Knowledge (XXG)

Triangular matrix

Source 📝

4356: 5975: 1479: 380: 1176: 651: 2107: 128: 1474:{\displaystyle {\begin{matrix}\ell _{1,1}x_{1}&&&&&&&=&b_{1}\\\ell _{2,1}x_{1}&+&\ell _{2,2}x_{2}&&&&&=&b_{2}\\\vdots &&\vdots &&\ddots &&&&\vdots \\\ell _{m,1}x_{1}&+&\ell _{m,2}x_{2}&+&\dotsb &+&\ell _{m,m}x_{m}&=&b_{m}\\\end{matrix}}} 3260: 2938: 399: 1826: 3590: 375:{\displaystyle L={\begin{bmatrix}\ell _{1,1}&&&&0\\\ell _{2,1}&\ell _{2,2}&&&\\\ell _{3,1}&\ell _{3,2}&\ddots &&\\\vdots &\vdots &\ddots &\ddots &\\\ell _{n,1}&\ell _{n,2}&\ldots &\ell _{n,n-1}&\ell _{n,n}\end{bmatrix}}} 4459:
throughout; in particular the lower triangular matrices also form a Lie algebra. However, operations mixing upper and lower triangular matrices do not in general produce triangular matrices. For instance, the sum of an upper and a lower triangular matrix can be any matrix; the product of a lower
3091: 2769: 4021:-dimensional affine space, and the existence of a (common) eigenvalue (and hence a common eigenvector) corresponds to this variety having a point (being non-empty), which is the content of the (weak) Nullstellensatz. In algebraic terms, these operators correspond to an 646:{\displaystyle U={\begin{bmatrix}u_{1,1}&u_{1,2}&u_{1,3}&\ldots &u_{1,n}\\&u_{2,2}&u_{2,3}&\ldots &u_{2,n}\\&&\ddots &\ddots &\vdots \\&&&\ddots &u_{n-1,n}\\0&&&&u_{n,n}\end{bmatrix}}} 3895:
are simultaneously triangularizable. This can be proven by first showing that commuting matrices have a common eigenvector, and then inducting on dimension as before. This was proven by Frobenius, starting in 1878 for a commuting pair, as discussed at
2102:{\displaystyle {\begin{aligned}x_{1}&={\frac {b_{1}}{\ell _{1,1}}},\\x_{2}&={\frac {b_{2}-\ell _{2,1}x_{1}}{\ell _{2,2}}},\\&\ \ \vdots \\x_{m}&={\frac {b_{m}-\sum _{i=1}^{m-1}\ell _{m,i}x_{i}}{\ell _{m,m}}}.\end{aligned}}} 787: 873: 3454: 4613:, any finite-dimensional nilpotent Lie algebra is conjugate to a subalgebra of the strictly upper triangular matrices, that is to say, a finite-dimensional nilpotent Lie algebra is simultaneously strictly upper triangularizable. 4694:
components accordingly as each diagonal entry is positive or negative. The identity component is invertible triangular matrices with positive entries on the diagonal, and the group of all invertible triangular matrices is a
4269:
the commutator vanishes so this holds. This was proven by Drazin, Dungey, and Gruenberg in 1951; a brief proof is given by Prasolov in 1994. One direction is clear: if the matrices are simultaneously triangularisable, then
2406: 3255:{\displaystyle A={\begin{bmatrix}A_{11}&0&\cdots &0\\A_{21}&A_{22}&\cdots &0\\\vdots &\vdots &\ddots &\vdots \\A_{k1}&A_{k2}&\cdots &A_{kk}\end{bmatrix}}} 2933:{\displaystyle A={\begin{bmatrix}A_{11}&A_{12}&\cdots &A_{1k}\\0&A_{22}&\cdots &A_{2k}\\\vdots &\vdots &\ddots &\vdots \\0&0&\cdots &A_{kk}\end{bmatrix}}} 3329: 3007: 3634:
is similar to an upper triangular matrix of a very particular form. The simpler triangularization result is often sufficient however, and in any case used in proving the Jordan normal form theorem.
