Knowledge (XXG)

Centrifugal acceleration (astrophysics)

Source đź“ť

281:(ICS) and the so-called breakdown of the bead on the wire (BBW) mechanism. For jet-like structures in an AGN it has been shown that, for a wide range of inclination angles of field lines with respect to the rotation axis, ICS is the dominant mechanism efficiently limiting the maximum attainable Lorentz factors of electrons 532:
Although the direct centrifugal acceleration has limitations, as analysis shows the effects of rotation still might play an important role in the processes of acceleration of charged particles. Generally speaking, it is believed that the centrifugal relativistic effects may induce plasma waves, which
86:
in which a bead moves inside a straight rotating pipe. Dynamics of the particle were analyzed both analytically and numerically and it was shown that if the rigid rotation is maintained for a sufficiently long time energy of the bead will asymptotically increase. In particular, Rieger & Mannheim,
259:
is the speed of light. From this behavior it is evident that radial motion will exhibit a nontrivial character. In due course of motion the particle will reach the light cylinder surface (a hypothetical area where the linear velocity of rotation exactly equals the speed of light), leading to the
1238: 462:
as the rotation rate is quite high. Osmanov & Rieger considered the centrifugal acceleration of charged particles in the light cylinder area of the Crab-like pulsars. It has been shown that electrons might achieve the Lorentz factors
277:), the Lorentz factor of the particle tends to infinity if the rigid rotation is maintained. This means that in reality the energy has to be limited by certain processes. Generally speaking, there are two major mechanisms: The inverse 533:
under certain conditions might be unstable efficiently pumping energy from the background flow. On the second stage energy of wave-modes can be transformed into energy of plasma particles, leading to consequent acceleration.
77:
are characterized by strong magnetic fields that force charged particles to follow the field lines. If the magnetic field is rotating (which is the case for such astrophysical objects), the particles will inevitably undergo
637: 174: 882: 1311: 396: 784: 1375: 453: 336: 515: 691: 1126: 217: 1402: 1435: 1083: 965: 711: 909: 1464: 1112: 1050: 1021: 992: 264:
component of velocity. On the other hand, the total velocity cannot exceed the speed of light, therefore, the radial component must decrease. This means that the
929: 257: 237: 551:
the centrifugally induced electrostatic waves efficiently lose energy transferring it to electrons. It is found that energy gain by electrons is given by
1120:. As it is shown this mechanism is strong enough to guarantee efficient acceleration of particles to ultra-high energies via the Langmuir damping 2283: 559: 58: 1921: 99: 1721:
Rieger, F. M.; Mannheim, K.; Mahajan, Swadesh M. (2006). "Parametric mechanism of the rotation energy pumping by a relativistic plasma".
789: 1247: 536:
In rotating magnetospheres the centrifugal force acts differently in different locations, leading to generation of Langmuir waves, or
341: 2222:
Rogava, Andria; Dalakishvili, George; Osmanov, Zaza (2003). "Centrifugally Driven Relativistic Dynamics on Curved Trajectories".
1985:
Osmanov, Zaza (2013). "On the Role of the Curvature Drift Instability in the Dynamics of Electrons in Active Galactic Nuclei".
1876:
Osmanov, Z.; Mahajan, S.; Machabeli, G.; Chkheidze, N. (2014). "Extremely efficient Zevatron in rotating AGN magnetospheres".
2278: 540:
via the parametric instability. One can show that this mechanism efficiently works in the magnetospheres of AGN and pulsars.
716: 53:, therefore, they potentially can drive charged particles to high and ultra-high energies. It is a proposed explanation for 1562:
Osmanov, Z.; Rogava, A.; Bodo, G. (2007). "On the efficiency of particle acceleration by rotating magnetospheres in AGN".
1404:
is the Solar mass. As it is evident, for a convenient set of parameters one can achieve enormous energies of the order of
1615:
Osmanov, Z.; Rieger, F. M. (2009). "On particle acceleration and very high energy Îł-ray emission in Crab-like pulsars".
54: 1938:
Gudavadze, Irakli; Osmanov, Zaza; Rogava, Andria (2015). "On the role of rotation in the outflows of the Crab pulsar".
