Knowledge (XXG)

Ultra-high-energy cosmic ray

Source 📝

614:
radiation from the inner disk. Low-luminosity, intermittent Seyfert galaxies may meet the requirements with the formation of a linear accelerator several light years away from the nucleus, yet within their extended ion tori whose UV radiation ensures a supply of ionic contaminants. The corresponding electric fields are small, on the order of 10 V/cm, whereby the observed UHECRs are indicative for the astronomical size of the source. Improved statistics by the Pierre Auger Observatory will be instrumental in identifying the presently tentative association of UHECRs (from the Local Universe) with Seyferts and
2190:; Abreu; Aglietta; Aguirre; Allard; Allekotte; Allen; Allison; Alvarez; Alvarez-Muniz; Ambrosio; Anchordoqui; Andringa; Anzalone; Aramo; Argiro; Arisaka; Armengaud; Arneodo; Arqueros; Asch; Asorey; Assis; Atulugama; Aublin; Ave; Avila; Backer; Badagnani; et al. (2007). "Correlation of the Highest-Energy Cosmic Rays with Nearby Extragalactic Objects". 964:; Abreu; Aglietta; Aguirre; Allard; Allekotte; Allen; Allison; Alvarez; Alvarez-Muniz; Ambrosio; Anchordoqui; Andringa; Anzalone; Aramo; Argiro; Arisaka; Armengaud; Arneodo; Arqueros; Asch; Asorey; Assis; Atulugama; Aublin; Ave; Avila; Backer; Badagnani; et al. (2007). "Correlation of the Highest-Energy Cosmic Rays with Nearby Extragalactic Objects". 598:. However, since the angular correlation scale used is fairly large (3.1°) these results do not unambiguously identify the origins of such cosmic ray particles. The AGN could merely be closely associated with the actual sources, for example in galaxies or other astrophysical objects that are clumped with matter on large scales within 100 427:
Pierre Auger Observatory is an international cosmic ray observatory designed to detect ultra-high-energy cosmic ray particles (with energies beyond 10 eV). These high-energy particles have an estimated arrival rate of just 1 per square kilometer per century, therefore, in order to record a large
686:
It is hypothesized that active galactic nuclei are capable of converting dark matter into high energy protons. Yuri Pavlov and Andrey Grib at the Alexander Friedmann Laboratory for Theoretical Physics in Saint Petersburg hypothesize that dark matter particles are about 15 times heavier than protons,
613:
MCG 6-30-15 with time-variability in their inner accretion disks. Black hole spin is a potentially effective agent to drive UHECR production, provided ions are suitably launched to circumvent limiting factors deep within the galactic nucleus, notably curvature radiation and inelastic scattering with
744:
Alves Batista, Rafael; Biteau, Jonathan; Bustamante, Mauricio; Dolag, Klaus; Engel, Ralph; Fang, Ke; Kampert, Karl-Heinz; Kostunin, Dmitriy; Mostafa, Miguel; Murase, Kohta; Oikonomou, Foteini; Olinto, Angela V.; Panasyuk, Mikhail I.; Sigl, Guenter; Taylor, Andrew M.; Unger, Michael (2019).
593:
The source of such high energy particles has been a mystery for many years. Recent results from the Pierre Auger Observatory show that ultra-high-energy cosmic ray arrival directions appear to be correlated with extragalactic supermassive black holes at the center of nearby galaxies called
691:. Some of those particles will collide with incoming particles; these are very high energy collisions which, according to Pavlov, can form ordinary visible protons with very high energy. Pavlov then claims that evidence of such processes are ultra-high-energy cosmic ray particles. 206:, although newer results indicate that fewer than 40% of these cosmic rays seemed to be coming from the AGN, a much weaker correlation than previously reported. A more speculative suggestion by Grib and Pavlov (2007, 2008) envisages the decay of superheavy 111:(GZK limit). This limit should be the maximum energy of cosmic ray protons that have traveled long distances (about 160 million light years), since higher-energy protons would have lost energy over that distance due to scattering from photons in the 687:
and that they can decay into pairs of heavier virtual particles of a type that interacts with ordinary matter. Near an active galactic nucleus, one of these particles can fall into the black hole, while the other escapes, as described by the
528:). This will then combust the entire star to strange matter, at which point the neutron star becomes a strange star and its magnetic field breaks down, which occurs because the protons and neutrons in the quasi-neutral fluid have become 290:. However, only a small fraction of this energy would be available for an interaction with a proton or neutron on Earth, with most of the energy remaining in the form of kinetic energy of the products of the interaction (see 440:. The Pierre Auger Observatory, in addition to obtaining directional information from the cluster of water tanks used to observe the cosmic-ray-shower components, also has four telescopes trained on the night sky to observe 317:, at least fifteen similar events have been recorded, confirming the phenomenon. These very high energy cosmic ray particles are very rare; the energy of most cosmic ray particles is between 10 MeV and 10 GeV. 480:. This magnetic field is the strongest stable field in the observed universe and creates the relativistic MHD wind believed to accelerate iron nuclei remaining from the supernova to the necessary energy. 194:
could accelerate an iron nucleus to ZeV ranges. In 2007, the Pierre Auger Observatory observed a correlation of EECR with extragalactic supermassive black holes at the center of nearby galaxies called
495:
of matter which has no experimental or observational data to support it. Due to the immense gravitational pressures from the neutron star, it is believed that small pockets of matter consisting of
476:
accelerate iron nuclei to UHECR velocities. The neutron superfluid in rapidly rotating stars creates a magnetic field of 10 to 10 teslas, at which point the neutron star is classified as a
294:). The effective energy available for such a collision is the square root of double the product of the particle's energy and the mass energy of the proton, which for this particle gives 451:
In September 2017, data from 12 years of observations from PAO supported an extragalactic source (outside of Earth's galaxy) for the origin of extremely high energy cosmic rays.
