Knowledge (XXG)

Unilamellar liposome

Source 📝

54:, often the composition of the phospholipids is different between the inner and outer leaflets. Phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, and sphingomyelin are some of the most common lipids most animal cell membranes. These lipids are widely different in charge, length, and saturation state. The presence of unsaturated bonds (double bonds) in lipids for example, creates a kink in acyl chains which further changes the lipid packing and results in a looser packing. Therefore, the composition and sizes of the unilamellar liposomes must be chosen carefully based on the subject of the study. 42:
20–100 nm, large unilamellar liposomes/vesicles (LUVs) with a size range of 100–1000 nm and giant unilamellar liposomes/vesicles (GUVs) with a size range of 1–200 μm. GUVs are mostly used as models for biological membranes in research work. Animal cells are 10–30 μm and plant cells are typically 10–100 μm. Even smaller cell organelles such as mitochondria are typically 1–2 μm. Therefore, a proper model should account for the size of the specimen being studied. In addition, the size of vesicles dictates their
117:
with certain frequency and voltage is applied which promotes formation of GUVs. For polyunsaturated lipids, this technique can induce a significant oxidation effect on the vesicles. Nevertheless, it is a very common and reliable technique to generate GUVs. Modified approaches exist that employ gel-assisted swelling (agarose-assisted swelling or PVA-assisted swelling) for the formation of GUVs under more biologically relevant conditions.
104:(for instance with 1 second pulses in 3 Hz cycles at a power of 150 W) or by extrusion. In extrusion method, the lipid mixture is passed through a membrane for 10 or more times. Depending on the size of the membrane, either SUVs or LUVs can be obtained. Keeping vesicles under argon and away from oxygen and light can extend their lifetime. 112:
Natural swelling: in this method soluble lipids in chloroform are pipetted on a Teflon ring. The chloroform is allowed to evaporate and the ring is then placed under the vacuum for several hours. Next the aqueous buffer is added gently over the Teflon ring and lipids are allowed to naturally swell to
99:
can be used to form a homogeneous layer of liposomes. This step removes the bulk of chloroform. To remove the residues of trapped chloroform, lipids are placed under vacuum from several hours to overnight. Next step is re-hydration where the dried lipids are re-suspended in the desired buffer. Lipids
116:
Electroformation: In this method lipids are placed on a conductive cover glass (indium tin oxide or ITO coated glass) or on Pt wires instead of a Teflon ring and after vacuuming, buffer is placed on the dried lipids and it is sandwiched using a second conductive cover glass. Next an electrical field
120:
A variety of methods exist to encapsulate biological reactants within GUVs by using water-oil interfaces as a scaffold to assemble lipid layers. This allows the use GUVs as cell-like membrane containers for the in vitro recreation (and investigation) of biological functions. These encapsulation
41:
or a mixture of such lipids, containing aqueous solution inside the chamber. Unilamellar liposomes are used to study biological systems and to mimic cell membranes, and are classified into three groups based on their size: small unilamellar liposomes/vesicles (SUVs) that with a size range of
94:
lipids. In the case of lyophilized lipids, they can be solubilized in chloroform. Lipids are then mixed with a desired molar ratio. Then chloroform is evaporated using a gentle stream of nitrogen (to avoid oxygen contact and oxidation of lipids) at room temperature. A
162:
In biomedical research, unilamellar liposomes are extremely useful to study biological systems and mimicking cell functions. As a living cell is very complicated to study, unilamellar liposomes provide a simple tool to study membrane interaction events such as
46:
which is an important factor in studying fusion proteins. SUVs have a higher membrane curvature and vesicles with high membrane curvature can promote membrane fusion faster than vesicles with lower membrane curvature such as GUVs.
698:
Noyhouzer T, L'Homme C, Beaulieu I, Mazurkiewicz S, Kuss S, Kraatz HB, et al. (May 2016). "Ferrocene-Modified Phospholipid: An Innovative Precursor for Redox-Triggered Drug Delivery Vesicles Selective to Cancer Cells".
