:The trace is used to define 2985:{\displaystyle f(xy)=f(yx),} 2605:Trace of a Kronecker product 1392:coincides with the standard 10076:Encyclopedia of Mathematics 9918:. Vol. 155. New York: 8345:in the abstract setting of 8316:. Sometimes this is called 6914:{\displaystyle (e_{n})_{n}} 3932:(listed according to their 3888:Relationship to eigenvalues 1850:of the trace, meaning that 69:"Trace" linear algebra 10124: 10071:"Trace of a square matrix" 10009:Cambridge University Press 9979:Chelsea Publishing Company 9910:Kassel, Christian (1995). 8374:Golden–Thompson inequality 7757:. The rank-one linear map 7169:traced monoidal categories 5502:special linear Lie algebra 5296:of linear operators on an 4606:Trace of a linear operator 4108:algebraically closed field 1871:and any invertible matrix 9928:10.1007/978-1-4612-0783-2 9810:10.1080/03610918908812806 5310:matrices with entries in 5021:(normal distribution) or 3882:characteristic polynomial 3820:{\displaystyle n\times n} 3054:{\displaystyle n\times n} 1476:Cauchy–Schwarz inequality 408:denotes the entry on the 9574:would be a proper ideal. 6921:, the trace is given by 6863:, and the analog of the 4417:, define a vector field 4114:Derivative relationships 3934:algebraic multiplicities 3691:When the characteristic 2436:However, if products of 989:for all square matrices 9849:10.1145/1944345.1944349 9485:) defines the trace on 9051:{\displaystyle i\neq j} 8364:Characteristic function 5641:map) with the unit map 5077:Rademacher distribution 4975:{\displaystyle E=tr(W)} 3873:{\displaystyle t^{n-1}} 2911:characterize the trace 1828:does not usually equal 1701:hermitian inner product 1448:Frobenius inner product 1435:; it is common to call 1097:. Phrased directly, if 9971:The Theory of Matrices 9568:semisimple Lie algebra 9560: 9516: 9479: 9429: 9373: 9310: 9117: 9052: 9026: 8979: 8978:{\displaystyle e_{ij}} 8924: 8857: 8737: 8674: 8624: 8603: 8553: 8532: 8478: 8030: 7740: 7159: 6999: 6915: 6837: 6749: 6718: 6689: 6639: 6619: 6595: 6551: 6481: 6451: 6354: 6283: 6096: 6036: 5976: 5944: 5899: 5833:which is analogous to 5827: 5733: 5675: 5629: 5569: 5486: 5439:, is often said to be 5427: 5324: 5290: 5256: 5140:. Two representations 5103:Möbius transformations 5069: 5015: 5014:{\displaystyle N(0,I)} 4984: 4976: 4916: 4871: 4836: 4643:, that is, choosing a 4597: 4399: 4304: 4204: 4098: 3990: 3874: 3847:is the coefficient of 3841: 3821: 3785: 3626: 3413: 3207: 3192: 3112: 3092: 3055: 3026: 3006: 2986: 2929: 2905: 2689: 2595: 2428: 2341: 2166: 2089: 2052: 2016:linear transformations 2008: 1865:for any square matrix 1813: 1666: 1362:If one views any real 1354: 1319: 1298: 1077: 983: 822: 732: 677: 393: 327: 9690:10.1201/9781420035223 9561: 9517: 9480: 9430: 9374: 9311: 9118: 9053: 9027: 8980: 8925: 8858: 8738: 8654: 8604: 8583: 8533: 8512: 8458: 8031: 7741: 7245:Given a vector space 7160: 7000: 6916: 6838: 6750: 6719: 6690: 6640: 6638:{\displaystyle \rho } 6620: 6596: 6552: 6482: 6452: 6355: 6284: 6125:are square matrices) 6097: 6037: 5977: 5945: 5900: 5828: 5752:short exact sequences 5734: 5676: 5630: 5570: 5487: 5428: 5330:) to the Lie algebra 5325: 5291: 5262:from the Lie algebra 5257: 5138:group representations 5070: 5016: 4977: 4917: 4872: 4837: 4799: 4664:canonical isomorphism 4637:matrix representation 4598: 4400: 4305: 4205: 4099: 3991: 3875: 3842: 3822: 3786: 3627: 3414: 3247:Jordan canonical form 3208: 3172: 3113: 3093: 3056: 3027: 3007: 2987: 2930: 2906: 2690: 2596: 2429: 2350:This is known as the 2342: 2167: 2090: 2053: 2009: 1848:similarity-invariance 1814: 1667: 1376:(an operation called 1355: 1299: 1278: 1078: 1015:have the same trace: 984: 823: 712: 678: 394: 307: 215:for any two matrices 9536: 9489: 9439: 9383: 9320: 9126: 9062: 9036: 8989: 8959: 8867: 8863:then the product is 8755: 8430: 7849: 7549: 7448:and nonzero vectors 7038: 6925: 6885: 6759: 6728: 6699: 6649: 6629: 6605: 6563: 6516: 6464: 6366: 6300: 6129: 6050: 5986: 5958: 5909: 5837: 5758: 5689: 5645: 5579: 5519: 5498:special linear group 5462: 5384: for each  5342: 5314: 5300:-dimensional space ( 5266: 5220: 5101:is used to classify 5025: 4990: 4926: 4881: 4846: 4805: 4793:Stochastic estimator 4788:Numerical algorithms 4544: 4505:of the fluid out of 4331: 4229: 4140: 4051: 3943: 3851: 3831: 3805: 3706: 3470: 3374: 3340:unitarily equivalent 3149: 3118:equal to the trace. 3102: 3065: 3039: 3016: 2996: 2943: 2919: 2706: 2617: 2447: 2361: 2194: 2102: 2062: 2025: 1881: 1759: 1705:complex vector space 1482: 1123: 1019: 848: 689: 467: 284: 54:improve this article 9641:fourier.eng.hmc.edu 8936:) = 1 ≠ 0 ⋅ 0 = tr( 8930:and the traces are 8224:to the composition 7180:associative algebra 5975:{\displaystyle 1/n} 4915:{\displaystyle E=I} 3735: 3333:Abelian Lie algebra 3253:Trace of commutator 9837:Journal of the ACM 9682:Chapman & Hall 9668:Weisstein, Eric W. 9556: 9512: 9475: 9425: 9369: 9306: 9219: 9161: 9113: 9048: 9022: 8975: 8920: 8911: 8853: 8844: 8796: 8733: 8399:Trace inequalities 8343:categorical traces 8026: 7970: 7960: 7895: 7885: 7736: 7680: 7670: 7613: 7588: 7375:linear isomorphism 7336:to the linear map 7281:universal property 7235:tensor contraction 7186:, then a trace on 7155: 6995: 6955: 6911: 6833: 6745: 6714: 6685: 6635: 6615: 6591: 6547: 6477: 6447: 6350: 6279: 6092: 6032: 5982:times scalars) so 5972: 5940: 5895: 5823: 5729: 5685:" to obtain a map 5671: 5625: 5565: 5482: 5457:simple Lie algebra 5423: 5320: 5286: 5252: 5065: 5011: 4972: 4912: 4867: 4832: 4674:of linear maps on 4666:between the space 4593: 4472:divergence theorem 4395: 4325:matrix exponential 4300: 4200: 4094: 4080: 3986: 3975: 3870: 3837: 3817: 3781: 3719: 3622: 3620: 3436:permutation matrix 3409: 3203: 3108: 3088: 3051: 3032:are proportional. 3022: 3002: 2982: 2925: 2901: 2899: 2685: 2591: 2424: 2337: 2162: 2085: 2048: 2004: 1809: 1662: 1350: 1089:Trace of a product 1073: 979: 977: 818: 673: 667: 598: 463:be a matrix, with 389: 10018:978-0-521-54823-6 9210: 9146: 8212:given by sending 8119:given by sending 7961: 7951: 7886: 7876: 7671: 7661: 7604: 7579: 7328:given by sending 7263:given by sending 7233:The operation of 6946: 6880:orthonormal basis 6857:compact operators 6791: 6734: 6706: 6671: 6601:of a Lie algebra 6207: 5877: 5812: 5681:of "inclusion of 5598: 5385: 5323:{\displaystyle K} 4842:, and any random 4801:Given any matrix 4769:corresponding to 4733:is defined to be 4411:. Given a matrix 4071: 4015:triangular matrix 3966: 3840:{\displaystyle A} 3658:, equals its own 3646:idempotent matrix 3464:projection matrix 3438:is the number of 3352:The trace of the 3111:{\displaystyle f} 3005:{\displaystyle f} 2937:linear functional 2928:{\displaystyle f} 2611:Kronecker product 2609:The trace of the 2153: 2131: 1715:complex conjugate 1658: 1011:A matrix and its 428:. The entries of 130: 129: 122: 104: 18:Trace of a matrix 16:(Redirected from 10115: 10084: 10058: 10045:Cengage Learning 10043:(4th ed.). 10030: 9990: 9973:. Translated by 9967:Gantmacher, F.R. 9958: 9957: 9907: 9894: 9893: 9875: 9869: 9868: 9828: 9822: 9821: 9804:(3): 1059–1076. 