360:(Gamma Ray Astronomy PeV EnergieS 3rd establishment) is a project for cosmic ray study with air shower detector array and large area muon detectors at Ooty in southern India. 532:. This magnetic field breakdown releases large amplitude electromagnetic waves (LAEMWs). The LAEMWs accelerate light ion remnants from the supernova to UHECR energies. 1558: 1452: 1399: 802: 187:
acting as Zevatrons, due to diffusive acceleration of particles caused by shock waves inside the jets. In particular, models suggested that shock waves from the nearby
363: 314: 1613:
Moskalenko, I. V.; Stawarz, L.; Porter, T. A.; Cheung, C.-C. (2009). "On the Possible Association of Ultra High Energy Cosmic Rays with Nearby Active Galaxies".
410: 615: 183:, and therefore capable of accelerating particles to 1 ZeV (10 eV, zetta-electronvolt). In 2004 there was a consideration of the possibility of 1348:
Tanaka, Y.; et al. (1995). "Gravitationally redshifted emission implying an accretion disk and massive black hole in the active galaxy MCG-6-30-15".
160:. However, nuclear physics processes lead to limits for iron nuclei similar to that of protons. Other abundant nuclei should have even lower limits. 326: 2310: 587: 108: 198:. However, the strength of the correlation became weaker with continuing observations. Extremely high energies might be explained also by the 2138: 583: 548: 199: 168: 342: 286:
The energy of this particle is some 40 million times that of the highest energy protons that have been produced in any terrestrial
1668:
Wang, X.-Y.; Razzaque, S.; Meszaros, P.; Dai, Z.-G. (2007). "High-energy cosmic rays and neutrinos from semirelativistic hypernovae".
385: 352: 1855: 905: 448:
molecules as the shower particles traverse the sky, giving further directional information on the original cosmic ray particle.
62:, that is, about one such event every four weeks in the 3,000 km (1,200 sq mi) area surveyed by the observatory. 2315: 2300: 1853:
Milgrom, M.; Usov, V. (1995). "Possible Association of Ultra–High-Energy Cosmic-Ray Events with Strong Gamma-Ray Bursts".
2290: 1727:; Loeb, A.; Chandra, P. (2011). "Ultra-high-energy cosmic ray acceleration in engine-driven relativistic supernovae". 564: 112: 152:
nuclei, rather than the protons that make up most cosmic rays. For an iron nucleus, the corresponding limit would be
1963:
Grib, A. A.; Pavlov, Yu. V. (2009). "Active galactic nuclei and transformation of dark matter into visible matter".
2295: 2078: 1615: 718: 403:
is developing technology for a distributed network of low-cost detectors for UHECR showers in collaboration with
400: 2259: 2187: 2020: 1965: 1507:
Levinson, A. (2000). "Particle Acceleration and Curvature TeV Emission by Rotating, Supermassive Black Holes".
961: 700: 422: 375: 249: 51: 2018:
Grib, A. A.; Pavlov, Yu. V. (2008). "Do Active Galactic Nuclei Convert Dark Matter Into Visible Particles?".
1792: 1509: 1088: 606: 595: 380: 203: 195: 330: 223: 428:
number of these events, the Auger Observatory has created a detection area of 3,000 km (the size of
1729: 372:– Mixed Apparatus for Radar Investigation of Cosmic-rays of High Ionization located on Long Island, USA. 303: 260: 188: 20: 1152: 2305: 2211: 2097: 2039: 1984: 1929: 1874: 1811: 1748: 1689: 1634: 1577: 1518: 1471: 1418: 1359: 1299: 1224: 1097: 1050: 985: 924: 821: 768: 469: 287: 148:
of the total energy of the nucleus. There is evidence that these highest-energy cosmic rays might be
1176: 1724: 798:"A Bayesian analysis of the 27 highest energy cosmic rays detected by the Pierre Auger Observatory" 703: – very-high-energy particles that flow into the Solar System from beyond the Milky Way galaxy 2235: 2201: 2175: 2113: 2087: 2076:
Elbert, J. W.; Sommers, P. (1995). "In search of a source for the 320 EeV Fly's Eye cosmic ray".