2574: 1831: 4790:. The invertible ones among them form a subgroup of the general linear group, whose conjugate subgroups are those defined as the stabilizer of some (other) complete flag. These subgroups are 3813:
Simultaneous triangularizability means that this algebra is conjugate into the Lie subalgebra of upper triangular matrices, and is equivalent to this algebra being a Lie subalgebra of a
950: 917: 4175: 1538: 3449: 1818: 4091: 3893: 3711: 2276: 1739: 4580: 4499: 4775: 4604: 4527: 3373: 3051: 4801:
all triangular matrices). The conjugates of such a group are the subgroups defined as the stabilizer of some partial flag. These subgroups are called parabolic subgroups.
4797:
The stabilizer of a partial flag obtained by forgetting some parts of the standard flag can be described as a set of block upper triangular matrices (but its elements are
4794:. The group of invertible lower triangular matrices is such a subgroup, since it is the stabilizer of the standard flag associated to the standard basis in reverse order. 5633: 2485: 1119: 3753: 4724: 4692: 4345: 4267: 1766: 1673: 1646: 1619: 1592: 1565: 1146: 1078: 1047: 1020: 985: 694:
A non-square (or sometimes any) matrix with zeros above (below) the diagonal is called a lower (upper) trapezoidal matrix. The non-zero entries form the shape of a
3585:{\displaystyle 0<\left\langle e_{1}\right\rangle <\left\langle e_{1},e_{2}\right\rangle <\cdots <\left\langle e_{1},\ldots ,e_{n}\right\rangle =K^{n}.} 2447: 712: 3847: 3811: 798: 4015: 3960: 3079: 2757: 1693: 4314: 4236: 5847: 4355: 5066: 5938: 4423:
of square matrices for a given size. Additionally, this also shows that the upper triangular matrices can be viewed as a Lie subalgebra of the
2212: 3721:
if there is a basis under which they are all upper triangular; equivalently, if they are upper triangularizable by a single similarity matrix
4931: 5857: 5623: 4733:
of the Lie group of invertible upper triangular matrices is the set of all upper triangular matrices, not necessarily invertible, and is a
6011: 5024: 4958: 4895: 3725:
Such a set of matrices is more easily understood by considering the algebra of matrices it generates, namely all polynomials in the
2300: 3269: 2947: 5658: 5205: 4664:
of all invertible matrices. A triangular matrix is invertible precisely when its diagonal entries are invertible (non-zero).
2490: 3662: 5422: 5059: 4387: 3904: 3596:
acts transitively on bases), so any matrix that stabilises a flag is similar to one that stabilizes the standard flag.
2672: 5497: 3637:
In the case of complex matrices, it is possible to say more about triangularization, namely, that any square matrix
2652:
If all of the entries on the main diagonal of a (upper or lower) triangular matrix are also 0, the matrix is called
5653: 5175: 3612: 960:
for upper triangular matrices. The process is so called because for lower triangular matrices, one first computes
5757: 5628: 5542: 2216: 922: 889: 5862: 5752: 5460: 5140: 684: 4818: 5897: 5826: 5708: 5568: 5165: 5052: 4096: 2189: 2125: 1487: 3653:
as change of basis) to an upper triangular matrix; this follows by taking an Hermitian basis for the flag.
3402: 2192:
of a triangular matrix equal the product of the diagonal entries, as can be checked by direct computation.