9789: 9783: 9782: 9764: 9758: 9757: 9739: 9726: 9725: 9723: 9722: 9672:"Trace (matrix)" 9664: 9651: 9650: 9648: 9647: 9633: 9608: 9606: 9594: 9581: 9575: 9565: 9563: 9562: 9557: 9555: 9554: 9549: 9548: 9530: 9524: 9521: 9519: 9518: 9513: 9508: 9507: 9502: 9501: 9484: 9482: 9481: 9476: 9434: 9432: 9431: 9426: 9378: 9376: 9375: 9370: 9359: 9358: 9353: 9352: 9339: 9338: 9333: 9332: 9315: 9313: 9312: 9307: 9299: 9285: 9281: 9280: 9261: 9257: 9256: 9240: 9239: 9227: 9218: 9206: 9202: 9201: 9182: 9181: 9169: 9160: 9139: 9122: 9120: 9119: 9114: 9112: 9108: 9107: 9088: 9084: 9083: 9057: 9055: 9054: 9049: 9031: 9029: 9028: 9023: 9015: 9011: 9010: 8984: 8982: 8981: 8976: 8974: 8973: 8953: 8947: 8945: 8929: 8927: 8926: 8921: 8916: 8915: 8877: 8862: 8860: 8859: 8854: 8849: 8848: 8810: 8801: 8800: 8762: 8751:For example, if 8749: 8743: 8742: 8740: 8739: 8734: 8726: 8721: 8704: 8703: 8695: 8691: 8690: 8685: 8673: 8668: 8650: 8649: 8637: 8636: 8623: 8618: 8602: 8597: 8579: 8578: 8566: 8565: 8552: 8547: 8531: 8526: 8508: 8507: 8499: 8495: 8494: 8489: 8477: 8472: 8451: 8446: 8420: 8384:Specht's theorem 8336: 8331: 8320:, and the trace 8318:coevaluation map 8315: 8303: 8299: 8298: 8282: 8275: 8249: 8233: 8223: 8211: 8195: 8175: 8156: 8138: 8118: 8091: 8081: 8070: 8058: 8046: 8042: 8035: 8033: 8032: 8027: 8019: 8018: 8006: 8005: 7993: 7992: 7980: 7979: 7969: 7959: 7944: 7943: 7931: 7930: 7918: 7917: 7905: 7904: 7894: 7884: 7841: 7802: 7756: 7752: 7745: 7743: 7742: 7737: 7735: 7734: 7722: 7721: 7709: 7708: 7690: 7689: 7679: 7669: 7657: 7656: 7647: 7643: 7642: 7641: 7623: 7622: 7612: 7598: 7597: 7587: 7541: 7537: 7533: 7510: 7501: 7478: 7469: 7458: 7447: 7436: 7425: 7421: 7417: 7402: 7390: 7380: 7372: 7368: 7349: 7335: 7327: 7305: 7295: 7278: 7270: 7262: 7248: 7218: 7204: 7200: 7189: 7185: 7177: 7164: 7162: 7161: 7156: 7151: 7147: 7134: 7133: 7116: 7115: 7103: 7099: 7086: 7085: 7068: 7067: 7033: 7029: 7025: 7015: 7004: 7002: 7001: 6996: 6991: 6987: 6986: 6985: 6970: 6969: 6954: 6920: 6918: 6917: 6912: 6910: 6909: 6900: 6899: 6877: 6842: 6840: 6839: 6834: 6826: 6812: 6798: 6797: 6792: 6789: 6780: 6772: 6754: 6752: 6751: 6746: 6735: 6732: 6723: 6721: 6720: 6715: 6713: 6712: 6707: 6704: 6694: 6692: 6691: 6686: 6672: 6669: 6664: 6663: 6644: 6642: 6641: 6636: 6624: 6622: 6621: 6616: 6614: 6613: 6600: 6598: 6597: 6592: 6581: 6580: 6556: 6554: 6553: 6548: 6537: 6532: 6510:trace orthogonal 6507: 6501: 6492: 6486: 6484: 6483: 6478: 6476: 6475: 6456: 6454: 6453: 6448: 6440: 6432: 6424: 6398: 6390: 6382: 6359: 6357: 6356: 6351: 6343: 6338: 6318: 6310: 6288: 6286: 6285: 6280: 6278: 6273: 6265: 6260: 6249: 6241: 6230: 6222: 6208: 6205: 6196: 6179: 6150: 6142: 6124: 6118: 6101: 6099: 6098: 6093: 6088: 6087: 6075: 6074: 6062: 6061: 6045: 6041: 6039: 6038: 6033: 6025: 6024: 6019: 6018: 6005: 6004: 5999: 5998: 5981: 5979: 5978: 5973: 5968: 5949: 5947: 5946: 5941: 5921: 5920: 5904: 5902: 5901: 5896: 5888: 5887: 5878: 5870: 5868: 5867: 5855: 5854: 5832: 5830: 5829: 5824: 5813: 5805: 5803: 5802: 5797: 5796: 5783: 5782: 5777: 5776: 5746: 5742: 5738: 5736: 5735: 5730: 5728: 5727: 5722: 5721: 5708: 5707: 5702: 5701: 5680: 5678: 5677: 5672: 5670: 5669: 5664: 5663: 5634: 5632: 5631: 5626: 5621: 5613: 5599: 5591: 5586: 5574: 5572: 5571: 5566: 5558: 5557: 5552: 5551: 5538: 5537: 5532: 5531: 5491: 5489: 5488: 5483: 5481: 5480: 5475: 5474: 5453: 5452: 5445: 5444: 5432: 5430: 5429: 5424: 5419: 5418: 5413: 5412: 5399: 5391: 5386: 5383: 5369: 5361: 5337: 5333: 5329: 5327: 5326: 5321: 5309: 5299: 5295: 5293: 5292: 5287: 5285: 5284: 5279: 5278: 5261: 5259: 5258: 5253: 5245: 5244: 5239: 5238: 5200: 5190: 5170: 5166: 5162: 5116: 5074: 5072: 5071: 5066: 5064: 5063: 5054: 5053: 5049: 5020: 5018: 5017: 5012: 4981: 4979: 4978: 4973: 4944: 4943: 4921: 4919: 4918: 4913: 4902: 4901: 4876: 4874: 4873: 4868: 4866: 4865: 4860: 4841: 4839: 4838: 4833: 4831: 4830: 4819: 4783: 4776: 4768: 4757: 4743: 4732: 4722: 4715: 4711: 4707: 4703: 4695: 4688: 4677: 4673: 4657:similar matrices 4654: 4650: 4642: 4627: 4623: 4602: 4600: 4599: 4594: 4586: 4563: 4536: 4528: 4520: 4508: 4500: 4494: 4490: 4484: 4466: 4458: 4448: 4442: 4428: 4422: 4416: 4404: 4402: 4401: 4396: 4385: 4353: 4309: 4307: 4306: 4301: 4299: 4298: 4292: 4278: 4264: 4263: 4245: 4222:Jacobi's formula 4209: 4207: 4206: 4201: 4193: 4164: 4153: 4129: 4123: 4103: 4101: 4100: 4095: 4090: 4089: 4079: 4064: 4042: 4032: 4004: 3995: 3993: 3992: 3987: 3985: 3984: 3974: 3959: 3931: 3921: 3897: 3879: 3877: 3876: 3871: 3869: 3868: 3846: 3844: 3843: 3838: 3826: 3824: 3823: 3818: 3801:The trace of an 3790: 3788: 3787: 3782: 3768: 3764: 3763: 3758: 3739: 3734: 3729: 3724: 3701: 3697: 3688: 3682: 3678: 3667:nilpotent matrix 3657: 3648:, i.e. one with 3640: 3631: 3629: 3628: 3623: 3621: 3611: 3590: 3586: 3585: 3584: 3578: 3555: 3554: 3553: 3547: 3541: 3540: 3532: 3528: 3527: 3522: 3521: 3520: 3514: 3502: 3490: 3489: 3488: 3482: 3458: 3452: 3429:Hermitian matrix 3418: 3416: 3415: 3410: 3402: 3398: 3397: 3392: 3368: 3361: 3330: 3314: 3310: 3298: 3294: 3288: 3278: 3268: 3262: 3244: 3238: 3228: 3212: 3210: 3209: 3204: 3202: 3201: 3191: 3186: 3165: 3141: 3135: 3117: 3115: 3114: 3109: 3097: 3095: 3094: 3089: 3078: 3060: 3058: 3057: 3052: 3031: 3029: 3028: 3023: 3011: 3009: 3008: 3003: 2991: 2989: 2988: 2983: 2934: 2932: 2931: 2926: 2910: 2908: 2907: 2902: 2900: 2890: 2885: 2861: 2856: 2832: 2805: 2778: 2758: 2734: 2726: 2694: 2692: 2691: 2686: 2678: 2661: 2641: 2633: 2600: 2598: 2597: 2592: 2584: 2579: 2574: 2554: 2549: 2544: 2527: 2523: 2522: 2521: 2515: 2511: 2510: 2505: 2500: 2473: 2468: 2463: 2433: 2431: 2430: 2425: 2417: 2412: 2407: 2387: 2382: 2377: 2346: 2344: 2343: 2338: 2330: 2325: 2320: 2315: 2295: 2290: 2285: 2280: 2260: 2255: 2250: 2245: 2225: 2220: 2215: 2210: 2182:invariant under 2171: 2169: 2168: 2163: 2161: 2156: 2155: 2154: 2148: 2139: 2135: 2134: 2133: 2132: 2126: 2120: 2094: 2092: 2091: 2086: 2084: 2083: 2078: 2069: 2057: 2055: 2054: 2049: 2047: 2046: 2041: 2032: 2013: 2011: 2010: 2005: 1997: 1980: 1976: 1975: 1974: 1966: 1957: 1952: 1930: 1926: 1922: 1917: 1909: 1908: 1900: 1876: 1870: 1864: 1845: 1833: 1827: 1818: 1816: 1815: 1810: 1805: 1800: 1780: 1775: 1751: 1741: 1731: 1725: 1712: 1683: 1677: 1671: 1669: 1668: 1663: 1656: 1655: 1654: 1649: 1645: 1641: 1621: 1620: 1615: 1611: 1607: 1584: 1580: 1579: 1574: 1558: 1554: 1553: 1548: 1529: 1528: 1523: 1519: 1515: 1510: 1461: 1455: 1445: 1430: 1412: 1406: 1391: 1385: 1375: 1371: 1359: 1357: 1356: 1351: 1345: 1344: 1332: 1331: 1318: 1313: 1297: 1292: 1274: 1270: 1269: 1268: 1267: 1261: 1255: 1236: 1232: 1231: 1226: 1225: 1224: 1218: 1198: 1194: 1193: 1192: 1191: 1185: 1179: 1160: 1156: 1155: 1150: 1149: 1148: 1142: 1119:matrices, then: 1118: 1108: 1102: 1095:Hadamard product 1082: 1080: 1079: 1074: 1069: 1065: 1064: 1063: 1057: 1035: 1007: 1000: 994: 988: 986: 985: 980: 978: 971: 944: 920: 900: 876: 868: 836:Basic properties 827: 825: 824: 819: 784: 783: 771: 770: 758: 757: 745: 744: 731: 726: 705: 682: 680: 679: 674: 672: 671: 603: 602: 595: 594: 583: 582: 571: 570: 557: 556: 545: 544: 533: 532: 519: 518: 507: 506: 495: 494: 474: 462: 448: 433: 427: 421: 419: 414: 412: 407: 398: 396: 395: 390: 388: 387: 366: 365: 353: 352: 340: 339: 326: 321: 300: 279: 271: 248:Jacobi's formula 229:similar matrices 226: 220: 214: 187: 176: 166: 156: 148: 125: 118: 114: 111: 105: 103: 62: 38: 30: 21: 10123: 10122: 10118: 10117: 10116: 10114: 10113: 10112: 10088: 10087: 10069: 10066: 10061: 10055: 10054:978-003010567-8 10035: 10019: 10005:Matrix Analysis 9995: 9965: 9961: 9938: 9920:Springer-Verlag 9909: 9908: 9897: 9890: 9877: 9876: 9872: 9843:(2): 8:1–8:34. 