2055: 2029: 2000: 1974: 1945: 1919: 1890: 1864: 1835: 1801: 1772: 1738: 1705: 1679: 1650: 1624: 1595: 1567: 1489: 1461: 1408: 1375: 1323: 1289: 1214: 1068: 1040: 1009: 975: 940: 914: 839: 811: 758: 724: 656: 310: 259:
observed by the University of Utah's Fly's Eye experiment on the evening of 15 October 1991 over
256: 231: 227: 120: 2227: 2192: 2167: 2150: 2134: 1910: 1827: 1764: 1670: 1534: 1315: 1258: 1240: 1001: 966: 885: 586:
limit the distance that these particles can travel before losing energy; this is known as the
396: 2219: 2159: 2105: 2047: 1992: 1937: 1882: 1819: 1756: 1697: 1642: 1585: 1526: 1479: 1426: 1367: 1350: 1307: 1248: 1232: 1105: 1058: 993: 932: 875: 866: 829: 776: 472:
from the quasi-neutral fluid of superconducting protons and electrons existing in a neutron
433: 390: 255:
Cosmic ray particles with even higher energies have since been observed. Among them was the
2270: 688: 663: 650: 280: 211: 2215: 2101: 2043: 1988: 1933: 1878: 1815: 1752: 1693: 1638: 1581: 1522: 1475: 1422: 1363: 1303: 1228: 1101: 1054: 989: 928: 825: 772: 2253: 1790:
Waxman, E. (1995). "Cosmological Gamma-Ray Bursts and the Highest Energy Cosmic Rays".
1646: 1253: 1202: 610: 488: 276: 116: 2284: 2263: 2239: 2179: 2130: 1949: 1894: 1709: 1590: 1553: 1484: 1447: 1327: 1129: 1072: 1013: 843: 834: 797: 36: 2117: 2059: 2004: 1908:
Hansson, J; Sandin, F (2005). "Preon stars: a new class of cosmic compact objects".
1776: 1493: 1278:"First detection of photons with energy beyond 100 TeV from an astrophysical source" 1086:
Linsley, J. (1963). "Evidence for a Primary Cosmic-Ray Particle with Energy 10 eV".
944: 2163: 1941: 1839: 1654: 1599: 1379: 1311: 631: 544: 508: 492: 484: 483:
Another hypothesized source of UHECRs from neutron stars is during neutron star to
465: 441: 429: 264: 245: 191: 184: 50:
These particles are extremely rare; between 2004 and 2007, the initial runs of the
283:(5 ounces or 142 grams) traveling at about 100 kilometers per hour (60 mph). 130:
nucleons, then the GZK limit applies to its nucleons, which carry only a fraction
1124: 2275: 681: 568: 560: 552: 529: 207: 1823: 1701: 1530: 1431: 1394: 1109: 903:
Honda, M.; Honda, Y. S. (2004). "Filamentary Jets as a Cosmic-Ray "Zevatron"".
2051: 1996: 1277: 669: 599: 580: 473: 32: 1244: 781: 746: 2223: 1201:
Mahajan, Swadesh; Machabeli, George; Osmanov, Zaza; Chkheidze, Nino (2013).
1063: 1028: 997: 645: 639: 540: 437: 44: 2231: 2171: 1831: 1768: 1538: 1319: 1262: 1005: 889: 507:
quarks in equilibrium acting as a single hadron (as opposed to a number of
2256:
The details of the event from the official site of the Fly's Eye detector.
2092: 1924: 1869: 1806: 1466: 1413: 919: 709: 477: 445: 404: 369: 357: 346: 291: 180: 176: 172: 236:
The first observation of a cosmic ray particle with an energy exceeding
1760: 559:. The feasibility of electron acceleration to this energy scale in the 1236: 1371: 880: 861: 556: 82: 2109: 1886: 1294: 936: 763: 468:. In young neutron stars with spin periods of <10 ms, the 2206: 2148:
Seife, C. (2000). "Fly's Eye Spies Highs in Cosmic Rays' Demise".
2034: 1979: 1743: 1684: 1629: 1572: 1219: 1045: 980: 816: 464:
One suggested source of UHECR particles is their origination from
336: 78: 40: 636:
intergalactic shocks created during the epoch of galaxy formation
1156: 149: 1027:
Osmanov, Z.; Mahajan, S.; Machabeli, G.; Chkheidze, N. (2014).
349:
believed to be caused by ultra-high-energy cosmic ray particles
54:(PAO) detected 27 events with estimated arrival energies above 1125:"Could the end be in sight for ultrahigh-energy cosmic rays?" 1029:"Extremely efficient Zevatron in rotating AGN magnetospheres" 747:"Open Questions in Cosmic-Ray Research at Ultrahigh Energies" 855: 853: 115:(CMB). It follows that EECR could not be survivors from the 16:
Cosmic-ray particle with a kinetic energy greater than 1 EeV
487:
combustion. This hypothesis relies on the assumption that
119:, but are cosmologically "young", emitted somewhere in the 1554:"Non-thermal transient sources from rotating black holes" 1203:"Ultra High Energy Electrons Powered by Pulsar Rotation" 659:, left over from phase transitions in the early universe 1177:"Study confirms cosmic rays have extragalactic origins" 714:
Pages displaying short descriptions of redirect targets
563:
magnetosphere is supported by the 2019 observation of
2127:
Cosmic Bullets: High Energy Particles in Astrophysics
796:
Watson, L. J.; Mortlock, D. J.; Jaffe, A. H. (2011).
727: – Ultra-high-energy cosmic ray detected in 1991 705:
Pages displaying wikidata descriptions as a fallback
411:
Cosmic-Ray Extremely Distributed Observatory (CREDO)
47:
and energies typical of other cosmic ray particles.