5767: 5350: 5155: 4844: 4022: 2208: 1771: 111: 38: 4050: 3852: 3670: 2221: 5713: 5450: 5300: 5295: 5130: 5105: 5100: 4787: 4471: 3392: 1698: 96: 5974: 4532: 2147:
A matrix which is both symmetric and triangular is diagonal. In a similar vein, a matrix which is both
4817:
of the field of scalars; in the case of complex numbers it corresponds to a group formed of parabolic
4477: 5907: 5265: 5095: 5075: 4834: 4756: 4734: 4661: 4585: 4508: 4441: 4037: 3593: 3334: 3012: 2698: 3900:. As for a single matrix, over the complex numbers these can be triangularized by unitary matrices. 5928: 5902: 5480: 5285: 5275: 4653: 4617: 4502: 4420: 4041: 3642: 3604: 2167: 2199:
of a triangular matrix are exactly its diagonal entries. Moreover, each eigenvalue occurs exactly
83:
Because matrix equations with triangular matrices are easier to solve, they are very important in
5979: 5933: 5923: 5877: 5872: 5801: 5737: 5603: 5340: 5335: 5270: 5260: 5125: 4859: 4854: 4696: 3897: 3821: 3627: 84: 4610: 2452: 3619:
has an eigenvector, by taking the quotient space by the eigenvector and inducting to show that
6016: 5990: 5777: 5772: 5762: 5742: 5703: 5698: 5527: 5522: 5507: 5502: 5493: 5488: 5435: 5280: 5225: 5195: 5190: 5170: 5160: 5120: 5030: 5020: 4964: 4954: 4927: 4901: 4891: 4849: 92: 4983: 4347:
or combination thereof – it will still have 0s on the diagonal in the triangularizing basis.
3903:
The fact that commuting matrices have a common eigenvector can be interpreted as a result of
1091: 782:{\displaystyle {\begin{bmatrix}1&0&0\\2&96&0\\4&9&69\\\end{bmatrix}}} 5985: 5953: 5882: 5821: 5816: 5796: 5732: 5638: 5608: 5593: 5578: 5573: 5512: 5465: 5440: 5430: 5401: 5320: 5315: 5290: 5220: 5200: 5110: 5090: 4995: 4839: 4822: 4751: 4647: 4445: 4033: 3814: 3728: 3615:) is similar to a triangular matrix. This can be proven by using induction on the fact that 2684: 2664: 88: 31: 4706: 4670: 4323: 4245: 1744: 1651: 1624: 1597: 1570: 1543: 1124: 1056: 1025: 998: 963: 868:{\displaystyle {\begin{bmatrix}1&4&1\\0&6&9\\0&0&1\\\end{bmatrix}}} 5683: 5618: 5598: 5583: 5563: 5547: 5445: 5376: 5366: 5325: 5210: 5180: 4700: 4363: 2625: 2423: 2170:) and triangular is also diagonal. This can be seen by looking at the diagonal entries of 680: 3826: 2593:
of a (upper or lower) triangular matrix are all 1, the matrix is called (upper or lower)
3758: 5943: 5887: 5867: 5852: 5811: 5688: 5648: 5613: 5537: 5476: 5455: 5396: 5386: 5371: 5305: 5250: 5240: 5235: 5145: 4791: 4738: 4643: 4405: 4359: 3965: 3910: 3650: 3623:
stabilizes a flag, and is thus triangularizable with respect to a basis for that flag.
3384: 3064: 2742: 1678: 107: 17: 4320:
upper triangularizable (hence nilpotent), which is preserved by multiplication by any
4273: 4195: 6005: 5948: 5806: 5747: 5678: 5668: 5663: 5588: 5517: 5391: 5381: 5310: 5230: 5215: 5150: 4814: 4625: 3396: 2590: 2148: 65: 49: 2701:
are zero, except for the entries in a single column. Such a matrix is also called a
5831: 5788: 5693: 5406: 5345: 5255: 5135: 5019:. Simeon Ivanov. Providence, R.I.: American Mathematical Society. p. 178–179. 4652:
The set of invertible triangular matrices of a given kind (upper or lower) forms a
4632: 4621: 4380: 4376: 4367: 4040:
is simultaneously upper triangularizable, the case of commuting matrices being the
2728: 2722: 4460:
triangular with an upper triangular matrix is not necessarily triangular either.