1316: 401: 284: 466: 1525:
Rieger, F. M.; Mannheim, K. (2000). "Particle acceleration by rotating magnetospheres in active galactic nuclei".
521: 659: 70: 42: 1233:{\displaystyle \epsilon _{p}\left(eV\right)\approx 6.4\times 10^{17}\times M_{8}^{-5/2}\times L_{42}^{5/2}} 1052:. In case of millisecond newly born pulsars, the electrons might be accelerated to even higher energies of 1668:
Osmanov, Z.; Mannheim, K. (2008). "Centrifugally driven electrostatic instability in extragalactic jets".
1915: 2032:
Osmanov, Z. (2010). "Is very high energy emission from the BL Lac 1ES 0806+524 centrifugally driven?".
2241: 2200: 2159: 2105: 2051: 2004: 1957: 1895: 1832: 1765: 1687: 1634: 1581: 1544: 1491: 17: 338:. On the other hand, it was shown that the BBW becomes dominant for relatively low luminosity AGN 2257: 2231: 2175: 2149: 2121: 2095: 2067: 2041: 2020: 1994: 1973: 1947: 1885: 1822: 1755: 1722: 1703: 1677: 1650: 1624: 1597: 1571: 1534: 537: 518: 278: 195: 83: 38: 1380: 1407: 1055: 934: 2134: 2080: 1858: 1791: 1507: 265: 79: 1116:
By examining the magnetospheres of AGNs, the acceleration of protons takes place through the
696: 2249: 2208: 2167: 2163: 2113: 2109: 2059: 2012: 1965: 1903: 1848: 1840: 1781: 1773: 1695: 1642: 1638: 1589: 1585: 1548: 1499: 887: 1440: 1117: 1088: 1026: 997: 974: 2245: 2204: 2055: 2008: 1961: 1899: 1836: 1769: 1691: 1495: 2189:"On the reconstruction of a magnetosphere of pulsars nearby the light cylinder surface" 1853: 1810: 1786: 1743: 914: 548: 242: 222: 88: 37:
to relativistic energies might take place in rotating astrophysical objects (see also
2272: 2261: 2213: 2188: 2071: 2024: 1977: 1707: 50: 34: 2179: 2125: 1482:
Machabeli, G. Z.; Rogava, A. D. (1994). "Centrifugal force: A gedanken experiment".
1654: 2171: 2135:"Efficiency of the centrifugally induced curvature drift instability in AGN winds" 2117: 1646: 1601: 2081:"Dynamical feedback of the curvature drift instability on its saturation process" 2063: 1593: 967:
is the Goldreich-Julian density. One can show that for typical parameters of the
968: 544: 2253: 2016: 1969: 1907: 1809:
Osmanov, Zaza; Mahajan, Swadesh; Machabeli, George; Chkheidze, Nino (2015).
1742:
Mahajan, Swadesh; Machabeli, George; Osmanov, Zaza; Chkheidze, Nino (2013).
1862: 1795: 1503: 632:{\displaystyle \epsilon \approx {\frac {n_{p}F_{reac}\delta r}{n_{_{GJ}}}}} 1511: 2236: 1727: 1576: 1539: 713:
is the increment of the instability (for details see the cited article),
261: 1811:"Millisecond newly born pulsars as efficient accelerators of electrons" 169:{\displaystyle \gamma ={\frac {\gamma _{0}}{1-\Omega ^{2}r^{2}/c^{2}}}} 1844: 1777: 1699: 219:
is the initial Lorentz factor, Ω is the angular velocity of rotation,
459: 74: 46: 1827: 877:{\displaystyle \xi (r)=\left(1-\Omega ^{2}r^{2}/c^{2}\right)^{1/2}} 2154: 2100: 2046: 1999: 1952: 1890: 1760: 1682: 1629: 87:
building on the theory of Machabeli & Rogava, showed that the
82:
acceleration. The pioneering work by Machabeli & Rogava was a
1306:{\displaystyle L_{42}\equiv L/10^{42}\mathrm {erg} /\mathrm {s} } 971:-like pulsars, the particles might gain energies of the order of 391:{\displaystyle L<8\times 10^{40}\mathrm {erg} /\mathrm {s} } 57:(UHECRs) and extreme-energy cosmic rays (EECRs) exceeding the 458:
The centrifugal effects are more efficient in millisecond
1744:"Ultra High Energy Electrons Powered by Pulsar Rotation" 779:{\displaystyle F_{reac}\approx 2mc\Omega \xi (r)^{-3}} 2187:
Osmanov, Z.; Dalakishvili, G.; Machabeli, G. (2008).