86:
There are several methods to prepare unilamellar liposomes and the protocols differ based on the type of desired unilamellar vesicles. Different lipids can be bought either dissolved in
155:, and thus drugs can be targeted to these cells. For general or overall delivery, SUVs may be used. For topical applications on skin, specialized lipids like phospholipids and 50:
The composition and characteristics of the cell membrane varies in different cells (plant cells, mammalian cells, bacterial cells, etc). In a membrane
73:(MLVs), consist of many concentric amphiphilic lipid bilayers analogous to onion layers, and MLVs may be of variable sizes up to several micrometers. 515:
Zhou Y, Berry CK, Storer PA, Raphael RM (February 2007). "Peroxidation of polyunsaturated phosphatidyl-choline lipids during electroformation".
100:
can be vortexed for several minutes to insure that all the lipid residues get re-suspended. SUVs can be obtained in via two methods. Either by
113:
form GUVs overnight. the disadvantage of this method is that a large amount of multilamellar vesicles and lipid debris are formed.
31: 17: 159:
may be used to make drug-free liposomes as moisturizers, and with drugs such as for anti-ultraviolet radiation applications.
740: 755: 745: 121:
methods include microfluidic methods, which allow for a high-yield production of vesicles with consistent sizes.
268:"Giant unilamellar vesicles - a perfect tool to visualize phase separation and lipid rafts in model systems" 151:
of these liposomes. If injected into circulation of human/animal body, MLVs are preferentially taken up
750: 469: 320: 212: 164: 432: 66: 629: 604:
Litschel T, Schwille P (March 2021). "Protein Reconstitution Inside Giant Unilamellar Vesicles".
176: 43: 716: 680: 621: 583: 532: 497: 414: 348: 289: 248: 96: 708: 670: 660: 613: 573: 563: 524: 487: 477: 404: 396: 338: 328: 279: 238: 228: 152: 617: 473: 366:
Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002). "The Lipid Bilayer".
324: 675: 648: 578: 551: 528: 492: 457: 409: 384: 343: 308: 62: 734: 633: 243: 186: 156: 148: 136: 58: 51: 649:"Creation of Artificial Cell-Like Structures Promoted by Microfluidics Technologies" 385:"Lipid composition of cell membranes and its relevance in type 2 diabetes mellitus" 309:"SNAREpin/Munc18 promotes adhesion and fusion of large vesicles to giant membranes" 129: 552:"Production of Isolated Giant Unilamellar Vesicles under High Salt Concentrations" 433:"Preparing Large, Unilamellar Vesicles by Extrusion (LUVET) | Avanti Polar Lipids" 712: 458:"Comparison of Extruded and Sonicated Vesicles for Planar Bilayer Self-Assembly" 144: 140: 91: 35: 400: 367: 313:
Proceedings of the National Academy of Sciences of the United States of America
101: 87: 568: 333: 132: 720: 684: 625: 587: 536: 501: 418: 352: 293: 284: 267: 252: 217:"Liposomes and polymersomes: a comparative review towards cell mimicking" 181: 27: 167:, protein localization in the plasma membrane, study ion channels, etc. 665: 233: 216: 482: 38: 550:
Stein H, Spindler S, Bonakdar N, Wang C, Sandoghdar V (2017).
143:
drugs can be carried as solution inside the SUVs or MLVs and
266:
Wesołowska O, Michalak K, Maniewska J, Hendrich AB (2009).
307:
Tareste D, Shen J, Melia TJ, Rothman JE (February 2008).
82:
Small unilamellar vesicles and large unilamellar vesicles
456:
Cho NJ, Hwang LY, Solandt JJ, Frank CW (August 2013).
8: 674: 664: 577: 567: 491: 481: 408: 342: 332: 283: 242: 232: 211:Rideau E, Dimova R, Schwille P, Wurm FR, 198: 618:10.1146/annurev-biophys-100620-114132 599: 597: 7: 206: 204: 202: 34:, bounded by a single bilayer of an 529:10.1016/j.biomaterials.2006.10.016 14: 647:Sato Y, Takinoue M (March 2019). 147:drugs can be incorporated into 18:Vesicle (biology and chemistry) 1: 383:Weijers RN (September 2012). 369:Molecular Biology of the Cell 713:10.1021/acs.langmuir.6b00511 606:Annual Review of Biophysics 69:, in general. In contrast, 61:structure is comparable to 772: 401:10.2174/157339912802083531 108:Giant unilamellar vesicles 15: 244:21.11116/0000-0002-1554-8 569:10.3389/fphys.2017.00063 389:Current Diabetes Reviews 272:Acta Biochimica Polonica 221:Chemical Society Reviews 556:Frontiers in Physiology 334:10.1073/pnas.0712125105 71:multilamellar liposomes 285:10.18388/abp.2009_2514 65:lipid organization in 741:Drug delivery devices 135:are used as targeted 67:biological membranes 24:unilamellar liposome 756:Colloidal chemistry 474:2013Mate....6.3294C 437:Avanti Polar Lipids 325:2008PNAS..105.2380T 666:10.3390/mi10040216 234:10.1039/C8CS00162F 177:Lipid polymorphism 44:membrane curvature 483:10.3390/ma6083294 227:(23): 8572–8610. 