5673: 5643: 5411: 5245: 5115: 4730: 4428: 4424: 2634: 2185: 2129: 668:, and an upper or right triangular matrix is commonly denoted with the variable 4999: 5724: 5185: 4810: 4432: 4416: 4239: 2196: 1648:, and thus can be solved once one substitutes in the already solved value for 5958: 5532: 5034: 4905: 4657: 4464: 4178: 2641: 2141: 695: 4968: 4411:
The product of an upper triangular matrix and a scalar is upper triangular.
2144:
of an upper triangular matrix is a lower triangular matrix and vice versa.
664:. A lower or left triangular matrix is commonly denoted with the variable 5892: 5014: 4885: 4948: 4616:
Algebras of upper triangular matrices have a natural generalization in
4926:(2 ed.). Princeton, NJ: Princeton University Press. p. 168. 4786:
The upper triangular matrices are precisely those that stabilize the
4415:
Together these facts mean that the upper triangular matrices form a
3820:
The basic result is that (over an algebraically closed field), the
4354: 3395:: upper triangular matrices are precisely those that preserve the 5044: 4470:
The set of strictly upper (or lower) triangular matrices forms a
4408:
of an upper triangular matrix, if it exists, is upper triangular.
4401:
The product of two upper triangular matrices is upper triangular.
3599:
Any complex square matrix is triangularizable. In fact, a matrix
4529:, the Lie algebra of all upper triangular matrices; in symbols, 2282:. In other words, the characteristic polynomial of a triangular 5048: 4606:
is the Lie algebra of the Lie group of unitriangular matrices.
2401:{\displaystyle p_{A}(x)=(x-a_{11})(x-a_{22})\cdots (x-a_{nn})} 4398:
The sum of two upper triangular matrices is upper triangular.
4093:
is simultaneously triangularisable if and only if the matrix
2697:
is a special form of unitriangular matrix, where all of the
2116:
can be solved in an analogous way, only working backwards.
4667:
Over the real numbers, this group is disconnected, having
3324:{\displaystyle A_{ij}\in \mathbb {F} ^{n_{i}\times n_{j}}} 3002:{\displaystyle A_{ij}\in \mathbb {F} ^{n_{i}\times n_{j}}} 4890:(2nd ed.). New York: Springer. pp. 86–87, 169. 4440:. The Lie algebra of all upper triangular matrices is a 1151:
Notice that this does not require inverting the matrix.
4982:
Drazin, M. P.; Dungey, J. W.; Gruenberg, K. W. (1951).
2633:
triangular matrix has nothing to do with the notion of
4394:
Upper triangularity is preserved by many operations:
3106: 2784: 1181: 807: 721: 414: 143: 4759: 4709: 4673: 4588: 4535: 4511: 4480: 4326: 4276: 4248: 4198: 4099: 4053: 3968: 3913: 3855: 3829: 3761: 3731: 3673: 3457: 3405: 3337: 3272: 3094: 3067: 3015: 2950: 2772: 2745: 2569:{\displaystyle (x-a_{11})(x-a_{22})\cdots (x-a_{nn})} 2493: 2455: 2426: 2303: 2224: 1829: 1774: 1747: 1701: 1681: 1654: 1627: 1600: 1573: 1546: 1490: 1179: 1127: 1094: 1059: 1028: 1001: 966: 952:
is very easy to solve by an iterative process called
925: 892: 801: 715: 402: 131: 679:
A matrix that is both upper and lower triangular is