9830: 9829: 9825: 9791: 9790: 9786: 9779: 9769:Matrix Analysis 9766: 9765: 9761: 9754: 9741: 9740: 9729: 9720: 9718: 9700: 9666: 9665: 9654: 9645: 9643: 9635: 9634: 9621: 9617: 9612: 9611: 9598: 9584: 9582: 9578: 9572:derived algebra 9539: 9534: 9533: 9531: 9527: 9492: 9487: 9486: 9437: 9436: 9435:(equivalently, 9381: 9380: 9343: 9323: 9318: 9317: 9272: 9268: 9248: 9244: 9228: 9190: 9186: 9170: 9124: 9123: 9099: 9095: 9072: 9068: 9060: 9059: 9034: 9033: 9032:if and only if 8999: 8995: 8987: 8986: 8962: 8957: 8956: 8954: 8950: 8931: 8910: 8909: 8904: 8898: 8897: 8892: 8882: 8865: 8864: 8843: 8842: 8837: 8831: 8830: 8825: 8815: 8795: 8794: 8789: 8783: 8782: 8777: 8767: 8753: 8752: 8750: 8746: 8680: 8676: 8675: 8638: 8625: 8567: 8554: 8484: 8480: 8479: 8428: 8427: 8421: 8417: 8412: 8355: 8347:category theory 8329: 8321: 8314: 8305: 8304:the linear map 8301: 8296: 8284: 8280: 8251: 8235: 8225: 8213: 8197: 8177: 8158: 8140: 8120: 8094: 8083: 8075: 8060: 8048: 8044: 8040: 8010: 7997: 7984: 7971: 7935: 7922: 7909: 7896: 7847: 7846: 7839: 7830: 7821: 7812: 7804: 7801: 7792: 7783: 7770: 7758: 7754: 7750: 7726: 7713: 7700: 7681: 7648: 7633: 7614: 7603: 7599: 7589: 7547: 7546: 7539: 7535: 7532: 7519: 7508: 7503: 7500: 7487: 7476: 7471: 7468: 7460: 7457: 7449: 7446: 7438: 7435: 7427: 7423: 7419: 7407: 7392: 7382: 7378: 7370: 7351: 7337: 7329: 7310: 7297: 7287: 7272: 7264: 7250: 7246: 7243: 7206: 7202: 7191: 7187: 7183: 7175: 7125: 7124: 7120: 7107: 7077: 7076: 7072: 7059: 7036: 7035: 7031: 7027: 7017: 7013: 6977: 6961: 6960: 6956: 6923: 6922: 6901: 6891: 6883: 6882: 6875: 6869:Hilbert–Schmidt 6849: 6847:Generalizations 6787: 6757: 6756: 6726: 6725: 6702: 6697: 6696: 6695:The trace form 6647: 6646: 6627: 6626: 6603: 6602: 6561: 6560: 6514: 6513: 6508:are said to be 6503: 6497: 6491: 6462: 6461: 6460: 6364: 6363: 6298: 6297: 6127: 6126: 6120: 6114: 6107: 6079: 6066: 6053: 6048: 6047: 6043: 6009: 5989: 5984: 5983: 5956: 5955: 5912: 5907: 5906: 5879: 5859: 5846: 5835: 5834: 5787: 5767: 5756: 5755: 5744: 5740: 5712: 5692: 5687: 5686: 5654: 5643: 5642: 5577: 5576: 5542: 5522: 5517: 5516: 5492:, which is the 5465: 5460: 5459: 5450: 5449: 5442: 5441: 5403: 5340: 5339: 5335: 5334:of scalars; as 5331: 5312: 5311: 5301: 5297: 5269: 5264: 5263: 5229: 5218: 5217: 5214: 5206:quadratic forms 5192: 5172: 5168: 5164: 5141: 5114: 5092:diagonal matrix 5088: 5055: 5034: 5023: 5022: 4988: 4987: 4935: 4924: 4923: 4893: 4879: 4878: 4855: 4844: 4843: 4814: 4803: 4802: 4795: 4790: 4778: 4774: 4759: 4745: 4734: 4724: 4717: 4713: 4709: 4705: 4701: 4690: 4679: 4675: 4667: 4652: 4651:and describing 4648: 4640: 4625: 4611: 4608: 4542: 4541: 4534: 4522: 4510: 4506: 4496: 4495:is a region in 4492: 4486: 4475: 4460: 4453: 4444: 4430: 4424: 4418: 4412: 4329: 4328: 4320:of the matrix. 4227: 4226: 4138: 4137: 4132:identity matrix 4125: 4119: 4116: 4081: 4049: 4048: 4038: 4030: 4024: 4018: 4000: 3997: 3976: 3941: 3940: 3927: 3919: 3913: 3907: 3906:entries and if 3893: 3890: 3854: 3849: 3848: 3829: 3828: 3803: 3802: 3799: 3794: 3753: 3749: 3715: 3704: 3703: 3699: 3692: 3684: 3680: 3672: 3665:The trace of a 3649: 3638: 3633: 3619: 3618: 3591: 3573: 3569: 3557: 3556: 3542: 3509: 3508: 3504: 3503: 3491: 3477: 3468: 3467: 3462:The trace of a 3454: 3451: 3443: 3434:The trace of a 3427:The trace of a 3387: 3383: 3372: 3371: 3366: 3363:identity matrix 3353: 3348: 3325: 3319: 3312: 3300: 3296: 3290: 3284: 3270: 3264: 3258: 3255: 3240: 3234: 3227: 3221: 3217: 3214: 3193: 3147: 3146: 3137: 3127: 3124: 3100: 3099: 3063: 3062: 3037: 3036: 3014: 3013: 2994: 2993: 2941: 2940: 2917: 2916: 2898: 2897: 2865: 2840: 2839: 2809: 2786: 2785: 2738: 2704: 2703: 2700: 2615: 2614: 2607: 2495: 2491: 2490: 2486: 2445: 2444: 2359: 2358: 2352:cyclic property 2348: 2192: 2191: 2184:circular shifts 2178: 2176:Cyclic property 2173: 2143: 2121: 2115: 2111: 2100: 2099: 2073: 2060: 2059: 2036: 2023: 2022: 1961: 1944: 1940: 1895: 1894: 1890: 1879: 1878: 1872: 1866: 1851: 1835: 1829: 1823: 1820: 1757: 1756: 1743: 1733: 1727: 1721: 1708: 1690:matrix calculus 1679: 1673: 1627: 1623: 1622: 1593: 1589: 1588: 1569: 1565: 1543: 1539: 1496: 1492: 1491: 1480: 1479: 1457: 1451: 1436: 1414: 1408: 1397: 1387: 1381: 1373: 1363: 1333: 1320: 1256: 1250: 1246: 1213: 1212: 1208: 1180: 1174: 1170: 1137: 1136: 1132: 1121: 1120: 1110: 1104: 1098: 1091: 1052: 1048: 1017: 1016: 1005: 996: 990: 976: 975: 948: 925: 924: 880: 846: 845: 840:The trace is a 838: 833: 775: 762: 749: 733: 687: 686: 666: 665: 657: 652: 646: 645: 640: 635: 629: 628: 623: 618: 608: 597: 596: 586: 584: 574: 572: 562: 559: 558: 548: 546: 536: 534: 524: 521: 520: 510: 508: 498: 496: 486: 479: 465: 464: 458: 455: 446: 440:complex numbers 429: 423: 417: 416: 410: 409: 405: 400: 376: 357: 344: 328: 282: 281: 275: 263: 256: 233:linear operator 222: 216: 204: 181: 168: 162: 150: 144: 126: 115: 109: 106: 63: 61: 51: 39: 28: 23: 22: 15: 12: 11: 5: 10121: 10119: 10111: 10110: 10105: 10100: 10098:Linear algebra 10090: 10089: 10086: 10085: 10065: 10064:External links 10062: 10060: 10059: 10053: 10032: 10031: 10017: 9992: 9991: 9977:New York, NY: 9962: 9960: 9959: 9936: 9912:Quantum groups 9895: 9889:978-1470417048 9888: 9870: 9823: 9784: 9777: 9759: 9752: 9727: 9698: 9652: 9618: 9616: 9613: 9610: 9609: 9596:if and only if 9576: 9553: 9547: 9544: 9525: 9511: 9506: 9500: 9497: 9474: 9471: 9468: 9465: 9462: 9459: 9456: 9453: 9450: 9447: 9444: 9424: 9421: 9418: 9415: 9412: 9409: 9406: 9403: 9400: 9397: 9394: 9391: 9388: 9368: 9365: 9362: 9357: 9351: 9348: 9342: 9337: 9331: 9328: 9305: 9302: 9298: 9294: 9291: 9288: 9284: 9279: 9275: 9271: 9267: 9264: 9260: 9255: 9251: 9247: 9243: 9238: 9235: 9231: 9226: 9222: 9217: 9213: 9209: 9205: 9200: 9197: 9193: 9189: 9185: 9180: 9177: 9173: 9168: 9164: 9159: 9156: 9153: 9149: 9145: 9142: 9138: 9134: 9131: 9111: 9106: 9102: 9098: 9094: 9091: 9087: 9082: 9079: 9075: 9071: 9067: 9047: 9044: 9041: 9021: 9018: 9014: 9009: 9006: 9002: 8998: 8994: 8972: 8969: 8965: 8948: 8919: 8914: 8908: 8905: 8903: 8900: 8899: 8896: 8893: 8891: 8888: 8887: 8885: 8880: 8876: 8873: 8852: 8847: 8841: 8838: 8836: 8833: 8832: 8829: 8826: 8824: 8821: 8820: 8818: 8813: 8809: 8804: 8799: 8793: 8790: 8788: 8785: 8784: 8781: 8778: 8776: 8773: 8772: 8770: 8765: 8761: 8744: 8732: 8729: 8725: 8720: 8716: 8713: 8710: 8707: 8702: 8699: 8694: 8689: 8684: 8679: 8672: 8667: 8664: 8661: 8657: 8653: 8648: 8645: 8641: 8635: 8632: 8628: 8622: 8617: 8614: 8611: 8607: 8601: 8596: 8593: 8590: 8586: 8582: 8577: 8574: 8570: 8564: 8561: 8557: 8551: 8546: 8543: 8540: 8536: 8530: 8525: 8522: 8519: 8515: 8511: 8506: 8503: 8498: 8493: 8488: 8483: 8476: 8471: 8468: 8465: 8461: 8457: 8454: 8450: 8445: 8441: 8438: 8435: 8424:matrix product 8414: 8413: 8411: 8408: 8407: 8406: 8401: 8396: 8394:Trace identity 8391: 8386: 8381: 8379:Singular trace 8376: 8371: 8366: 8361: 8354: 8351: 8339:evaluation map 8310: 8037: 8036: 8025: 8022: 8017: 8013: 8009: 8004: 8000: 7996: 7991: 7987: 7983: 7978: 7974: 7968: 7964: 7958: 7954: 7950: 7947: 7942: 7938: 7934: 7929: 7925: 7921: 7916: 7912: 7908: 7903: 7899: 7893: 7889: 7883: 7879: 7875: 7872: 7869: 7866: 7863: 7860: 7857: 7854: 7835: 7826: 7817: 7808: 7797: 7788: 7779: 7766: 7747: 7746: 7733: 