215:(November 2018). 97:rotary evaporator 763: 746:Membrane biology 725: 724: 695: 689: 688: 678: 668: 644: 638: 637: 601: 592: 591: 581: 571: 547: 541: 540: 512: 506: 505: 495: 485: 468:(8): 3294–3308. 453: 447: 446: 444: 443: 429: 423: 422: 412: 380: 374: 373: 363: 357: 356: 346: 336: 304: 298: 297: 287: 263: 257: 256: 246: 236: 208: 153:phagocytic cells 771: 770: 766: 765: 764: 762: 761: 760: 731: 730: 729: 728: 707:(17): 4169–78. 697: 696: 692: 646: 645: 641: 603: 602: 595: 549: 548: 544: 523:(6): 1298–306. 514: 513: 509: 455: 454: 450: 441: 439: 431: 430: 426: 382: 381: 377: 372:(4th ed.). 365: 364: 360: 306: 305: 301: 265: 264: 260: 210: 209: 200: 195: 173: 165:membrane fusion 127: 110: 84: 79: 26:is a spherical 20: 12: 11: 5: 769: 767: 759: 758: 753: 748: 743: 733: 732: 727: 726: 690: 639: 593: 542: 507: 448: 424: 395:(5): 390–400. 375: 358: 299: 258: 197: 196: 194: 191: 190: 189: 184: 179: 172: 169: 126: 123: 109: 106: 83: 80: 78: 75: 63:lamellar phase 13: 10: 9: 6: 4: 3: 2: 768: 757: 754: 752: 749: 747: 744: 742: 739: 738: 736: 722: 718: 714: 710: 706: 702: 694: 691: 686: 682: 677: 672: 667: 662: 658: 654: 653:Micromachines 650: 643: 640: 635: 631: 627: 623: 619: 615: 611: 607: 600: 598: 594: 589: 585: 580: 575: 570: 565: 561: 557: 553: 546: 543: 538: 534: 530: 526: 522: 518: 511: 508: 503: 499: 494: 489: 484: 479: 475: 471: 467: 463: 459: 452: 449: 438: 434: 428: 425: 420: 416: 411: 406: 402: 398: 394: 390: 386: 379: 376: 371: 370: 362: 359: 354: 350: 345: 340: 335: 330: 326: 322: 319:(7): 2380–5. 318: 314: 310: 303: 300: 295: 291: 286: 281: 277: 273: 269: 262: 259: 254: 250: 245: 240: 235: 230: 226: 222: 218: 214: 207: 205: 203: 199: 192: 188: 187:Lipid bilayer 185: 183: 180: 178: 175: 174: 170: 168: 166: 160: 158: 157:sphingolipids 154: 150: 149:lipid bilayer 146: 142: 138: 137:drug delivery 134: 131: 124: 122: 118: 114: 107: 105: 103: 98: 93: 89: 81: 76: 74: 72: 68: 64: 60: 59:lipid bilayer 55: 53: 48: 45: 40: 37: 33: 29: 25: 19: 704: 700: 693: 656: 652: 642: 609: 605: 559: 555: 545: 520: 517:Biomaterials 516: 510: 465: 461: 451: 440:. Retrieved 436: 427: 392: 388: 378: 368: 361: 316: 312: 302: 275: 271: 261: 224: 220: 213:Landfester K 161: 130:Phospholipid 128: 125:Applications 119: 115: 111: 85: 70: 56: 49: 23: 21: 751:Surfactants 612:: 525–548. 278:(1): 33–9. 145:hydrophobic 141:Hydrophilic 92:lyophilized 77:Preparation 36:amphiphilic 735:Categories 659:(4): 216. 442:2018-10-29 193:References 102:sonication 88:chloroform 16:See also: 634:232131463 462:Materials 139:systems. 133:liposomes 721:26987014 701:Langmuir 685:30934758 626:33667121 588:28243205 537:17107709 502:28811437 419:22698081 353:18268324 294:19287805 253:30177983 182:Liposome 171:See also 28:liposome 676:6523379 579:5303729 493:5521307 470:Bibcode 410:3474953 344:2268145 321:Bibcode 52:bilayer 32:vesicle 719:  683:  673:  632:  624:  586:  576:  562:: 63. 535:  500:  490:  417:  407:  351:  341:  292:  251:  90:or as 630:S2CID 57:Each 39:lipid 717:PMID 681:PMID 622:PMID 584:PMID 533:PMID 498:PMID 415:PMID 349:PMID 290:PMID 249:PMID 30:, a 709:doi 671:PMC 661:doi 614:doi 574:PMC 564:doi 525:doi 488:PMC 478:doi 405:PMC 397:doi 339:PMC 329:doi 317:105 280:doi 239:hdl 229:doi 737:: 715:. 705:32 703:. 679:. 669:. 657:10 655:. 651:. 628:. 620:. 610:50 608:. 596:^ 582:. 572:. 558:. 554:. 531:. 521:28 519:. 496:. 486:. 476:. 464:. 460:. 435:. 413:. 403:. 391:. 387:. 347:. 337:. 327:. 315:. 311:. 288:. 276:56 274:. 270:. 247:. 237:. 225:47 223:. 219:. 201:^ 22:A 723:. 711:: 687:. 663:: 636:. 616:: 590:. 566:: 560:8 539:. 527:: 504:. 480:: 472:: 466:6 445:. 421:. 399:: 393:8 355:. 331:: 323:: 296:. 282:: 255:. 241:: 231::

Index

Vesicle (biology and chemistry)
liposome
vesicle
amphiphilic
lipid
membrane curvature
bilayer
lipid bilayer
lamellar phase
biological membranes
chloroform
lyophilized
rotary evaporator
sonication
Phospholipid
liposomes
drug delivery
Hydrophilic
hydrophobic
lipid bilayer
phagocytic cells
sphingolipids
membrane fusion
Lipid polymorphism
Liposome
Lipid bilayer



Landfester K

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.