1443: 1410: 1383: 1319: 1250: 1129: 1091: 1058: 1029: 1000: 977: 937: 917: 890: 792: 719: 699: 662: 562: 547:-like pulsars it has been shown that by means of the 469: 404: 344: 287: 245: 225: 198: 102: 2079:Osmanov, Z.; Shapakidze, D.; Machabeli, G. (2009). 1458: 1429: 1396: 1369: 1305: 1232: 1106: 1077: 1044: 1015: 986: 959: 923: 903: 876: 778: 705: 685: 631: 509: 447: 390: 330: 251: 231: 211: 168: 2193:Monthly Notices of the Royal Astronomical Society 1878:Monthly Notices of the Royal Astronomical Society 528:Acceleration to very high and ultra-high energies 1370:{\displaystyle M_{8}\equiv M/(10^{8}M_{\odot })} 448:{\displaystyle \gamma _{BBW}^{max}\sim 10^{7}} 331:{\displaystyle \gamma _{ICS}^{max}\sim 10^{8}} 239:is the radial coordinate of the particle, and 510:{\displaystyle \gamma _{KN}^{max}\sim 10^{7}} 8: 69:It is well known that the magnetospheres of 2235: 2212: 2153: 2099: 2045: 1998: 1987:International Journal of Modern Physics D 1951: 1940:International Journal of Modern Physics D 1889: 1852: 1826: 1785: 1759: 1726: 1681: 1628: 1575: 1538: 1442: 1415: 1409: 1388: 1382: 1358: 1348: 1336: 1324: 1318: 1298: 1293: 1282: 1276: 1267: 1255: 1249: 1220: 1216: 1211: 1194: 1187: 1182: 1169: 1134: 1128: 1090: 1063: 1057: 1028: 999: 976: 946: 942: 936: 916: 895: 889: 864: 860: 849: 840: 834: 824: 791: 767: 724: 718: 698: 675: 661: 616: 612: 586: 576: 569: 561: 501: 482: 474: 468: 439: 420: 409: 403: 383: 378: 367: 361: 343: 322: 303: 292: 286: 244: 224: 203: 197: 157: 148: 142: 132: 115: 109: 101: 1474: 1913: 686:{\displaystyle \delta r\sim c/\Gamma } 1313:is the normalized luminosity of AGN, 18:Centrifugal mechanism of acceleration 7: 553: 93: 1466:, so AGNs become cosmic Zevatrons. 2224:General Relativity and Gravitation 1920:: CS1 maint: unflagged free DOI ( 1299: 1289: 1286: 1283: 821: 751: 700: 680: 384: 374: 371: 368: 129: 25: 27:Cosmic ray acceleration mechanism 2214:10.1111/j.1365-2966.2007.12543.x 41:). It is strongly believed that 2284:Thought experiments in physics 1364: 1341: 911:is the plasma number density, 802: 796: 764: 757: 1: 65:Acceleration to high energies 59:Greisen–Zatsepin–Kuzmin limit 55:ultra-high-energy cosmic rays 2064:10.1016/j.newast.2009.10.001 1617:Astronomy & Astrophysics 1564:Astronomy & Astrophysics 2172:10.1051/0004-6361:200809710 2118:10.1051/0004-6361/200912113 1647:10.1051/0004-6361/200912101 1377:is its normalized mass and 931:is the electron's mass and 273: 212:{\displaystyle \gamma _{0}} 2300: 2142:Astronomy and Astrophysics 2088:Astronomy and Astrophysics 1594:10.1051/0004-6361:20065817 1527:Astronomy and Astrophysics 1397:{\displaystyle