7729: 7725: 7720: 7716: 7712: 7707: 7703: 7699: 7696: 7693: 7688: 7684: 7678: 7674: 7668: 7664: 7660: 7655: 7651: 7646: 7640: 7636: 7632: 7629: 7626: 7621: 7617: 7611: 7607: 7602: 7596: 7592: 7586: 7582: 7578: 7575: 7572: 7569: 7566: 7563: 7560: 7557: 7554: 7528: 7515: 7496: 7483: 7464: 7453: 7442: 7431: 7285:tensor product 7271:to the scalar 7242: 7239: 7154: 7150: 7146: 7143: 7140: 7137: 7132: 7128: 7123: 7119: 7114: 7110: 7106: 7102: 7098: 7095: 7092: 7089: 7084: 7080: 7075: 7071: 7066: 7062: 7058: 7055: 7052: 7049: 7046: 7043: 6994: 6990: 6984: 6980: 6976: 6973: 6968: 6964: 6959: 6953: 6949: 6945: 6942: 6939: 6936: 6933: 6930: 6908: 6904: 6898: 6894: 6890: 6867:is called the 6865:Frobenius norm 6861:Hilbert spaces 6848: 6845: 6832: 6829: 6825: 6821: 6818: 6815: 6811: 6807: 6804: 6801: 6796: 6786: 6783: 6779: 6775: 6771: 6767: 6764: 6744: 6741: 6738: 6711: 6684: 6681: 6678: 6675: 6667: 6662: 6657: 6654: 6634: 6612: 6590: 6587: 6584: 6579: 6574: 6571: 6568: 6546: 6543: 6540: 6536: 6531: 6527: 6524: 6521: 6487: 6474: 6471: 6446: 6443: 6439: 6435: 6431: 6427: 6423: 6419: 6416: 6413: 6410: 6407: 6404: 6401: 6397: 6393: 6389: 6385: 6381: 6377: 6374: 6371: 6349: 6346: 6342: 6337: 6333: 6330: 6327: 6324: 6321: 6317: 6313: 6309: 6305: 6289:is called the 6277: 6272: 6268: 6264: 6259: 6255: 6252: 6248: 6244: 6240: 6236: 6233: 6229: 6225: 6221: 6217: 6214: 6211: 6202: 6199: 6195: 6191: 6188: 6185: 6182: 6178: 6174: 6171: 6168: 6165: 6162: 6159: 6156: 6153: 6149: 6145: 6141: 6137: 6134: 6106: 6105:Bilinear forms 6103: 6091: 6086: 6082: 6078: 6073: 6069: 6065: 6060: 6056: 6031: 6028: 6023: 6017: 6014: 6008: 6003: 5997: 5994: 5971: 5967: 5963: 5939: 5936: 5933: 5930: 5927: 5924: 5919: 5915: 5894: 5891: 5886: 5882: 5876: 5873: 5866: 5862: 5858: 5853: 5849: 5845: 5842: 5822: 5819: 5816: 5811: 5808: 5801: 5795: 5792: 5786: 5781: 5775: 5772: 5766: 5763: 5743:. Dividing by 5726: 5720: 5717: 5711: 5706: 5700: 5697: 5668: 5662: 5659: 5653: 5650: 5624: 5620: 5616: 5612: 5608: 5605: 5602: 5597: 5594: 5589: 5585: 5564: 5561: 5556: 5550: 5547: 5541: 5536: 5530: 5527: 5515:decomposition 5479: 5473: 5470: 5422: 5417: 5411: 5408: 5402: 5398: 5394: 5390: 5381: 5378: 5375: 5372: 5368: 5364: 5360: 5356: 5353: 5350: 5347: 5319: 5283: 5277: 5274: 5251: 5248: 5243: 5237: 5234: 5228: 5225: 5213: 5210: 5099:complex matrix 5087: 5084: 5062: 5058: 5052: 5048: 5044: 5041: 5037: 5033: 5030: 5010: 5007: 5004: 5001: 4998: 4995: 4971: 4968: 4965: 4962: 4959: 4956: 4953: 4950: 4947: 4942: 4938: 4934: 4931: 4911: 4908: 4905: 4900: 4896: 4892: 4889: 4886: 4864: 4859: 4854: 4851: 4829: 4826: 4823: 4818: 4813: 4810: 4794: 4791: 4789: 4786: 4607: 4604: 4592: 4589: 4585: 4581: 4578: 4575: 4572: 4569: 4566: 4562: 4558: 4555: 4552: 4549: 4394: 4391: 4388: 4384: 4380: 4377: 4374: 4371: 4368: 4365: 4362: 4359: 4356: 4352: 4348: 4345: 4342: 4339: 4336: 4297: 4291: 4287: 4284: 4281: 4277: 4273: 4270: 4267: 4262: 4257: 4254: 4251: 4248: 4244: 4240: 4237: 4234: 4199: 4196: 4192: 4189: 4185: 4182: 4179: 4176: 4173: 4170: 4167: 4163: 4160: 4156: 4152: 4148: 4145: 4115: 4112: 4093: 4088: 4084: 4078: 4074: 4070: 4067: 4063: 4059: 4056: 4028: 4022: 3983: 3979: 3973: 3969: 3965: 3962: 3958: 3954: 3951: 3948: 3938: 3917: 3911: 3889: 3886: 3867: 3864: 3861: 3857: 3836: 3816: 3813: 3810: 3798: 3795: 3793: 3792: 3780: 3777: 3774: 3771: 3767: 3762: 3757: 3752: 3748: 3745: 3742: 3738: 3733: 3728: 3723: 3718: 3714: 3711: 3689:is nilpotent. 3663: 3642: 3641:is idempotent. 3636: 3617: 3614: 3610: 3606: 3603: 3600: 3597: 3594: 3592: 3589: 3583: 3577: 3572: 3568: 3565: 3562: 3559: 3558: 3552: 3546: 3539: 3536: 3531: 3526: 3519: 3513: 3507: 3501: 3497: 3494: 3492: 3487: 3481: 3476: 3475: 3460: 3447: 3432: 3425: 3420:This leads to 3408: 3405: 3401: 3396: 3391: 3386: 3382: 3379: 3349: 3347: 3344: 3321: 3254: 3251: 3223: 3219: 3200: 3196: 3190: 3185: 3182: 3179: 3175: 3171: 3168: 3164: 3160: 3157: 3154: 3144: 3123: 3120: 3107: 3087: 3084: 3081: 3077: 3073: 3070: 3050: 3047: 3044: 3021: 3001: 2981: 2978: 2975: 2972: 2969: 2966: 2963: 2960: 2957: 2954: 2951: 2948: 2924: 2896: 2893: 2889: 2884: 2880: 2877: 2874: 2871: 2868: 2866: 2864: 2860: 2855: 2851: 2848: 2845: 2842: 2841: 2838: 2835: 2831: 2827: 2824: 2821: 2818: 2815: 2812: 2810: 2808: 2804: 2800: 2797: 2794: 2791: 2788: 2787: 2784: 2781: 2777: 2773: 2770: 2767: 2764: 2761: 2757: 2753: 2750: 2747: 2744: 2741: 2739: 2737: 2733: 2729: 2725: 2721: 2718: 2715: 2712: 2711: 2699: 2696: 2684: 2681: 2677: 2673: 2670: 2667: 2664: 2660: 2656: 2653: 2650: 2647: 2644: 2640: 2636: 2632: 2628: 2625: 2622: 2606: 2603: 2590: 2587: 2583: 2578: 2573: 2569: 2566: 2563: 2560: 2557: 2553: 2548: 2543: 2539: 2536: 2533: 2530: 2526: 2520: 2514: 2509: 2504: 2499: 2494: 2489: 2485: 2482: 2479: 2476: 2472: 2467: 2462: 2458: 2455: 2452: 2423: 2420: 2416: 2411: 2406: 2402: 2399: 2396: 2393: 2390: 2386: 2381: 2376: 2372: 2369: 2366: 2336: 2333: 2329: 2324: 2319: 2314: 2310: 2307: 2304: 2301: 2298: 2294: 2289: 2284: 2279: 2275: 2272: 2269: 2266: 2263: 2259: 2254: 2249: 2244: 2240: 2237: 2234: 2231: 2228: 2224: 2219: 2214: 2209: 2205: 2202: 2199: 2189: 2177: 2174: 2160: 2147: 2142: 2138: 2125: 2119: 2114: 2110: 2107: 2097: 2082: 2077: 2072: 2068: 2045: 2040: 2035: 2031: 2003: 2000: 1996: 1992: 1989: 1986: 1983: 1979: 1973: 1970: 1965: 1960: 1956: 1951: 1947: 1943: 1939: 1936: 1933: 1929: 1925: 1921: 1916: 1912: 1907: 1904: 1899: 1893: 1889: 1886: 1808: 1804: 1799: 1795: 1792: 1789: 1786: 1783: 1779: 1774: 1770: 1767: 1764: 1754: 1661: 1653: 1648: 1644: 1640: 1636: 1633: 1630: 1626: 1619: 1614: 1610: 1606: 1602: 1599: 1596: 1592: 1587: 1583: 1578: 1573: 1568: 1564: 1561: 1557: 1552: 1547: 1542: 1538: 1535: 1532: 1527: 1522: 1518: 1514: 1509: 1505: 1502: 1499: 1495: 1490: 1487: 1472:Frobenius norm 1349: 1343: 1340: 1336: 1330: 1327: 1323: 1317: 1312: 1309: 1306: 1302: 1296: 1291: 1288: 1285: 1281: 1277: 1273: 1266: 1260: 1254: 1249: 1245: 1242: 1239: 1235: 1230: 1223: 1217: 1211: 1207: 1204: 1201: 1197: 1190: 1184: 1178: 1173: 1169: 1166: 1163: 1159: 1154: 1147: 1141: 1135: 1131: 1128: 1090: 1087: 1072: 1068: 1062: 1056: 1051: 1047: 1044: 1041: 1038: 1034: 1030: 1027: 1024: 974: 970: 966: 963: 960: 957: 954: 951: 949: 947: 943: 939: 936: 933: 930: 927: 926: 923: 919: 915: 912: 909: 906: 903: 899: 895: 892: 889: 886: 883: 881: 879: 875: 871: 867: 863: 860: 857: 854: 853: 842:linear mapping 837: 834: 832: 829: 817: 814: 811: 808: 805: 802: 799: 796: 793: 790: 787: 782: 778: 774: 769: 765: 761: 756: 752: 748: 743: 740: 736: 730: 725: 722: 719: 715: 711: 708: 704: 700: 697: 694: 670: 664: 661: 658: 656: 653: 651: 648: 647: 644: 641: 639: 636: 634: 631: 630: 627: 624: 622: 619: 617: 614: 613: 611: 606: 601: 593: 589: 585: 581: 577: 573: 569: 565: 561: 560: 555: 551: 547: 543: 539: 535: 531: 527: 523: 522: 517: 513: 509: 505: 501: 497: 493: 489: 485: 484: 482: 477: 473: 454: 451: 403: 386: 383: 379: 375: 372: 369: 364: 360: 356: 351: 347: 343: 338: 335: 331: 325: 320: 317: 314: 310: 306: 303: 299: 295: 292: 289: 280:is defined as 255: 252: 194:Pauli Matrices 134:linear algebra 128: 127: 42: 40: 33: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 10120: 10109: 10106: 10104: 10103:Matrix theory 10101: 10099: 10096: 10095: 10093: 10082: 10078: 10077: 10072: 10068: 10067: 10063: 10056: 10050: 10046: 10042: 