571:, a young pulsar with a spin period of 33 ms. 1395:"The variable iron K emission line in MCG-6-30-15" 1559:Monthly Notices of the Royal Astronomical Society 1453:Monthly Notices of the Royal Astronomical Society 1400:Monthly Notices of the Royal Astronomical Society 1033:Monthly Notices of the Royal Astronomical Society 803:Monthly Notices of the Royal Astronomical Society 712: – High-energy, heavy ions of cosmic origin 302:, roughly 50 times the collision energy of the 126:If an EECR is not a proton, but a nucleus with 2271:Origin of energetic space particles pinpointed 1552:van Putten, M. H. P. M.; Gupta, A. C. (2009). 655:decay products of supermassive particles from 163:The hypothetical sources of EECR are known as 364:High Resolution Fly's Eye Cosmic Ray Detector 8: 267:, who estimated its energy at approximately 609:in AGN are known to be rotating, as in the 35:with an energy greater than 1 EeV (10 721: – High-energy particles from the Sun 321:Ultra-high-energy cosmic ray observatories 2254:The Highest Energy Particle Ever Recorded 2205: 2091: 2033: 1978: 1923: 1868: 1805: 1742: 1683: 1628: 1589: 1571: 1483: 1465: 1430: 1412: 1293: 1252: 1218: 1062: 1044: 979: 956: 954: 918: 879: 833: 815: 780: 762: 751:Frontiers in Astronomy and Space Sciences 626:Other possible sources of the UHECR are: 345:(ANITA) detects ultra-high-energy cosmic 69:(EECR) is an UHECR with energy exceeding 327:Category:High energy particle telescopes 263:, Utah. Its observation was shocking to 1448:"Cosmic rays from remnants of quasars?" 736: 622:Other possible sources of the particles 339:– Akeno Giant Air Shower Array in Japan 107:% the speed of light), the so-called 584:cosmic microwave background radiation 549:Centrifugal mechanism of acceleration 200:centrifugal mechanism of acceleration 169:Lawrence Berkeley National Laboratory 7: 309:Since the first observation, by the 343:Antarctic Impulse Transient Antenna 123:by some unknown physical process. 386:Yakutsk Extensive Air Shower Array 353:Extreme Universe Space Observatory 14: 1856:The Astrophysical Journal Letters 1393:Iwasawa, K.; et al. (1996). 906:The Astrophysical Journal Letters 275:(50 J)—essentially an 1591:10.1111/j.1365-2966.2009.14492.x 1485:10.1046/j.1365-8711.1999.02600.x 835:10.1111/j.1365-2966.2011.19476.x 470:magnetohydrodynamic (MHD) forces 279:with kinetic energy equal to a 2311:Unsolved problems in astronomy 2188:The Pierre Auger Collaboration 2164:10.1126/science.288.5469.1147a 1942:10.1016/j.physletb.2005.04.034 1312:10.1103/PhysRevLett.123.051101 1276:Amenomori, M. (13 June 2019). 1123:Sakar, S. (1 September 2002). 962:The Pierre Auger Collaboration 535:"Ultra-high-energy cosmic ray 1: 2277:, published January 13, 2005. 2125:Clay, R.; Dawson, B. (1997). 588:Greisen–Zatsepin–Kuzmin limit 551:in the magnetospheres of the 315:Fly's Eye Cosmic Ray Detector 109:Greisen–Zatsepin–Kuzmin limit 1647:10.1088/0004-637X/693/2/1261 1446:Boldt, E.; Gosh, P. (1999). 862:"Cosmic-ray theory unravels" 860:Hand, E (22 February 2010). 596:active galactic nuclei (AGN) 565:ultra-high-energy gamma rays 547:) might be explained by the 196:active galactic nuclei (AGN) 25:ultra-high-energy cosmic ray 1153:"Open Questions in Physics" 292:Collider § Explanation 113:cosmic microwave background 2332: 2264:analysis of the 1991 event 1824:10.1103/PhysRevLett.75.386 1723:Chakraborti, S.; Ray, A.; 1702:10.1103/PhysRevD.76.083009 1531:10.1103/PhysRevLett.85.912 1110:10.1103/PhysRevLett.10.146 679: 420: 401:Florida A&M University 324: 221: 2079:The Astrophysical Journal 2052:10.1142/S0217732308027072 1997:10.1134/S0202289309010125 1966:Gravitation and Cosmology 1616:The Astrophysical Journal 1151:Baez, J. C. (July 2012). 