M_{\odot }} 2017:10.1142/S0218271813500818 1970:10.1142/S021827181550042X 1430:{\displaystyle 10^{21}eV} 1078:{\displaystyle 10^{18}eV} 960:{\displaystyle n_{_{GJ}}} 31:Centrifugal acceleration 2254:10.1023/A:1024450105374 2164:2008A&A...490..487O 2110:2009A&A...503...19O 1639:2009A&A...502...15O 1586:2007A&A...470..395O 1549:2000A&A...353..473R 706:{\displaystyle \Gamma } 91:of the bead behaves as 1504:10.1103/PhysRevA.50.98 1460: 1431: 1398: 1371: 1307: 1234: 1108: 1079: 1046: 1017: 988: 961: 925: 905: 878: 780: 707: 687: 633: 511: 449: 392: 332: 253: 233: 213: 170: 43:active galactic nuclei 2279:Astroparticle physics 1908:10.1093/mnras/stu2042 1461: 1432: 1399: 1372: 1308: 1235: 1109: 1080: 1047: 1018: 989: 962: 926: 906: 904:{\displaystyle n_{p}} 879: 781: 708: 688: 634: 512: 450: 393: 333: 254: 234: 214: 171: 2133:Osmanov, Z. (2008). 1459:{\displaystyle ZeVs} 1441: 1408: 1381: 1317: 1248: 1127: 1107:{\displaystyle EeVs} 1089: 1056: 1045:{\displaystyle PeVs} 1027: 1016:{\displaystyle TeVs} 998: 987:{\displaystyle 100s} 975: 935: 915: 888: 790: 717: 697: 660: 560: 467: 402: 342: 285: 243: 223: 196: 100: 2246:2003GReGr..35.1133R 2205:2008MNRAS.383.1007O 2056:2010NewA...15..351O 2009:2013IJMPD..2250081O 1962:2015IJMPD..2450042G 1900:2014MNRAS.445.4155O 1837:2015NatSR...514443O 1770:2013NatSR...3E1262M 1692:2008PhPl...15c2901O 1496:1994PhRvA..50...98M 1229: 1203: 538:plasma oscillations 493: 431: 314: 1932:Further references 1815:Scientific Reports 1748:Scientific Reports 1670:Physics of Plasmas 1456: 1427: 1394: 1367: 1303: 1230: 1207: 1178: 1104: 1075: 1042: 1013: 984: 957: 921: 901: 874: 776: 703: 683: 629: 507: 470: 445: 405: 388: 328: 288: 279:Compton scattering 268:changes its sign. 249: 229: 209: 166: 84:thought experiment 39:Fermi acceleration 1845:10.1038/srep14443 1778:10.1038/srep01262 1700:10.1063/1.2842365 1484:Physical Review A 1118:Langmuir collapse 924:{\displaystyle m} 654: 653: 627: 271:As is seen from ( 266:centrifugal force 252:{\displaystyle c} 232:{\displaystyle r} 190: 189: 164: 16:(Redirected from 2291: 2265: 2239: 2237:astro-ph/0303602 2230:(7): 1133–1152. 2218: 2216: 2199:(3): 1007–1014. 2183: 2157: 2139: 2129: 2103: 2085: 2075: 2049: 2028: 2002: 1981: 1955: 1926: 1925: 1919: 1911: 1893: 1884:(4): 4155–4160. 