10038: 10034: 10033: 10028: 10024: 10020: 10014: 10010: 10006: 10002: 10001:Johnson, C.R. 9998: 9994: 9993: 9988: 9984: 9980: 9976: 9972: 9968: 9964: 9963: 9955: 9951: 9947: 9943: 9939: 9937:0-387-94370-6 9933: 9929: 9925: 9921: 9917: 9913: 9906: 9904: 9902: 9900: 9896: 9891: 9885: 9881: 9874: 9871: 9866: 9862: 9858: 9854: 9850: 9846: 9842: 9838: 9834: 9827: 9824: 9819: 9815: 9811: 9807: 9803: 9799: 9795: 9788: 9785: 9780: 9778:9780521839402 9774: 9770: 9763: 9760: 9755: 9753:9780070605022 9749: 9745: 9738: 9736: 9734: 9732: 9728: 9717: 9713: 9709: 9705: 9701: 9699:1-58488-347-2 9695: 9691: 9687: 9683: 9679: 9678: 9673: 9669: 9663: 9661: 9659: 9657: 9653: 9642: 9638: 9632: 9630: 9628: 9626: 9624: 9620: 9614: 9605: 9601: 9597: 9592: 9588: 9580: 9577: 9573: 9569: 9551: 9529: 9526: 9509: 9504: 9472: 9469: 9460: 9457: 9454: 9445: 9442: 9419: 9416: 9410: 9407: 9404: 9398: 9395: 9389: 9386: 9366: 9363: 9360: 9355: 9340: 9335: 9303: 9289: 9286: 9282: 9277: 9273: 9269: 9265: 9262: 9258: 9253: 9249: 9245: 9241: 9236: 9233: 9215: 9211: 9207: 9203: 9198: 9195: 9191: 9187: 9183: 9178: 9175: 9157: 9154: 9151: 9147: 9143: 9129: 9109: 9104: 9100: 9096: 9092: 9089: 9085: 9080: 9077: 9073: 9069: 9065: 9045: 9042: 9039: 9019: 9016: 9012: 9007: 9004: 9000: 8996: 8992: 8970: 8967: 8963: 8952: 8949: 8943: 8939: 8935: 8917: 8912: 8906: 8901: 8894: 8889: 8883: 8878: 8850: 8845: 8839: 8834: 8827: 8822: 8816: 8811: 8802: 8797: 8791: 8786: 8779: 8774: 8768: 8763: 8748: 8745: 8730: 8711: 8708: 8705: 8700: 8697: 8692: 8677: 8670: 8665: 8662: 8659: 8655: 8651: 8646: 8643: 8639: 8633: 8630: 8626: 8620: 8615: 8612: 8609: 8605: 8599: 8594: 8591: 8588: 8584: 8580: 8575: 8572: 8568: 8562: 8559: 8555: 8549: 8544: 8541: 8538: 8534: 8528: 8523: 8520: 8517: 8513: 8509: 8504: 8501: 8496: 8481: 8474: 8469: 8466: 8463: 8459: 8455: 8436: 8433: 8425: 8419: 8416: 8409: 8405: 8402: 8400: 8397: 8395: 8392: 8390: 8387: 8385: 8382: 8380: 8377: 8375: 8372: 8370: 8367: 8365: 8362: 8360: 8357: 8356: 8352: 8350: 8348: 8344: 8340: 8335: 8328: 8324: 8319: 8313: 8308: 8295: 8291: 8287: 8277: 8274: 8270: 8266: 8262: 8258: 8254: 8247: 8243: 8239: 8232: 8228: 8221: 8217: 8209: 8205: 8201: 8193: 8189: 8185: 8181: 8173: 8169: 8165: 8161: 8155: 8151: 8147: 8143: 8136: 8132: 8128: 8124: 8117: 8113: 8109: 8105: 8101: 8097: 8090: 8086: 8079: 8072: 8068: 8064: 8056: 8052: 8023: 8015: 8011: 8002: 7998: 7989: 7985: 7976: 7972: 7966: 7962: 7956: 7952: 7948: 7940: 7936: 7927: 7923: 7914: 7910: 7901: 7897: 7891: 7887: 7881: 7877: 7873: 7867: 7864: 7861: 7855: 7852: 7845: 7844: 7843: 7838: 7834: 7829: 7825: 7820: 7816: 7811: 7807: 7800: 7796: 7791: 7787: 7782: 7778: 7774: 7769: 7765: 7761: 7731: 7727: 7718: 7714: 7705: 7701: 7694: 7686: 7682: 7676: 7672: 7666: 7662: 7658: 7653: 7649: 7644: 7638: 7634: 7627: 7619: 7615: 7609: 7605: 7600: 7594: 7590: 7584: 7580: 7576: 7570: 7561: 7558: 7555: 7545: 7544: 7543: 7531: 7527: 7523: 7518: 7514: 7506: 7499: 7495: 7491: 7486: 7482: 7474: 7467: 7463: 7456: 7452: 7445: 7441: 7434: 7430: 7415: 7411: 7404: 7400: 7396: 7389: 7385: 7376: 7366: 7362: 7358: 7354: 7348: 7344: 7340: 7333: 7325: 7321: 7317: 7313: 7307: 7304: 7300: 7294: 7290: 7286: 7282: 7276: 7268: 7261: 7257: 7253: 7240: 7238: 7236: 7231: 7229: 7228:superalgebras 7225: 7220: 7217: 7213: 7209: 7199: 7195: 7182:over a field 7181: 7178:is a general 7172: 7170: 7165: 7152: 7148: 7141: 7135: 7130: 7126: 7121: 7117: 7112: 7108: 7104: 7100: 7093: 7087: 7082: 7078: 7073: 7069: 7064: 7060: 7056: 7050: 7044: 7041: 7024: 7020: 7011: 7010:partial trace 7006: 6992: 6988: 6982: 6978: 6974: 6971: 6966: 6962: 6957: 6951: 6947: 6943: 6937: 6931: 6928: 6906: 6896: 6892: 6881: 6872: 6870: 6866: 6862: 6858: 6854: 6846: 6844: 6816: 6802: 6794: 6784: 6773: 6762: 6739: 6709: 6682: 6676: 6655: 6652: 6632: 6585: 6582: 6572: 6569: 6557: 6544: 6541: 6522: 6519: 6511: 6506: 6500: 6496:Two matrices 6494: 6490: 6457: 6444: 6425: 6411: 6408: 6405: 6391: 6372: 6369: 6360: 6347: 6328: 6325: 6311: 6294: 6292: 6266: 6253: 6242: 6231: 6212: 6209: 6186: 6183: 6169: 6166: 6160: 6157: 6154: 6143: 6132: 6123: 6117: 6112: 6111:bilinear form 6104: 6102: 6089: 6084: 6080: 6076: 6071: 6067: 6063: 6058: 6054: 6029: 6026: 6021: 6006: 6001: 5969: 5965: 5961: 5953: 5934: 5925: 5922: 5917: 5913: 5892: 5884: 5880: 5864: 5860: 5851: 5847: 5840: 5820: 5814: 5809: 5799: 5779: 5761: 5753: 5748: 5724: 5704: 5684: 5666: 5648: 5640: 5635: 5622: 5603: 5600: 5595: 5592: 5562: 5559: 5554: 5539: 5534: 5514: 5509: 5507: 5506:infinitesimal 5503: 5499: 5495: 5477: 5458: 5454: 5446: 5438: 5433: 5420: 5415: 5400: 5392: 5379: 5376: 5362: 5348: 5345: 5317: 5308: 5304: 5281: 5249: 5241: 5226: 5223: 5211: 5209: 5207: 5202: 5199: 5195: 5188: 5184: 5180: 5176: 5160: 5156: 5152: 5148: 5144: 5139: 5135: 5130: 5128: 5124: 5120: 5112: 5108: 5104: 5100: 5095: 5093: 5085: 5083: 5080: 5078: 5060: 5050: 5046: 5042: 5039: 5035: 5031: 5005: 5002: 4999: 4993: 4983: 4966: 4960: 4957: 4954: 4948: 4945: 4940: 4936: 4929: 4909: 4906: 4898: 4894: 4890: 4884: 4862: 4852: 4849: 4827: 4824: 4821: 4811: 4808: 4798: 4792: 4787: 4785: 4781: 4772: 4766: 4762: 4756: 4752: 4748: 4741: 4737: 4731: 4727: 4720: 4699: 4693: 4686: 4682: 4671: 4665: 4660: 4658: 4646: 4638: 4634: 4631: 4622: 4618: 4614: 4605: 4603: 4590: 4579: 4573: 4570: 4567: 4553: 4550: 4547: 4538: 4532: 4526: 4518: 4514: 4504: 4499: 4489: 4482: 4478: 4473: 4468: 4464: 4457: 4452: 4447: 4441: 4437: 4433: 4427: 4421: 4415: 4410: 4409:vector fields 4405: 4392: 4375: 4372: 4366: 4363: 4360: 4343: 4340: 4326: 4321: 4319: 4315: 4310: 4285: 4282: 4268: 4265: 4255: 4252: 4249: 4232: 4224: 4223: 4219: 4215: 4210: 4197: 4180: 4177: 4174: 4171: 4168: 4154: 4135: 4133: 4128: 4122: 4113: 4111: 4109: 4104: 4091: 4086: 4082: 4076: 4072: 4068: 4046: 4041: 4036: 4031: 4021: 4016: 4012: 4008: 4003: 3996: 3981: 3977: 3971: 3967: 3963: 3949: 3946: 3937: 3935: 3930: 3925: 3920: 3910: 3905: 3901: 3896: 3887: 3885: 3883: 3865: 3862: 3859: 3855: 3834: 3814: 3811: 3808: 3796: 3778: 3775: 3772: 3769: 3765: 3760: 3750: 3746: 3743: 3740: 3736: 3731: 3726: 3716: 3712: 3709: 3695: 3690: 3687: 3676: 3668: 3664: 3661: 3656: 3652: 3647: 3643: 3639: 3615: 3601: 3598: 3595: 3593: 3587: 3570: 3566: 3563: 3537: 3534: 3529: 3505: 3495: 3493: 3465: 3461: 3457: 3450: 3446: 3441: 3437: 3433: 3430: 3426: 3423: 3419: 3406: 3403: 3399: 3394: 3384: 3380: 3377: 3364: 3360: 3356: 3351: 3350: 3345: 3343: 3341: 3336: 3334: 3329: 3324: 3318: 3308: 3304: 3293: 3287: 3282: 3277: 3273: 3267: 3261: 3252: 3250: 3248: 3243: 3237: 3232: 3226: 3222:, ..., λ 3213: 3198: 3194: 3188: 3183: 3180: 3177: 3173: 3169: 3155: 3152: 3143: 3140: 3134: 3130: 3121: 3119: 3105: 3085: 3082: 3068: 3048: 3045: 3042: 3033: 3019: 2999: 2979: 2973: 2970: 2964: 2961: 2955: 2952: 2946: 2938: 2922: 2914: 2894: 2875: 2872: 2869: 2867: 2846: 2843: 2836: 2822: 2819: 2816: 2813: 2811: 2798: 2792: 2789: 2782: 2768: 2765: 2762: 2748: 2745: 2742: 2740: 2727: 2716: 2713: 2697: 2695: 2682: 2668: 2665: 2651: 2648: 2645: 2634: 2623: 2620: 2612: 2604: 2602: 2588: 2564: 2561: 2558: 2534: 2531: 2528: 2524: 2512: 2492: 2487: 2483: 2480: 2477: 2453: 2450: 2442: 2439: 2434: 2421: 2397: 2394: 2391: 2367: 2364: 2355: 2353: 2347: 2334: 2305: 2302: 2299: 2270: 2267: 2264: 2235: 2232: 2229: 2200: 2197: 2188: 2186: 2185: 2175: 2172: 2140: 2136: 2112: 2108: 