719:Solar energetic particles 676:Relation with dark matter 662:particles undergoing the 202:in the magnetospheres of 67:extreme-energy cosmic ray 2021:Modern Physics Letters A 1432:10.1093/mnras/282.3.1038 782:10.3389/fspas.2019.00023 701:Extragalactic cosmic ray 630:radio lobes of powerful 607:supermassive black holes 423:Pierre Auger Observatory 417:Pierre Auger Observatory 376:Pierre Auger Observatory 250:Volcano Ranch experiment 248:and Livio Scarsi at the 244:(16 J) was made by 52:Pierre Auger Observatory 2224:10.1126/science.1151124 1793:Physical Review Letters 1510:Physical Review Letters 1089:Physical Review Letters 998:10.1126/science.1151124 381:Telescope Array Project 252:in New Mexico in 1962. 43:), far beyond both the 455:Suggested explanations 331:Cosmic-ray observatory 224:Cosmic ray observatory 210: by means of the 167:, named in analogy to 2316:Unexplained phenomena 2301:Astroparticle physics 2274:, by Mark Peplow for 1730:Nature Communications 1213:(1). Springer: 1262. 1064:10.1093/mnras/stu2042 575:Active galactic cores 304:Large Hadron Collider 261:Dugway Proving Ground 218:Observational history 81:, or the energy of a 39:, approximately 0.16 21:astroparticle physics 543:with energies of ≥10 288:particle accelerator 85:traveling at ≈  2291:Subatomic particles 2266:, published in 1994 2216:2007Sci...318..938P 2158:(5469): 1147–1149. 2102:1995ApJ...441..151E 2044:2008MPLA...23.1151G 1989:2009GrCo...15...44G 1934:2005PhLB..616....1H 1879:1995ApJ...449L..37M 1816:1995PhRvL..75..386W 1753:2011NatCo...2..175C 1694:2007PhRvD..76h3009W 1639:2009ApJ...693.1261M 1582:2009MNRAS.394.2238V 1523:2000PhRvL..85..912L 1476:1999MNRAS.307..491B 1423:1996MNRAS.282.1038I 1364:1995Natur.375..659T 1304:2019PhRvL.123e1101A 1229:2013NatSR...3E1262M 1183:. 21 September 2017 1102:1963PhRvL..10..146L 1055:2014MNRAS.445.4155O 990:2007Sci...318..938P 929:2004ApJ...617L..37H 826:2011MNRAS.418..206W 773:2019FrASS...6...23B 657:topological defects 1761:10.1038/ncomms1178 1207:Scientific Reports 725:Oh-My-God particle 579:Interactions with 311:University of Utah 257:Oh-My-God particle 232:Amaterasu particle 228:Oh-My-God particle 121:Local Supercluster 2200:(5852): 938–943. 2140:978-0-7382-0139-9 2028:(16): 1151–1159. 1911:Physics Letters B 1671:Physical Review D 1358:(6533): 659–661. 1237:10.1038/srep01262 974:(5852): 938–943. 2323: 2296:Particle physics 2243: 2209: 2183: 2144: 2121: 2095: 2093:astro-ph/9410069 2064: 2063: 2037: 2015: 2009: 2008: 1982: 1960: 1954: 1953: 1927: 1925:astro-ph/0410417 1905: 1899: 1898: 1872: 1870:astro-ph/9505009 1850: 1844: 1843: 1809: 1807:astro-ph/9505082 1787: 1781: 1780: 1746: 1725:Soderberg, A. M. 1720: 1714: 1713: 1687: 1665: 1659: 1658: 1632: 1623:(2): 1261–1267. 1610: 1604: 1603: 1593: 1575: 1566:(4): 2238–2246. 1549: 1543: 1542: 1504: 1498: 1497: 1487: 1469: 1467:astro-ph/9902342 1443: 1437: 1436: 1434: 1416: 1414:astro-ph/9606103 1407:(3): 1038–1048. 1390: 1384: 1383: 1372:10.1038/375659a0 1345: 1339: 1338: 1336: 1334: 1297: 1273: 1267: 1266: 1256: 1222: 1198: 1192: 1191: 1189: 1188: 1173: 1167: 1166: 1164: 1163: 1148: 1142: 1141: 1139: 1138: 1133:. pp. 23–24 1120: 1114: 1113: 1083: 1077: 1076: 1066: 1048: 1039:(4): 4155–4160. 