1873: 1867: 1866: 1856: 1830: 1806: 1800: 1799: 1789: 1763: 1739: 1733: 1732: 1730: 1728:astro-ph/0609383 1718: 1712: 1711: 1685: 1665: 1659: 1658: 1632: 1612: 1606: 1605: 1579: 1577:astro-ph/0609327 1559: 1553: 1552: 1542: 1540:astro-ph/9911082 1522: 1516: 1515: 1479: 1465: 1463: 1462: 1457: 1436: 1434: 1433: 1428: 1420: 1419: 1403: 1401: 1400: 1395: 1393: 1392: 1376: 1374: 1373: 1368: 1363: 1362: 1353: 1352: 1340: 1329: 1328: 1312: 1310: 1309: 1304: 1302: 1297: 1292: 1281: 1280: 1271: 1260: 1259: 1239: 1237: 1236: 1231: 1228: 1224: 1215: 1202: 1198: 1186: 1174: 1173: 1155: 1151: 1139: 1138: 1113: 1111: 1110: 1105: 1084: 1082: 1081: 1076: 1068: 1067: 1051: 1049: 1048: 1043: 1022: 1020: 1019: 1014: 993: 991: 990: 985: 966: 964: 963: 958: 956: 955: 954: 953: 930: 928: 927: 922: 910: 908: 907: 902: 900: 899: 883: 881: 880: 875: 873: 872: 868: 859: 855: 854: 853: 844: 839: 838: 829: 828: 785: 783: 782: 777: 775: 774: 738: 737: 712: 710: 709: 704: 692: 690: 689: 684: 679: 648: 638: 636: 635: 630: 628: 626: 625: 624: 623: 607: 600: 599: 581: 580: 570: 554: 516: 514: 513: 508: 506: 505: 492: 481: 454: 452: 451: 446: 444: 443: 430: 419: 397: 395: 394: 389: 387: 382: 377: 366: 365: 337: 335: 334: 329: 327: 326: 313: 302: 260:increase of the 258: 256: 255: 250: 238: 236: 235: 230: 218: 216: 215: 210: 208: 207: 184: 175: 173: 172: 167: 165: 163: 162: 161: 152: 147: 146: 137: 136: 120: 119: 110: 94: 21: 2299: 2298: 2294: 2293: 2292: 2290: 2289: 2288: 2269: 2268: 2221: 2186: 2137: 2132: 2083: 2078: 2031: 1993:(13): 1350081. 1984: 1937: 1934: 1929: 1912: 1875: 1874: 1870: 1808: 1807: 1803: 1741: 1740: 1736: 1720: 1719: 1715: 1667: 1666: 1662: 1614: 1613: 1609: 1561: 1560: 1556: 1524: 1523: 1519: 1481: 1480: 1476: 1472: 1439: 1438: 1411: 1406: 1405: 1384: 1379: 1378: 1354: 1344: 1320: 1315: 1314: 1272: 1251: 1246: 1245: 1165: 1144: 1140: 1130: 1125: 1124: 1087: 1086: 1059: 1054: 1053: 1025: 1024: 996: 995: 973: 972: 943: 938: 933: 932: 913: 912: 891: 886: 885: 845: 830: 820: 813: 809: 808: 788: 787: 763: 720: 715: 714: 695: 694: 658: 657: 646: 613: 608: 582: 572: 571: 558: 557: 530: 524:up-scattering. 519:inverse Compton 497: 465: 464: 435: 400: 399: 357: 340: 339: 318: 283: 282: 241: 240: 221: 220: 199: 194: 193: 182: 153: 138: 128: 121: 111: 98: 97: 67: 28: 23: 22: 15: 12: 11: 5: 2297: 2295: 2287: 2286: 2281: 2271: 2270: 2267: 2266: 2219: 2184: 2148:(2): 487–492. 2130: 2076: 2040:(4): 351–355. 2029: 1982: 1946:(6): 1550042. 1933: 1930: 1928: 1927: 1868: 1801: 1734: 1713: 1660: 1607: 1570:(2): 395–400. 1554: 1517: 1473: 1471: 1468: 1455: 1452: 1449: 1446: 1426: 1423: 1418: 1414: 1391: 1387: 1366: 1361: 1357: 1351: 1347: 1343: 1339: 1335: 1332: 1327: 1323: 1301: 1296: 1291: 1288: 1285: 1279: 1275: 1270: 1266: 1263: 1258: 1254: 1242: 1241: 1227: 1223: 1219: 1214: 1210: 1206: 1201: 1197: 1193: 1190: 1185: 1181: 1177: 1172: 1168: 1164: 1161: 1158: 1154: 1150: 1147: 1143: 1137: 1133: 1103: 1100: 1097: 1094: 1074: 1071: 