2105: 2096: 2080: 2070: 2043: 2033: 2019: 2017: 2001: 1987: 1984: 1981: 1977: 1971: 1968: 1941: 1937: 1934: 1931: 1927: 1905: 1902: 1891: 1887: 1884: 1875: 1869: 1862: 1859: 1855: 1849: 1843: 1839: 1832: 1826: 1819: 1790: 1787: 1784: 1765: 1762: 1753: 1750: 1746: 1740: 1736: 1730: 1724: 1718: 1716: 1711: 1706: 1702: 1697: 1695: 1691: 1687: 1682: 1676: 1659: 1651: 1646: 1631: 1628: 1624: 1617: 1612: 1597: 1594: 1590: 1585: 1581: 1576: 1566: 1562: 1559: 1555: 1550: 1540: 1536: 1533: 1530: 1525: 1520: 1500: 1497: 1493: 1488: 1485: 1477: 1473: 1469: 1465: 1460: 1454: 1449: 1443: 1440: 1434: 1433:inner product 1428: 1425: 1421: 1418: 1411: 1404: 1401: 1395: 1390: 1384: 1379: 1378:vectorization 1370: 1366: 1360: 1347: 1341: 1338: 1334: 1328: 1325: 1321: 1315: 1310: 1307: 1304: 1300: 1294: 1289: 1286: 1283: 1279: 1275: 1271: 1247: 1243: 1240: 1237: 1233: 1209: 1205: 1202: 1199: 1195: 1171: 1167: 1164: 1161: 1157: 1133: 1129: 1126: 1117: 1113: 1107: 1101: 1096: 1088: 1086: 1083: 1070: 1066: 1049: 1045: 1042: 1039: 1025: 1022: 1014: 1009: 1004: 999: 993: 961: 958: 955: 952: 950: 937: 931: 928: 910: 907: 904: 890: 887: 884: 882: 869: 858: 855: 843: 835: 830: 828: 815: 812: 806: 803: 797: 794: 791: 788: 785: 780: 776: 772: 767: 763: 759: 754: 750: 746: 741: 738: 734: 728: 723: 720: 717: 713: 709: 695: 692: 683: 668: 662: 659: 654: 649: 642: 637: 632: 625: 620: 615: 609: 604: 599: 591: 587: 579: 575: 567: 563: 553: 549: 541: 537: 529: 525: 515: 511: 503: 499: 491: 487: 480: 475: 461: 452: 450: 445: 441: 437: 432: 426: 406: 384: 381: 377: 373: 370: 367: 362: 358: 354: 349: 345: 341: 336: 333: 329: 323: 318: 315: 312: 308: 304: 290: 287: 278: 274: 273:square matrix 270: 266: 261: 253: 251: 249: 245: 240: 238: 234: 230: 225: 219: 212: 208: 202: 197: 195: 191: 185: 178: 175: 171: 165: 160: 159:main diagonal 154: 147: 143: 142:square matrix 139: 135: 124: 121: 113: 110:November 2023 102: 99: 95: 92: 88: 85: 81: 78: 74: 71: –  70: 66: 65:Find sources: 59: 55: 49: 48: 43:This article 41: 37: 32: 31: 19: 10108:Trace theory 10074: 10040: 10004: 9975:Hirsch, K.A. 9970: 9911: 9879: 9873: 9840: 9836: 9826: 9801: 9797: 9787: 9768: 9762: 9743: 9719:. Retrieved 9675: 9644:. Retrieved 9640: 9603: 9599: 9590: 9586: 9579: 9528: 8951: 8941: 8937: 8933: 8747: 8418: 8338: 8333: 8326: 8322: 8317: 8311: 8306: 8293: 8289: 8285: 8278: 8272: 8268: 8264: 8260: 8256: 8252: 8245: 8241: 8237: 8230: 8226: 8219: 8215: 8207: 8203: 8199: 8191: 8187: 8183: 8179: 8171: 8167: 8163: 8159: 8153: 8149: 8145: 8141: 8134: 8130: 8126: 8122: 8115: 8111: 8107: 8103: 8099: 8095: 8088: 8084: 8077: 8073: 8066: 8062: 8054: 8050: 8038: 7836: 7832: 7827: 7823: 7818: 7814: 7809: 7805: 7798: 7794: 7789: 7785: 7780: 7776: 7772: 7767: 7763: 7759: 7748: 7529: 7525: 7521: 7516: 7512: 7504: 7497: 7493: 7489: 7484: 7480: 7472: 7465: 7461: 7454: 7450: 7443: 7439: 7432: 7428: 7413: 7409: 7405: 7398: 7394: 7387: 7383: 7364: 7360: 7356: 7352: 7346: 7342: 7338: 7331: 7323: 7319: 7315: 7311: 7308: 7302: 7298: 7292: 7288: 7274: 7266: 7259: 7255: 7251: 7244: 7232: 7221: 7215: 7211: 7207: 7197: 7193: 7173: 7166: 7022: 7018: 7007: 6873: 6850: 6625:, such that 6558: 6509: 6504: 6498: 6495: 6488: 6458: 6361: 6295: 6291:Killing form 6121: 6115: 6108: 5750:In terms of 5749: 5636: 5510: 5505: 5448: 5440: 5434: 5306: 5302: 5215: 5203: 5197: 5193: 5186: 5182: 5178: 5174: 5158: 5154: 5150: 5146: 5142: 5131: 5122: 5118: 5110: 5096: 5089: 5086:Applications 5081: 4985: 4800: 4796: 4779: 4770: 4764: 4760: 4754: 4750: 4746: 4739: 4735: 4729: 4725: 4718: 4691: 4684: 4680: 4669: 4661: 4633:vector space 4628:is a finite- 4620: 4616: 4612: 4609: 4539: 4524: 4516: 4512: 4509:is given by 4497: 4487: 4480: 4476: 4469: 4462: 4455: 4445: 4439: 4435: 4431: 4425: 4419: 4413: 4406: 4322: 4314:differential 4311: 4225: 4211: 4136: 4130:denotes the 4126: 4120: 4117: 4105: 4044: 4039: 4026: 4019: 4001: 3998: 3939: 3928: 3915: 3908: 3894: 3891: 3800: 3693: 3685: 3674: 3670: 3654: 3650: 3634: 3455: 3453:is 1 if the 3448: 3444: 3440:fixed points 3370: 3358: 3354: 3337: 3327: 3322: 3317:Lie algebras 3306: 3302: 3291: 3285: 3275: 3271: 3265: 3259: 3256: 3241: 3235: 3224: 3215: 3145: 3138: 3132: 3128: 3125: 3034: 2701: 2608: 2437: 2435: 2356: 2351: 2349: 2190: 2181: 2179: 2098: 2020: 1873: 1867: 1860: 1857: 1853: 1841: 1837: 1830: 1824: 1821: 1755: 1748: 1744: 1738: 1734: 1728: 1722: 1719: 1709: 1698: 1680: 1674: 1464:vector space 1458: 1452: 1441: 1438: 1426: 1423: 1419: 1416: 1409: 1402: 1399: 1388: 1382: 1368: 1364: 1361: 1115: 1111: 1105: 1099: 1092: 1084: 1010: 997: 991: 839: 684: 459: 456: 436:real numbers 430: 424: 401: 276: 268: 264: 259: 257: 241: 237:vector space 223: 217: 210: 206: 198: 189: 183: 179: 173: 169: 163: 152: 145: 137: 131: 116: 107: 97: 90: 83: 76: 64: 52:Please help 47:verification 44: 8955:Proof: Let 8389:Trace class 8369:Field trace 6853:trace class 6206:where  5494:Lie algebra 5212:Lie algebra 5163:of a group 5107:determinant 4630:dimensional 4218:determinant 4035:determinant 4013:, an upper 4011:Jordan form 3924:eigenvalues 3632:The matrix 3231:eigenvalues 3142:, there is 2187:, that is, 1394:dot product 844:. That is, 244:determinant 201:eigenvalues 10092:Categories 10037:Strang, G. 9997:Horn, R.A. 9954:0808.17003 9721:2020-09-09 9716:1079.00009 9646:2020-09-09 9615:References 8337:is called 7803:has trace 7470:such that 7224:supertrace 7192:tr : 5952:Lie groups 5754:, one has 5513:direct sum 5451:trace free 5134:characters 5123:loxodromic 4922:, we have 4698:dual space 4451:divergence 4214:derivative 4005:is always 3299:, because 3295:vanishes: 3281:commutator 3257:When both 3126:Given any 2018:as below. 1694:statistics 1001:, and all 831:Properties 422:column of 254:Definition 149:, denoted 80:newspapers 10081:EMS Press 10039:(2004) . 10003:(2013) . 9857:0004-5411 9818:0361-0918 9670:(2003) . 9446:⁡ 9411:⁡ 9390:⁡ 9361:⊕ 9290:⁡ 9212:∑ 9148:∑ 9043:≠ 8712:⁡ 8656:∑ 8606:∑ 8585:∑ 8535:∑ 8514:∑ 8460:∑ 8437:⁡ 7999:ψ 7973:φ 7963:∑ 7953:∑ 7924:φ 7898:ψ 7888:∑ 7878:∑ 7865:∘ 7856:⁡ 7702:φ 7683:ψ 7673:∑ 7663:∑ 7616:ψ 7606:∑ 7591:φ 7581:∑ 7559:∘ 7341:↦ φ( 7334:, φ) 7269:, φ) 7136:⁡ 7118:⁡ 7088:⁡ 7070:⁡ 7045:⁡ 6948:∑ 6932:⁡ 6817:ρ 6803:ρ 6763:ϕ 6666:→ 6653:ρ 6633:ρ 6570:ρ 6523:⁡ 6412:⁡ 6373:⁡ 6329:⁡ 6323:↦ 6267:− 6213:⁡ 6187:⁡ 6170:⁡ 6161:⁡ 6085:∗ 6077:× 6064:≠ 6027:⊕ 5929:∖ 5918:∗ 5890:→ 5885:∗ 5872:→ 5857:→ 5844:→ 5818:→ 5807:→ 5785:→ 5765:→ 5710:→ 5652:→ 5604:⁡ 5588:↦ 5560:⊕ 5443:traceless 5401:∈ 5349:⁡ 5247:→ 5111:parabolic 5040:− 5032:± 4853:∈ 4825:× 4812:∈ 4574:⁡ 4554:⁡ 4376:⁡ 4367:⁡ 4344:⁡ 4283:⋅ 4269:⁡ 4256:⁡ 4188:Δ 4181:⁡ 4169:≈ 4159:Δ 4083:λ 4073:∏ 3978:λ 3968:∑ 3950:⁡ 3863:− 3812:× 3776:≡ 3747:⁡ 3713:⁡ 3669:is zero. 3602:⁡ 3567:⁡ 3561:⟹ 3535:− 3381:⁡ 3195:λ 3174:∑ 3156:⁡ 3046:× 2876:⁡ 2847:⁡ 2823:⁡ 2793:⁡ 2769:⁡ 2749:⁡ 2717:⁡ 2669:⁡ 2652:⁡ 2635:⊗ 2624:⁡ 2565:⁡ 2535:⁡ 2484:⁡ 2454:⁡ 2441:symmetric 2398:⁡ 2392:≠ 2368:⁡ 2306:⁡ 2271:⁡ 2236:⁡ 2201:⁡ 2109:⁡ 2071:∈ 2034:∈ 1988:⁡ 1969:− 1938:⁡ 1903:− 1888:⁡ 1791:⁡ 1766:⁡ 1684:are real 1632:⁡ 1598:⁡ 1586:≤ 1563:⁡ 1537:⁡ 1531:≤ 1501:⁡ 1489:≤ 1301:∑ 1280:∑ 1244:⁡ 1206:⁡ 1168:⁡ 1130:⁡ 1046:⁡ 1026:⁡ 1013:transpose 962:⁡ 932:⁡ 911:⁡ 891:⁡ 859:⁡ 804:− 714:∑ 696:⁡ 660:− 420: th 413: th 371:⋯ 309:∑ 291:⁡ 190:traceless 9969:(1959). 