1024: 1018: 1017: 983: 958: 949: 948: 922: 920:astro-ph/0411101 900: 894: 893: 883: 881:10.1038/4631011a 857: 848: 847: 837: 819: 793: 787: 786: 784: 766: 741: 715: 706: 651:gamma-ray bursts 567:coming from the 525: 524: 523: 516: 515: 434:Mendoza Province 391:Tunka experiment 301: 299: 274: 272: 243: 241: 159: 157: 147: 145: 144: 139: 136: 106: 105: 102: 99: 96: 93: 90: 76: 74: 61: 59: 2331: 2330: 2326: 2325: 2324: 2322: 2321: 2320: 2281: 2280: 2250: 2186: 2147: 2141: 2124: 2075: 2072: 2070:Further reading 2067: 2017: 2016: 2012: 1962: 1961: 1957: 1907: 1906: 1902: 1852: 1851: 1847: 1789: 1788: 1784: 1722: 1721: 1717: 1667: 1666: 1662: 1612: 1611: 1607: 1551: 1550: 1546: 1506: 1505: 1501: 1445: 1444: 1440: 1392: 1391: 1387: 1347: 1346: 1342: 1332: 1330: 1282:Phys. Rev. Lett 1275: 1274: 1270: 1200: 1199: 1195: 1186: 1184: 1175: 1174: 1170: 1161: 1159: 1150: 1149: 1145: 1136: 1134: 1122: 1121: 1117: 1085: 1084: 1080: 1026: 1025: 1021: 960: 959: 952: 902: 901: 897: 859: 858: 851: 795: 794: 790: 743: 742: 738: 734: 713: 704: 697: 689:Penrose process 684: 678: 624: 577: 522: 520: 519: 518: 514: 512: 511: 510: 509: 462: 457: 425: 419: 333: 323: 297: 295: 270: 268: 265:astrophysicists 239: 237: 234: 220: 212:Penrose process 155: 153: 140: 137: 134: 133: 131: 103: 100: 97: 94: 91: 88: 86: 72: 70: 57: 55: 17: 12: 11: 5: 2329: 2327: 2319: 2318: 2313: 2308: 2303: 2298: 2293: 2283: 2282: 2279: 2278: 2267: 2257: 2249: 2248:External links 2246: 2245: 2244: 2184: 2145: 2139: 2122: 2110:10.1086/175345 2086:(1): 151–161. 2071: 2068: 2066: 2065: 2010: 1955: 1900: 1887:10.1086/309633 1845: 1800:(3): 386–389. 1782: 1715: 1660: 1605: 1544: 1517:(5): 912–915. 1499: 1460:(3): 491–494. 1438: 1385: 1340: 1268: 1193: 1168: 1143: 1115: 1096:(4): 146–148. 1078: 1019: 950: 937:10.1086/427067 913:(1): L37–L40. 895: 874:(7284): 1011. 849: 810:(1): 206–213. 788: 735: 733: 730: 729: 728: 722: 716: 707: 696: 693: 680:Main article: 677: 674: 673: 672: 667: 664:Penrose effect 660: 653: 648: 642: 637: 634: 632:radio galaxies 623: 620: 611:Seyfert galaxy 590:or GZK limit. 576: 573: 539:" (defined as 521: 513: 489:strange matter 461: 458: 456: 453: 421:Main article: 418: 415: 414: 413: 408: 393: 388: 383: 378: 373: 367: 361: 355: 350: 340: 322: 319: 277:atomic nucleus 219: 216: 117:early universe 77:(about 8  15: 13: 10: 9: 6: 4: 3: 2: 2328: 2317: 2314: 2312: 2309: 2307: 2304: 2302: 2299: 2297: 2294: 2292: 2289: 2288: 2286: 2276: 2273: 2272: 2268: 2265: 2261: 2258: 2255: 2252: 2251: 2247: 2241: 2237: 2233: 2229: 2225: 2221: 2217: 2213: 2208: 2203: 2199: 2195: 2194: 2189: 2185: 2181: 2177: 2173: 2169: 2165: 2161: 2157: 2153: 2152: 2146: 2142: 2136: 2132: 2131:Perseus Books 2128: 2123: 2119: 2115: 2111: 2107: 2103: 2099: 2094: 2089: 2085: 2081: 2080: 2074: 2073: 2069: 2061: 2057: 2053: 2049: 2045: 2041: 2036: 2031: 2027: 2023: 2022: 2014: 2011: 2006: 2002: 1998: 1994: 1990: 1986: 1981: 1976: 1972: 1968: 1967: 1959: 1956: 1951: 1947: 1943: 1939: 1935: 1931: 1926: 1921: 1917: 1913: 1912: 1904: 1901: 1896: 1892: 1888: 1884: 1880: 1876: 1871: 1866: 1862: 1858: 1857: 1849: 1846: 1841: 1837: 1833: 1829: 1825: 1821: 1817: 1813: 1808: 1803: 1799: 1795: 1794: 1786: 1783: 1778: 1774: 1770: 1766: 1762: 1758: 1754: 1750: 1745: 1740: 1736: 1732: 1731: 1726: 1719: 1716: 1711: 1707: 1703: 1699: 1695: 1691: 1686: 1681: 1678:(8): 083009. 1677: 1673: 1672: 1664: 1661: 1656: 1652: 1648: 1644: 1640: 1636: 1631: 1626: 1622: 1618: 1617: 1609: 1606: 1601: 1597: 1592: 1587: 1583: 1579: 1574: 1569: 1565: 1561: 1560: 1555: 1548: 1545: 1540: 1536: 1532: 1528: 1524: 1520: 1516: 1512: 1511: 1503: 1500: 1495: 1491: 1486: 1481: 1477: 1473: 1468: 1463: 1459: 1455: 1454: 1449: 1442: 1439: 1433: 1428: 1424: 1420: 1415: 1410: 1406: 1402: 1401: 1396: 1389: 1386: 1381: 1377: 1373: 1369: 1365: 1361: 1357: 1353: 1352: 1344: 1341: 1329: 1325: 1321: 1317: 1313: 1309: 1305: 1301: 1296: 1291: 1288:(5): 051101. 