1066: 1062: 1041: 1038: 1035: 1032: 1012: 1009: 1006: 1003: 983: 980: 952: 949: 945: 941: 920: 898: 894: 871: 867: 863: 858: 852: 848: 843: 837: 833: 827: 823: 819: 816: 812: 807: 804: 801: 798: 795: 773: 770: 766: 762: 759: 756: 753: 750: 747: 744: 741: 736: 733: 730: 727: 723: 702: 682: 678: 674: 671: 668: 665: 652: 651: 642: 640: 622: 619: 615: 611: 606: 603: 598: 595: 592: 589: 585: 579: 575: 568: 565: 549:Landau damping 529: 526: 504: 500: 496: 491: 488: 485: 480: 477: 473: 442: 438: 434: 429: 426: 423: 418: 415: 412: 408: 386: 381: 376: 373: 370: 364: 360: 356: 353: 350: 347: 325: 321: 317: 312: 309: 306: 301: 298: 295: 291: 248: 228: 206: 202: 188: 187: 178: 176: 160: 156: 151: 145: 141: 135: 131: 127: 124: 118: 114: 108: 105: 89:Lorentz factor 66: 63: 51:magnetospheres 49:have rotating 35:astroparticles 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2296: 2285: 2282: 2280: 2277: 2276: 2274: 2263: 2259: 2255: 2251: 2247: 2243: 2238: 2233: 2229: 2225: 2220: 2215: 2210: 2206: 2202: 2198: 2194: 2190: 2185: 2181: 2177: 2173: 2169: 2165: 2161: 2156: 2151: 2147: 2143: 2136: 2131: 2127: 2123: 2119: 2115: 2111: 2107: 2102: 2097: 2093: 2089: 2082: 2077: 2073: 2069: 2065: 2061: 2057: 2053: 2048: 2043: 2039: 2035: 2034:New Astronomy 2030: 2026: 2022: 2018: 2014: 2010: 2006: 2001: 1996: 1992: 1988: 1983: 1979: 1975: 1971: 1967: 1963: 1959: 1954: 1949: 1945: 1941: 1936: 1935: 1931: 1923: 1917: 1909: 1905: 1901: 1897: 1892: 1887: 1883: 1879: 1872: 1869: 1864: 1860: 1855: 1850: 1846: 1842: 1838: 1834: 1829: 1824: 1820: 1816: 1812: 1805: 1802: 1797: 1793: 1788: 1783: 1779: 1775: 1771: 1767: 1762: 1757: 1753: 1749: 1745: 1738: 1735: 1729: 1724: 1717: 1714: 1709: 1705: 1701: 1697: 1693: 1689: 1684: 1679: 1676:(3): 032901. 1675: 1671: 1664: 1661: 1656: 1652: 1648: 1644: 1640: 1636: 1631: 1626: 1622: 1618: 1611: 1608: 1603: 1599: 1595: 1591: 1587: 1583: 1578: 1573: 1569: 1565: 1558: 1555: 1550: 1546: 1541: 1536: 1532: 1528: 1521: 1518: 1513: 1509: 1505: 1501: 1497: 1493: 1490:(1): 98–103. 1489: 1485: 1478: 1475: 1469: 1467: 1453: 1450: 1447: 1444: 1424: 1421: 1416: 1412: 1389: 1385: 1359: 1355: 1349: 1345: 1337: 1333: 1330: 1325: 1321: 1294: 1277: 1273: 1268: 1264: 1261: 1256: 1252: 1225: 1221: 1217: 1212: 1208: 1204: 1199: 1195: 1191: 1188: 1183: 1179: 1175: 1170: 1166: 1162: 1159: 1156: 1152: 1148: 1145: 1141: 1135: 1131: 1123: 1122: 1121: 1119: 1114: 1101: 1098: 1095: 1092: 1072: 1069: 1064: 1060: 1039: 1036: 1033: 1030: 1010: 1007: 1004: 1001: 981: 978: 970: 950: 947: 944: 939: 918: 896: 892: 869: 865: 861: 856: 850: 846: 841: 835: 831: 825: 817: 814: 810: 805: 799: 793: 771: 