8353:See also 8244:) → End( 8240:) ⊗ End( 8206:) → End( 8202:) × End( 7749:for any 7534:for any 7205:for all 7203:tr() = 0 6989:⟩ 6958:⟨ 5191:for all 5181:)) = tr( 5149: : 5119:elliptic 5117:, it is 4749: : 4712:and let 4689:, where 4615: : 4521:, where 4515:) · vol( 4503:net flow 4318:adjugate 3936:), then 3922:are the 3679:for all 3297:tr() = 0 3229:are the 1109:are two 415:row and 10083:, 2001 10027:2978290 9987:0107649 9946:1321145 9865:5827717 9708:1944431 9532:Proof: 8059:equals 7842:and so 7542:. Then 7412:) = tr( 7283:of the 7273:φ( 6113:(where 5905:(where 5683:scalars 5496:of the 4696:is the 4624:(where 4529:is the 4470:By the 4449:). Its 4216:of the 4045:product 4043:is the 4025:, ..., 4017:having 4009:to its 4007:similar 3914:, ..., 3904:complex 3880:in the 3827:matrix 3683:, then 3305:) = tr( 3136:matrix 1856:) = tr( 1713:by its 1703:on the 1422:) = tr( 1003:scalars 453:Example 434:can be 209:) = tr( 94:scholar 10051:  10025:  10015:  9985:  9952:  9944:  9934:  9886:  9863:  9855:  9816:  9775:  9750:  9714:  9706:  9696:  8192:φ 8184:ψ 8168:ψ 8160:φ 8154:ψ 8142:φ 8135:ψ 8127:φ 7824:φ 7806:ψ 7777:φ 7764:ψ 7513:ψ 7481:φ 7440:ψ 7429:φ 7359:→ Hom( 7318:→ Hom( 7279:. The 6871:norm. 5950:) for 5639:counit 5508:sets. 5125:. See 4716:be in 4708:be in 4704:. Let 4531:volume 4501:, the 3696:> 0 3218:λ 3216:where 3098:makes 1846:. The 1657:  399:where 262:of an 136:, the 96:  89:  82:  75:  67:  9861:S2CID 9593:) = 0 9566:is a 8410:Notes 8330:' 8297:' 8082:with 7511:) = Σ 7479:) = Σ 7369:. If 5171:) if 5115:[0,4) 4877:with 4645:basis 3677:) = 0 2992:then 2935:is a 2913:up to 2438:three 685:Then 444:field 260:trace 246:(see 140:of a 138:trace 101:JSTOR 87:books 10049:ISBN 10013:ISBN 9932:ISBN 9884:ISBN 9853:ISSN 9814:ISSN 9773:ISBN 9748:ISBN 9694:ISBN 9523:map. 9058:and 8940:)tr( 8236:End( 8198:End( 8139:to 8076:End( 8043:and 7502:and 7459:and 7437:and 7422:and 7393:Hom( 7030:and 7008:The 6502:and 6109:The 5437:zero 4678:and 4668:End( 4647:for 4523:vol( 4491:and 4454:div 4438:) = 3900:real 3660:rank 3599:rank 3311:and 3289:and 3269:are 3263:and 3035:For 3012:and 2058:and 1840:)tr( 1742:and 1732:are 1726:and 1692:and 1678:and 1468:norm 1456:and 1446:the 1386:and 1103:and 995:and 457:Let 258:The 221:and 177:). 73:news 9950:Zbl 9924:doi 9845:doi 9806:doi 9712:Zbl 9686:doi 9585:tr( 9379:as 8932:tr( 8309:⋅id 8061:tr( 8049:tr( 7753:in 7538:in 7408:tr( 7174:If 6874:If 6859:on 6855:of 6733:End 6724:on 6670:End 6512:if 5875:det 5447:or 5173:tr( 5136:of 5079:). 4700:of 4639:of 4533:of 4511:tr( 4461:tr( 4429:by 4423:on 4364:exp 4341:exp 4335:det 4266:adj 4236:det 4144:det 4118:If 4055:det 4037:of 3926:of 3902:or 3892:If 3673:tr( 3301:tr( 3283:of 3233:of 1852:tr( 1836:tr( 1672:if 1450:of 1437:tr( 1415:tr( 1398:tr( 250:). 205:tr( 182:tr( 151:tr( 132:In 56:by 10094:: 10079:, 10073:, 10047:. 10023:MR 10021:. 10011:. 9999:; 9983:MR 9981:. 9948:. 9942:MR 9940:. 9930:. 9922:. 9914:. 9898:^ 9859:. 9851:. 9841:58 9839:. 9835:. 9812:. 9802:18 9800:. 9796:. 9730:^ 9710:. 9704:MR 9702:. 9692:. 9684:. 9655:^ 9639:. 9622:^ 9602:= 9443:tr 9408:tr 9387:tr 9287:tr 9278:11 9254:11 9105:11 8934:AB 8709:tr 8434:tr 8426:: 8349:. 8332:→ 8325:⊗ 8292:⊗ 8288:→ 8271:⊗ 8267:→ 8263:⊗ 8259:⊗ 8255:⊗ 8229:∘ 8218:, 8190:, 8186:, 8182:, 8152:⊗ 8133:, 8129:, 8125:, 8114:⊗ 8110:→ 8106:× 8102:× 8098:× 8087:⊗ 8071:. 8065:∘ 8053:∘ 7853:tr 7762:↦ 7414:BA 7410:AB 7397:, 7386:→ 7363:, 7355:⊗ 7322:, 7314:× 7306:. 7301:⊗ 7291:⊗ 7258:→ 7254:× 7230:. 7222:A 7214:∈ 7210:, 7196:↦ 7171:. 7127:tr 7109:tr 7079:tr 7061:tr 7042:tr 7034:: 7021:⊗ 6929:tr 6790:tr 6705:tr 6545:0. 6520:tr 6409:tr 6370:tr 6326:tr 6210:ad 6184:ad 6167:ad 6158:tr 6119:, 6068:SL 6055:GL 5861:GL 5848:SL 5810:tr 5601:tr 5346:tr 5305:× 5224:tr 5208:. 5201:. 5196:∈ 5189:)) 5155:GL 5153:→ 5145:, 5129:. 5094:. 4763:⊗ 4753:→ 4728:⊗ 4683:⊗ 4619:→ 4571:tr 4551:tr 4537:. 4467:. 4440:Ax 4373:tr 4253:tr 4178:tr 4121:ΔA 4110:. 3947:tr 3744:tr 3710:tr 3653:= 3564:tr 3449:ii 3378:tr 3369:. 3357:× 3326:→ 3320:gl 3313:tr 3307:BA 3303:AB 3274:× 3153:tr 3131:× 3020:tr 2873:tr 2844:tr 2820:tr 2790:tr 2766:tr 2746:tr 2714:tr 2666:tr 2649:tr 2621:tr 2562:tr 2532:tr 2481:tr 2451:tr 2395:tr 2365:tr 2354:. 2303:tr 2268:tr 2233:tr 2198:tr 2106:tr 1985:tr 1935:tr 1885:tr 1861:AP 1831:BA 1825:AB 1788:tr 1763:tr 1747:× 1737:× 1717:. 1696:. 1629:tr 1595:tr 1560:tr 1534:tr 1498:tr 1478:: 1374:mn 1367:× 1241:tr 1203:tr 1165:tr 1127:tr 1114:× 1043:tr 1023:tr 1008:. 959:tr 929:tr 908:tr 888:tr 856:tr 781:33 768:22 755:11 693:tr 655:12 633:11 592:33 580:32 568:31 554:23 542:22 530:21 516:13 504:12 492:11 438:, 404:ii 363:22 350:11 288:tr 267:× 211:BA 207:AB 196:. 172:× 10057:. 10029:. 9989:. 9956:. 9926:: 9892:. 9867:. 9847:: 9820:. 9808:: 9781:. 9756:. 9724:. 9688:: 9649:. 9607:. 9604:0 9600:A 9591:A 9589:* 9587:A 9552:n 9546:l 9543:s 9510:, 9505:n 9499:l 9496:s 9473:0 9470:= 9467:) 9464:] 9461:B 9458:, 9455:A 9452:[ 9449:( 9423:) 9420:A 9417:B 9414:( 9405:= 9402:) 9399:B 9396:A 9393:( 9367:, 9364:k 9356:n 9350:l 9347:s 9341:= 9336:n 9330:l 9327:g 9304:. 9301:) 9297:A 9293:( 9283:) 9274:e 9270:( 9266:f 9263:= 9259:) 9250:e 9246:( 9242:f 9237:i 9234:i 9230:] 9225:A 9221:[ 9216:i 9208:= 9204:) 9199:j 9196:i 9192:e 9188:( 9184:f 9179:j 9176:i 9172:] 9167:A 9163:[ 9158:j 9155:, 9152:i 9144:= 9141:) 9137:A 9133:( 9130:f 9110:) 9101:e 9097:( 9093:f 9090:= 9086:) 9081:j 9078:j 9074:e 9070:( 9066:f 9046:j 9040:i 9020:0 9017:= 9013:) 9008:j 9005:i 9001:e 8997:( 8993:f 8971:j 8968:i 8964:e 8946:. 8944:) 8942:B 8938:A 8918:, 8913:) 8907:0 8902:0 8895:0 8890:1 8884:( 8879:= 8875:B 8872:A 8851:, 8846:) 8840:0 8835:1 8828:0 8823:0 8817:( 8812:= 8808:B 8803:, 8798:) 8792:0 8787:0 8780:1 8775:0 8769:( 8764:= 8760:A 8731:. 8728:) 8724:A 8719:B 8715:( 8706:= 8701:j 8698:j 8693:) 8688:A 8683:B 8678:( 8671:n 8666:1 8663:= 8660:j 8652:= 8647:j 8644:i 8640:a 8634:i 8631:j 8627:b 8621:m 8616:1 8613:= 8610:i 8600:n 8595:1 8592:= 8589:j 8581:= 8576:i 8573:j 8569:b 8563:j 8560:i 8556:a 8550:n 8545:1 8542:= 8539:j 8529:m 8524:1 8521:= 8518:i 8510:= 8505:i 8502:i 8497:) 8492:B 8487:A 8482:( 8475:m 8470:1 8467:= 8464:i 8456:= 8453:) 8449:B 8444:A 8440:( 8334:F 8327:V 8323:V 8312:V 8307:c 8302:c 8294:V 8290:V 8286:F 8281:V 8273:V 8269:V 8265:V 8261:V 8257:V 8253:V 8248:) 8246:V 8242:V 8238:V 8231:g 8227:f 8222:) 8220:g 8216:f 8214:( 8210:) 8208:V 8204:V 8200:V 8194:) 8188:v 8180:w 8178:( 8174:) 8172:v 8170:( 8166:) 8164:w 8162:( 8150:v 8148:) 8146:w 8144:( 8137:) 8131:w 8123:v 8121:( 8116:V 8112:V 8108:V 8104:V 8100:V 8096:V 8089:V 8085:V 8080:) 8078:V 8069:) 8067:S 8063:T 8057:) 8055:T 8051:S 8045:T 8041:S 8024:. 8021:) 8016:i 8012:v 8008:( 8003:j 7995:) 7990:j 7986:w 7982:( 7977:i 7967:i 7957:j 7949:= 7946:) 7941:j 7937:w 7933:( 7928:i 7920:) 7915:i 7911:v 7907:( 7902:j 7892:j 7882:i 7874:= 7871:) 7868:T 7862:S 7859:( 7840:) 7837:j 7833:w 7831:( 7828:i 7822:) 7819:i 7815:v 7813:( 7810:j 7799:i 7795:v 7793:) 7790:j 7786:w 7784:( 7781:i 7775:) 7773:u 7771:( 7768:j 7760:u 7755:V 7751:u 7732:i 7728:v 7724:) 7719:j 7715:w 7711:( 7706:i 7698:) 7695:u 7692:( 7687:j 7677:j 7667:i 7659:= 7654:i 7650:v 7645:) 7639:j 7635:w 7631:) 7628:u 7625:( 7620:j 7610:j 7601:( 7595:i 7585:i 7577:= 7574:) 7571:u 7568:( 7565:) 7562:T 7556:S 7553:( 7540:V 7536:u 7530:j 7526:w 7524:) 7522:u 7520:( 7517:j 7509:u 7507:( 7505:T 7498:i 7494:v 7492:) 7490:u 7488:( 7485:i 7477:u 7475:( 7473:S 7466:j 7462:w 7455:i 7451:v 7444:j 7433:i 7424:T 7420:S 7416:) 7401:) 7399:V 7395:V 7388:V 7384:V 7379:V 7371:V 7367:) 7365:V 7361:V 7357:V 7353:V 7347:v 7345:) 7343:w 7339:w 7332:v 7330:( 7326:) 7324:V 7320:V 7316:V 7312:V 7303:V 7299:V 7293:V 7289:V 7277:) 7275:v 7267:v 7265:( 7260:F 7256:V 7252:V 7247:V 7216:A 7212:b 7208:a 7198:k 7194:A 7188:A 7184:k 7176:A 7153:. 