1287: 1283: 1279: 1272: 1269: 1264: 1260: 1255: 1250: 1246: 1242: 1238: 1234: 1230: 1226: 1221: 1216: 1212: 1208: 1204: 1197: 1194: 1182: 1178: 1172: 1169: 1158: 1154: 1147: 1144: 1132: 1131: 1130:Physics World 1126: 1119: 1116: 1111: 1107: 1103: 1099: 1095: 1091: 1090: 1082: 1079: 1074: 1070: 1065: 1060: 1056: 1052: 1047: 1042: 1038: 1034: 1030: 1023: 1020: 1015: 1011: 1007: 1003: 999: 995: 991: 987: 982: 977: 973: 969: 968: 963: 957: 955: 951: 946: 942: 938: 934: 930: 926: 921: 916: 912: 908: 907: 899: 896: 891: 887: 882: 877: 873: 869: 868: 863: 856: 854: 850: 845: 841: 836: 831: 827: 823: 818: 813: 809: 805: 804: 799: 792: 789: 783: 778: 774: 770: 765: 760: 756: 752: 748: 740: 737: 731: 726: 723: 720: 717: 711: 708: 702: 699: 698: 694: 692: 690: 683: 675: 671: 668: 665: 661: 658: 654: 652: 649: 647: 644:relativistic 643: 641: 638: 635: 633: 629: 628: 627: 621: 619: 617: 612: 608: 603: 601: 597: 591: 589: 585: 582: 574: 572: 570: 566: 562: 558: 554: 550: 546: 542: 538: 533: 531: 527: 506: 502: 498: 494: 490: 486: 481: 479: 475: 471: 467: 466:neutron stars 460:Neutron stars 459: 454: 452: 449: 447: 443: 439: 435: 431: 424: 416: 412: 409: 406: 402: 398: 394: 392: 389: 387: 384: 382: 379: 377: 374: 371: 368: 365: 362: 359: 356: 354: 351: 348: 344: 341: 338: 335: 334: 332: 328: 320: 318: 316: 312: 307: 305: 293: 289: 284: 282: 278: 266: 262: 258: 253: 251: 247: 233: 229: 225: 217: 215: 213: 209: 205: 201: 197: 193: 190: 186: 185:galactic jets 182: 178: 174: 170: 166: 161: 151: 143: 129: 124: 122: 118: 114: 110: 84: 80: 68: 63: 53: 48: 46: 42: 38: 37:electronvolts 34: 30: 26: 22: 2269: 2197: 2191: 2155: 2149: 2126: 2083: 2077: 2025: 2019: 2013: 1973:(1): 44–48. 1970: 1964: 1958: 1918:(1–2): 1–7. 1915: 1909: 1903: 1860: 1854: 1848: 1797: 1791: 1785: 1734: 1728: 1718: 1675: 1669: 1663: 1620: 1614: 1608: 1563: 1557: 1547: 1514: 1508: 1502: 1457: 1451: 1441: 1404: 1398: 1388: 1355: 1349: 1343: 1331:. Retrieved 1285: 1281: 1271: 1210: 1206: 1196: 1185:. Retrieved 1180: 1171: 1160:. Retrieved 1146: 1135:. Retrieved 1128: 1118: 1093: 1087: 1081: 1036: 1032: 1022: 971: 965: 910: 904: 898: 871: 865: 807: 801: 791: 754: 750: 739: 685: 625: 605:Some of the 604: 592: 581:blue-shifted 578: 536: 534: 504: 500: 496: 493:ground state 485:strange star 482: 463: 450: 442:fluorescence 430:Rhode Island 426: 308: 285: 254: 246:John Linsley 235: 192:galactic jet 164: 162: 141: 127: 125: 66: 64: 49: 28: 24: 18: 2306:Cosmic rays 2260:John Walker 1181:EurekAlert! 682:Dark matter 670:Preon stars 600:megaparsecs 569:Crab Nebula 561:Crab pulsar 530:strangelets 399:project at 208:dark matter 2285:Categories 2262:'s lively 1295:1906.05521 1187:2017-09-22 1162:2014-07-21 1137:2014-07-21 764:1903.06714 732:References 646:supernovae 640:hypernovae 474:superfluid 436:, western 325:See also: 300:10 eV 273:10 eV 242:10 eV 222:See also: 158:10 eV 75:10 eV 60:10 eV 33:cosmic ray 2240:118376969 2207:0711.2256 2180:117341691 2035:0712.2667 1980:0810.1724 1950:119063004 1895:118923079 1744:1012.0850 1710:119626781 1685:0705.0027 1630:0805.1260 1573:0901.1674 1328:189762075 1245:2045-2322 1220:1303.2093 1073:119195822 1046:1404.3176 1014:118376969 981:0711.2256 844:119068104 817:1010.0911 541:electrons 537:electrons 438:Argentina 347:neutrinos 165:Zevatrons 45:rest mass 2232:17991855 2172:10841723 2118:15510276 2060:14457527 2005:13867079 1832:10060008 1777:12490883 1769:21285953 1539:10991437 1494:14628933 1320:31491288 1263:23405276 1006:17991855 945:11338689 890:20182484 710:HZE ions 695:See also 478:magnetar 446:nitrogen 405:MARIACHI 370:MARIACHI 358:GRAPES-3 281:baseball 181:Tevatron 177:Fermilab 173:Bevatron 2212:Bibcode 2193:Science 2151:Science 2098:Bibcode 2040:Bibcode 1985:Bibcode 1930:Bibcode 1875:Bibcode 1863:: L37. 1840:9827099 1812:Bibcode 1749:Bibcode 1737:: 175. 