768: 760: 754: 748: 745: 742: 739: 734: 731: 728: 725: 721: 676: 672: 669: 666: 663: 650: 643: 641: 620: 617: 614: 609: 604: 601: 596: 593: 590: 587: 583: 577: 573: 566: 563: 556: 555: 552: 550: 546: 541: 539: 534: 527: 525: 523: 522:Klein–Nishina 520: 502: 498: 494: 489: 486: 483: 478: 475: 471: 461: 456: 440: 436: 432: 427: 424: 421: 416: 413: 410: 406: 398:, leading to 379: 362: 358: 354: 351: 348: 345: 323: 319: 315: 310: 307: 304: 299: 296: 293: 289: 280: 276: 275: 269: 267: 263: 246: 226: 204: 200: 186: 179: 177: 158: 154: 149: 143: 139: 133: 125: 122: 116: 112: 106: 103: 96: 95: 92: 90: 85: 81: 76: 72: 64: 62: 60: 56: 52: 48: 44: 40: 36: 32: 19: 2227: 2223: 2196: 2192: 2145: 2141: 2094:(1): 19–24. 2091: 2087: 2037: 2033: 1990: 1986: 1943: 1939: 1916:cite journal 1881: 1877: 1871: 1818: 1814: 1804: 1751: 1747: 1737: 1716: 1673: 1669: 1663: 1623:(1): 15–20. 1620: 1616: 1610: 1567: 1563: 1557: 1530: 1526: 1520: 1487: 1483: 1477: 1243: 1115: 655: 644: 543:Considering 542: 535: 531: 457: 272: 270: 191: 180: 68: 30: 29: 80:centrifugal 2273:Categories 1828:1507.06415 1470:References 2262:119440652 2155:0803.0395 2101:0711.0295 2072:119192197 2047:0901.1235 2025:119158003 2000:0907.4268 1978:118584645 1953:1411.7241 1891:1404.3176 1821:: 14443. 1761:1303.2093 1708:119330230 1683:0706.0392 1630:0906.1691 1390:⊙ 1360:⊙ 1331:≡ 1262:≡ 1205:× 1189:− 1176:× 1163:× 1157:≈ 1132:ϵ 822:Ω 818:− 794:ξ 769:− 755:ξ 752:Ω 740:≈ 701:Γ 681:Γ 670:∼ 664:δ 602:δ 567:≈ 564:ϵ 495:∼ 472:γ 433:∼ 407:γ 355:× 316:∼ 290:γ 201:γ 130:Ω 126:− 113:γ 104:γ 2180:17264617 2126:15342835 1863:26403155 1796:23405276 1754:: 1262. 1023:or even 262:poloidal 2242:Bibcode 2201:Bibcode 2160:Bibcode 2106:Bibcode 2052:Bibcode 2005:Bibcode 1958:Bibcode 1896:Bibcode 1854:4585882 1833:Bibcode 1787:3569628 1766:Bibcode 1688:Bibcode 1655:6198364 1635:Bibcode 1582:Bibcode 1545:Bibcode 1533:: 473. 1512:9910872 1492:Bibcode 460:pulsars 75:pulsars 47:pulsars 2260:  2178:  2124:  2070:  2023:  1976:  1861:  1851:  1794:  1784:  1706:  1653:  1602:486325 1600:  1510:  1244:where 656:where 192:where 2258:S2CID 2232:arXiv 2176:S2CID 2150:arXiv 2138:(PDF) 2122:S2CID 2096:arXiv 2084:(PDF) 2068:S2CID 2042:arXiv 2021:S2CID 1995:arXiv 1974:S2CID 1948:arXiv 1886:arXiv 1823:arXiv 1756:arXiv 1723:arXiv 1704:S2CID 1678:arXiv 1651:S2CID 1625:arXiv 1598:S2CID 1572:arXiv 1535:arXiv 1922:link 1859:PMID 1792:PMID 1508:PMID 969:Crab 545:Crab 517:via 349:< 73:and 71:AGNs 45:and 2250:doi 2209:doi 2197:383 2168:doi 2146:490 2114:doi 2092:503 2060:doi 2013:doi 1966:doi 1904:doi 1882:445 1849:PMC 1841:doi 1782:PMC 1774:doi 1696:doi 1643:doi 1621:502 1590:doi 1568:470 1531:353 1500:doi 1437:or 1160:6.4 1085:or 994:of 979:100 33:of 2275:: 2256:. 