7149:) 7145:) 7142:Z 7139:( 7131:A 7122:( 7113:B 7105:= 7101:) 7097:) 7094:Z 7091:( 7083:B 7074:( 7065:A 7057:= 7054:) 7051:Z 7048:( 7032:B 7028:A 7023:B 7019:A 7014:Z 6993:, 6983:n 6979:e 6975:K 6972:, 6967:n 6963:e 6952:n 6944:= 6941:) 6938:K 6935:( 6907:n 6903:) 6897:n 6893:e 6889:( 6876:K 6831:) 6828:) 6824:Y 6820:( 6814:) 6810:X 6806:( 6800:( 6795:V 6785:= 6782:) 6778:Y 6774:, 6770:X 6766:( 6743:) 6740:V 6737:( 6710:V 6683:. 6680:) 6677:V 6674:( 6661:g 6656:: 6611:g 6589:) 6586:V 6583:, 6578:g 6573:, 6567:( 6542:= 6539:) 6535:Y 6530:X 6526:( 6505:Y 6499:X 6489:n 6473:l 6470:s 6445:. 6442:) 6438:Z 6434:] 6430:Y 6426:, 6422:X 6418:[ 6415:( 6406:= 6403:) 6400:] 6396:Z 6392:, 6388:Y 6384:[ 6380:X 6376:( 6348:. 6345:) 6341:Y 6336:X 6332:( 6320:) 6316:Y 6312:, 6308:X 6304:( 6276:X 6271:Y 6263:Y 6258:X 6254:= 6251:] 6247:Y 6243:, 6239:X 6235:[ 6232:= 6228:Y 6224:) 6220:X 6216:( 6201:) 6198:) 6194:Y 6190:( 6181:) 6177:X 6173:( 6164:( 6155:= 6152:) 6148:Y 6144:, 6140:X 6136:( 6133:B 6122:Y 6116:X 6090:. 6081:K 6072:n 6059:n 6044:n 6030:K 6022:n 6016:l 6013:s 6007:= 6002:n 5996:l 5993:g 5970:n 5966:/ 5962:1 5938:} 5935:0 5932:{ 5926:K 5923:= 5914:K 5893:1 5881:K 5865:n 5852:n 5841:1 5821:0 5815:K 5800:n 5794:l 5791:g 5780:n 5774:l 5771:s 5762:0 5745:n 5741:n 5725:n 5719:l 5716:g 5705:n 5699:l 5696:g 5667:n 5661:l 5658:g 5649:K 5623:. 5619:I 5615:) 5611:A 5607:( 5596:n 5593:1 5584:A 5563:K 5555:n 5549:l 5546:s 5540:= 5535:n 5529:l 5526:g 5478:n 5472:l 5469:s 5421:. 5416:n 5410:l 5407:g 5397:B 5393:, 5389:A 5380:0 5377:= 5374:) 5371:] 5367:B 5363:, 5359:A 5355:[ 5352:( 5336:K 5332:K 5318:K 5307:n 5303:n 5298:n 5282:n 5276:l 5273:g 5250:K 5242:n 5236:l 5233:g 5227:: 5198:G 5194:g 5187:g 5185:( 5183:B 5179:g 5177:( 5175:A 5169:V 5165:G 5161:) 5159:V 5157:( 5151:G 5147:B 5143:A 5075:( 5061:n 5057:} 5051:2 5047:/ 5043:1 5036:n 5029:{ 5009:) 5006:I 5003:, 5000:0 4997:( 4994:N 4970:) 4967:W 4964:( 4961:r 4958:t 4955:= 4952:] 4949:u 4946:W 4941:T 4937:u 4933:[ 4930:E 4910:I 4907:= 4904:] 4899:T 4895:u 4891:u 4888:[ 4885:E 4863:n 4858:R 4850:u 4828:n 4822:n 4817:R 4809:W 4782:* 4780:V 4775:V 4771:f 4767:* 4765:V 4761:V 4755:V 4751:V 4747:f 4742:) 4740:v 4738:( 4736:g 4730:g 4726:v 4721:* 4719:V 4714:g 4710:V 4706:v 4702:V 4694:* 4692:V 4687:* 4685:V 4681:V 4676:V 4672:) 4670:V 4653:f 4649:V 4641:f 4626:V 4621:V 4617:V 4613:f 4591:. 4588:) 4584:X 4580:d 4577:( 4568:= 4565:) 4561:X 4557:( 4548:d 4535:U 4527:) 4525:U 4519:) 4517:U 4513:A 4507:U 4498:R 4493:U 4488:x 4483:) 4481:x 4479:( 4477:F 4465:) 4463:A 4456:F 4446:A 4436:x 4434:( 4432:F 4426:R 4420:F 4414:A 4393:. 4390:) 4387:) 4383:A 4379:( 4370:( 4361:= 4358:) 4355:) 4351:A 4347:( 4338:( 4296:) 4290:A 4286:d 4280:) 4276:A 4272:( 4261:( 4250:= 4247:) 4243:A 4239:( 4233:d 4198:. 4195:) 4191:A 4184:( 4175:+ 4172:1 4166:) 4162:A 4155:+ 4151:I 4147:( 4127:I 4092:. 4087:i 4077:i 4069:= 4066:) 4062:A 4058:( 4040:A 4029:n 4027:λ 4023:1 4020:λ 4002:A 3982:i 3972:i 3964:= 3961:) 3957:A 3953:( 3929:A 3918:n 3916:λ 3912:1 3909:λ 3895:A 3866:1 3860:n 3856:t 3835:A 3815:n 3809:n 3779:0 3773:n 3770:= 3766:) 3761:n 3756:I 3751:( 3741:= 3737:) 3732:k 3727:n 3722:I 3717:( 3700:n 3694:n 3686:A 3681:k 3675:A 3662:. 3655:A 3651:A 3637:X 3635:P 3616:. 3613:) 3609:X 3605:( 3596:= 3588:) 3582:X 3576:P 3571:( 3551:T 3545:X 3538:1 3530:) 3525:X 3518:T 3512:X 3506:( 3500:X 3496:= 3486:X 3480:P 3456:i 3445:a 3424:. 3407:n 3404:= 3400:) 3395:n 3390:I 3385:( 3367:n 3359:n 3355:n 3328:k 3323:n 3309:) 3292:B 3286:A 3276:n 3272:n 3266:B 3260:A 3242:A 3236:A 3225:n 3220:1 3199:i 3189:n 3184:1 3181:= 3178:i 3170:= 3167:) 3163:A 3159:( 3139:A 3133:n 3129:n 3106:f 3086:n 3083:= 3080:) 3076:I 3072:( 3069:f 3049:n 3043:n 3000:f 2980:, 2977:) 2974:x 2971:y 2968:( 2965:f 2962:= 2959:) 2956:y 2953:x 2950:( 2947:f 2923:f 2895:, 2892:) 2888:A 2883:B 2879:( 2870:= 2863:) 2859:B 2854:A 2850:( 2837:, 2834:) 2830:A 2826:( 2817:c 2814:= 2807:) 2803:A 2799:c 2796:( 2783:, 2780:) 2776:B 2772:( 2763:+ 2760:) 2756:A 2752:( 2743:= 2736:) 2732:B 2728:+ 2724:A 2720:( 2683:. 2680:) 2676:B 2672:( 2663:) 2659:A 2655:( 2646:= 2643:) 2639:B 2631:A 2627:( 2589:, 2586:) 2582:B 2577:C 2572:A 2568:( 2559:= 2556:) 2552:A 2547:B 2542:C 2538:( 2529:= 2525:) 2519:T 2513:) 2508:C 2503:B 2498:A 2493:( 2488:( 2478:= 2475:) 2471:C 2466:B 2461:A 2457:( 2422:. 2419:) 2415:B 2410:C 2405:A 2401:( 2389:) 2385:C 2380:B 2375:A 2371:( 2335:. 2332:) 2328:C 2323:B 2318:A 2313:D 2309:( 2300:= 2297:) 2293:B 2288:A 2283:D 2278:C 2274:( 2265:= 2262:) 2258:A 2253:D 2248:C 2243:B 2239:( 2230:= 2227:) 2223:D 2218:C 2213:B 2208:A 2204:( 2159:b 2152:T 2146:a 2141:= 2137:) 2130:T 2124:a 2118:b 2113:( 2081:n 2076:R 2067:b 2044:n 2039:R 2030:a 2002:. 1999:) 1995:A 1991:( 1982:= 1978:) 1972:1 1964:P 1959:) 1955:P 1950:A 1946:( 1942:( 1932:= 1928:) 1924:) 1920:P 1915:A 1911:( 1906:1 1898:P 1892:( 1874:P 1868:A 1863:) 1858:P 1854:A 1844:) 1842:B 1838:A 1807:) 1803:A 1798:B 1794:( 1785:= 1782:) 1778:B 1773:A 1769:( 1749:m 1745:n 1739:n 1735:m 1729:B 1723:A 1710:B 1681:B 1675:A 1660:, 1652:2 1647:] 1643:) 1639:B 1635:( 1625:[ 1618:2 1613:] 1609:) 1605:A 1601:( 1591:[ 1582:) 1577:2 1572:B 1567:( 1556:) 1551:2 1546:A 1541:( 1526:2 1521:] 1517:) 1513:B 1508:A 1504:( 1494:[ 1486:0 1459:B 1453:A 1444:) 1442:B 1439:A 1429:) 1427:A 1424:B 1420:B 1417:A 1410:A 1405:) 1403:A 1400:A 1389:B 1383:A 1369:n 1365:m 1348:. 1342:j 1339:i 1335:b 1329:j 1326:i 1322:a 1316:n 1311:1 1308:= 1305:j 1295:m 1290:1 1287:= 1284:i 1276:= 1272:) 1265:T 1259:A 1253:B 1248:( 1238:= 1234:) 1229:A 1222:T 1216:B 1210:( 1200:= 1196:) 1189:T 1183:B 1177:A 1172:( 1162:= 1158:) 1153:B 1146:T 1140:A 1134:( 1116:n 1112:m 1106:B 1100:A 1071:. 1067:) 1061:T 1055:A 1050:( 1040:= 1037:) 1033:A 1029:( 1006:c 998:B 992:A 973:) 969:A 965:( 956:c 953:= 946:) 942:A 938:c 935:( 922:) 918:B 914:( 905:+ 902:) 898:A 894:( 885:= 878:) 874:B 870:+ 866:A 862:( 816:1 813:= 810:) 807:5 801:( 798:+ 795:5 792:+ 789:1 786:= 777:a 773:+ 764:a 760:+ 751:a 747:= 742:i 739:i 735:a 729:3 724:1 721:= 718:i 710:= 707:) 703:A 699:( 669:) 663:5 650:6 643:2 638:5 626:3 621:0 616:1 610:( 605:= 600:) 588:a 576:a 564:a 550:a 538:a 526:a 512:a 500:a 488:a 481:( 476:= 472:A 460:A 447:F 431:A 425:A 418:i 411:i 402:a 385:n 382:n 378:a 374:+ 368:+ 359:a 355:+ 346:a 342:= 337:i 334:i 330:a 324:n 319:1 316:= 313:i 305:= 302:) 298:A 294:( 277:A 269:n 265:n 224:B 218:A 213:) 186:) 184:A 174:n 170:n 164:A 155:) 153:A 146:A 123:) 117:( 112:) 108:( 98:· 91:· 84:· 77:· 50:. 20:)

Index

Trace of a matrix

verification
improve this article
adding citations to reliable sources
"Trace" linear algebra
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
linear algebra
square matrix
main diagonal
Pauli Matrices
eigenvalues
similar matrices
linear operator
vector space
determinant
Jacobi's formula
square matrix
real numbers
complex numbers
field
linear mapping
scalars
transpose
Hadamard product

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.