1690:Bibcode 1655:9378800 1635:Bibcode 1600:3036558 1578:Bibcode 1519:Bibcode 1472:Bibcode 1419:Bibcode 1380:4348405 1360:Bibcode 1300:Bibcode 1254:3569628 1225:Bibcode 1098:Bibcode 1051:Bibcode 986:Bibcode 967:Science 925:Bibcode 822:Bibcode 769:Bibcode 557:Pulsars 526:baryons 505:strange 491:is the 444:of the 397:COSMICi 366:(HiRes) 146:⁠ 132:⁠ 31:) is a 2238:  2230:  2178:  2170:  2137:  2116:  2058:  2003:  1948:  1893:  1838:  1830:  1775:  1767:  1708:  1653:  1598:  1537:  1492:  1378:  1351:Nature 1333:8 July 1326:  1318:  1261:  1251:  1243:  1071:  1012:  1004:  943:  888:  867:Nature 842:  757:: 23. 616:LINERs 555:-like 517:Σ 503:, and 230:, and 87:99.999 83:proton 41:joules 2236:S2CID 2202:arXiv 2176:S2CID 2114:S2CID 2088:arXiv 2056:S2CID 2030:arXiv 2001:S2CID 1975:arXiv 1946:S2CID 1920:arXiv 1891:S2CID 1865:arXiv 1836:S2CID 1802:arXiv 1773:S2CID 1739:arXiv 1706:S2CID 1680:arXiv 1651:S2CID 1625:arXiv 1596:S2CID 1568:arXiv 1490:S2CID 1462:arXiv 1409:arXiv 1376:S2CID 1324:S2CID 1290:arXiv 1215:arXiv 1069:S2CID 1041:arXiv 1010:S2CID 976:arXiv 941:S2CID 915:arXiv 840:S2CID 812:arXiv 759:arXiv 432:) in 337:AGASA 79:joule 29:UHECR 23:, an 2228:PMID 2168:PMID 2135:ISBN 1828:PMID 1765:PMID 1535:PMID 1335:2019 1316:PMID 1259:PMID 1241:ISSN 1157:DESY 1002:PMID 886:PMID 553:Crab 501:down 395:The 329:and 175:and 150:iron 2220:doi 2198:318 2160:doi 2156:288 2106:doi 2084:441 2048:doi 1993:doi 1938:doi 1916:616 1883:doi 1861:449 1820:doi 1757:doi 1698:doi 1643:doi 1586:doi 1564:394 1527:doi 1480:doi 1458:307 1427:doi 1405:282 1368:doi 1356:375 1308:doi 1286:123 1249:PMC 1233:doi 1106:doi 1059:doi 1037:445 994:doi 972:318 933:doi 911:617 876:doi 872:463 830:doi 808:418 777:doi 313:'s 296:7.5 269:3.2 238:1.0 204:AGN 189:M87 179:'s 171:'s 154:2.8 101:999 98:999 95:999 92:999 89:999 65:An 56:5.7 19:In 2287:: 2234:. 2226:. 2218:. 2210:. 2196:. 2174:. 2166:. 2154:. 2133:. 2129:. 2112:. 2104:. 2096:. 2082:. 2054:. 2046:. 2038:. 2026:23 2024:. 1999:. 1991:. 1983:. 1971:15 1969:. 1944:. 1936:. 1928:. 1914:. 1889:. 1881:. 1873:. 1859:. 1834:. 1826:. 1818:. 1810:. 1798:75 1796:. 1771:. 1763:. 1755:. 1747:. 1733:. 1704:. 1696:. 1688:. 1676:76 1674:. 1649:. 1641:. 1633:. 1621:63 1619:. 1594:. 1584:. 1576:. 1562:. 1556:. 1533:. 1525:. 1515:85 1513:. 1488:. 1478:. 1470:. 1456:. 1450:. 1425:. 1417:. 1403:. 1397:. 1374:. 1366:. 1354:. 1322:. 1314:. 1306:. 1298:. 1284:. 1280:. 1257:. 1247:. 1239:. 1231:. 1223:. 1209:. 1205:. 1179:. 1155:. 1127:. 1104:. 1094:10 1092:. 1067:. 1057:. 1049:. 1035:. 1031:. 1008:. 1000:. 992:. 984:. 970:. 953:^ 939:. 931:. 923:. 909:. 884:. 870:. 864:. 852:^ 838:. 828:. 820:. 806:. 800:. 775:. 767:. 753:. 749:. 618:. 602:. 545:eV 499:, 497:up 306:. 226:, 214:. 104:98 2242:. 2222:: 2214:: 2204:: 2182:. 2162:: 2143:. 2120:. 2108:: 2100:: 2090:: 2062:. 2050:: 2042:: 2032:: 2007:. 1995:: 1987:: 1977:: 1952:. 1940:: 1932:: 1922:: 1897:. 1885:: 1877:: 1867:: 1842:. 1822:: 1814:: 1804:: 1779:. 1759:: 1751:: 1741:: 1735:2 1712:. 1700:: 1692:: 1682:: 1657:. 1645:: 1637:: 1627:: 1602:. 1588:: 1580:: 1570:: 1541:. 1529:: 1521:: 1496:. 1482:: 1474:: 1464:: 1435:. 1429:: 1421:: 1411:: 1382:. 1370:: 1362:: 1337:. 1310:: 1302:: 1292:: 1265:. 1235:: 1227:: 1217:: 1211:3 1190:. 1165:. 1140:. 1112:. 1108:: 1100:: 1075:. 1061:: 1053:: 1043:: 1016:. 996:: 988:: 978:: 947:. 935:: 927:: 917:: 892:. 878:: 846:. 832:: 824:: 814:: 785:. 779:: 771:: 761:: 755:6 666:. 407:. 298:× 271:× 240:× 156:× 142:A 138:/ 135:1 128:A 73:× 71:5 58:× 27:(

Index

astroparticle physics
cosmic ray
electronvolts
joules
rest mass
Pierre Auger Observatory
joule
proton
Greisen–Zatsepin–Kuzmin limit
cosmic microwave background
early universe
Local Supercluster
iron
Lawrence Berkeley National Laboratory
Bevatron
Fermilab
Tevatron
galactic jets
M87
galactic jet
active galactic nuclei (AGN)
centrifugal mechanism of acceleration
AGN
dark matter
Penrose process
Cosmic ray observatory
Oh-My-God particle
Amaterasu particle
John Linsley
Volcano Ranch experiment

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.