2248:. 2240:. 2228:35 2226:. 2207:. 2195:. 2191:. 2174:. 2166:. 2158:. 2144:. 2140:. 2120:. 2112:. 2104:. 2090:. 2086:. 2066:. 2058:. 2050:. 2038:15 2036:. 2019:. 2011:. 2003:. 1991:22 1989:. 1972:. 1964:. 1956:. 1944:24 1942:. 1918:}} 1914:{{ 1902:. 1894:. 1880:. 1857:. 1847:. 1839:. 1831:. 1817:. 1813:. 1790:. 1780:. 1772:. 1764:. 1750:. 1746:. 1702:. 1694:. 1686:. 1674:15 1672:. 1649:. 1641:. 1633:. 1619:. 1596:. 1588:. 1580:. 1566:. 1543:. 1529:. 1506:. 1498:. 1488:50 1486:. 1417:21 1413:10 1346:10 1278:42 1274:10 1257:42 1213:42 1171:17 1167:10 1065:18 1061:10 884:, 786:, 693:, 499:10 455:. 437:10 363:40 359:10 320:10 61:. 2264:. 2252:: 2244:: 2234:: 2217:. 2211:: 2203:: 2182:. 2170:: 2162:: 2152:: 2128:. 2116:: 2108:: 2098:: 2074:. 2062:: 2054:: 2044:: 2027:. 2015:: 2007:: 1997:: 1980:. 1968:: 1960:: 1950:: 1924:) 1910:. 1906:: 1898:: 1888:: 1865:. 1843:: 1835:: 1825:: 1819:5 1798:. 1776:: 1768:: 1758:: 1752:3 1731:. 1725:: 1710:. 1698:: 1690:: 1680:: 1657:. 1645:: 1637:: 1627:: 1604:. 1592:: 1584:: 1574:: 1551:. 1547:: 1537:: 1514:. 1502:: 1494:: 1454:s 1451:V 1448:e 1445:Z 1425:V 1422:e 1386:M 1365:) 1356:M 1350:8 1342:( 1338:/ 1334:M 1326:8 1322:M 1300:s 1295:/ 1290:g 1287:r 1284:e 1269:/ 1265:L 1253:L 1240:, 1226:2 1222:/ 1218:5 1209:L 1200:2 1196:/ 1192:5 1184:8 1180:M 1153:) 1149:V 1146:e 1142:( 1136:p 1102:s 1099:V 1096:e 1093:E 1073:V 1070:e 1040:s 1037:V 1034:e 1031:P 1011:s 1008:V 1005:e 1002:T 982:s 951:J 948:G 940:n 919:m 897:p 893:n 870:2 866:/ 862:1 857:) 851:2 847:c 842:/ 836:2 832:r 826:2 815:1 811:( 806:= 803:) 800:r 797:( 772:3 765:) 761:r 758:( 749:c 746:m 743:2 735:c 732:a 729:e 726:r 722:F 677:/ 673:c 667:r 649:) 647:2 645:( 639:, 621:J 618:G 610:n 605:r 597:c 594:a 591:e 588:r 584:F 578:p 574:n 503:7 490:x 487:a 484:m 479:N 476:K 441:7 428:x 425:a 422:m 417:W 414:B 411:B 385:s 380:/ 375:g 372:r 369:e 352:8 346:L 324:8 311:x 308:a 305:m 300:S 297:C 294:I 274:1 247:c 227:r 205:0 185:) 183:1 181:( 159:2 155:c 150:/ 144:2 140:r 134:2 123:1 117:0 107:= 20:)

Index

Centrifugal mechanism of acceleration
astroparticles
Fermi acceleration
active galactic nuclei
pulsars
magnetospheres
ultra-high-energy cosmic rays
Greisen–Zatsepin–Kuzmin limit
AGNs
pulsars
centrifugal
thought experiment
Lorentz factor
poloidal
centrifugal force
1
Compton scattering
pulsars
inverse Compton
Klein–Nishina
plasma oscillations
Crab
Landau damping
Crab
Langmuir collapse
Bibcode
1994PhRvA..50...98M
doi
10.1103/PhysRevA.50.98
PMID

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