5916: 5840: 5786: 5722: 5556: 5474: 5420: 5359: 5083: 4953:(2nd ed.). New York: Wiley. pp. 285–290. 2416:polynomial whose roots are the diagonal entries of 4769: 4726:on the diagonal, corresponding to the components. 4718: 4686: 4598: 4574: 4521: 4493: 4339: 4308: 4261: 4230: 4169: 4085: 4009: 3954: 3887: 3841: 3805: 3747: 3705: 3584: 3443: 3391:. Abstractly, this is equivalent to stabilizing a 3367: 3323: 3254: 3073: 3045: 3001: 2932: 2751: 2731:(partitioned matrix) that is a triangular matrix. 2568: 2479: 2441: 2400: 2270: 2112:A matrix equation with an upper triangular matrix 2101: 1812: 1760: 1733: 1687: 1667: 1640: 1613: 1586: 1559: 1532: 1473: 1140: 1113: 1072: 1041: 1014: 979: 944: 911: 867: 781: 645: 374: 4809:The group of 2×2 upper unitriangular matrices is 2420:(with multiplicities). To see this, observe that 4821:; the 3×3 upper unitriangular matrices form the 4047:More generally and precisely, a set of matrices 3907:: commuting matrices form a commutative algebra 2456: 2247: 4924:Matrix mathematics: theory, facts, and formulas 4917: 4915: 3649:is unitarily equivalent (i.e. similar, using a 3399:, which is given by the standard ordered basis 1170:can be written as a system of linear equations 68:are zero. Similarly, a square matrix is called 4427:of square matrices of a fixed size, where the 3630:theorem, which states that in this situation, 956:for lower triangular matrices and analogously 5060: 2449:is also triangular and hence its determinant 8: 2663:All finite strictly triangular matrices are 1594:directly. The second equation only involves 4448:of the Lie algebra of all square matrices. 4036:, which shows that any representation of a 1049:. In an upper triangular matrix, one works 5634:Fundamental (linear differential equation) 5067: 5053: 5045: 4988:Journal of the London Mathematical Society 4463:The set of unitriangular matrices forms a 2124:Forward substitution is used in financial 945:{\displaystyle U\mathbf {x} =\mathbf {b} } 912:{\displaystyle L\mathbf {x} =\mathbf {b} } 4761: 4760: 4758: 4708: 4678: 4672: 4590: 4589: 4587: 4560: 4559: 4550: 4549: 4537: 4536: 4534: 4513: 4512: 4510: 4482: 4481: 4479: 4388:powers of the 4-bit Gray code permutation 4331: 4325: 4297: 4284: 4275: 4253: 4247: 4219: 4206: 4197: 4158: 4145: 4129: 4110: 4098: 4077: 4058: 4052: 4044:case, abelian being a fortiori solvable. 4017:which can be interpreted as a variety in 3998: 3979: 3967: 3943: 3924: 3912: 3879: 3860: 3854: 3828: 3791: 3772: 3760: 3736: 3730: 3697: 3678: 3672: 3626:A more precise statement is given by the 3573: 3555: 3536: 3507: 3494: 3472: 3456: 3432: 3413: 3404: 3387:to a triangular matrix is referred to as 3336: 3313: 3300: 3295: 3291: 3290: 3277: 3271: 3235: 3215: 3200: 3154: 3142: 3113: 3101: 3093: 3066: 3014: 2991: 2978: 2973: 2969: 2968: 2955: 2949: 2913: 2859: 2842: 2820: 2803: 2791: 2779: 2771: 2744: 2554: 2529: 2507: 2492: 2454: 2425: 2386: 2361: 2339: 2308: 2302: 2229: 2223: 2078: 2067: 2051: 2035: 2024: 2011: 2004: 1991: 1952: 1941: 1925: 1912: 1905: 1892: 1867: 1857: 1851: 1838: 1830: 1828: 1798: 1779: 1773: 1752: 1746: 1725: 1706: 1700: 1680: 1659: 1653: 1632: 1626: 1605: 1599: 1578: 1572: 1551: 1545: 1524: 1511: 1495: 1489: 1461: 1444: 1428: 1401: 1385: 1368: 1352: 1311: 1290: 1274: 1257: 1241: 1227: 1204: 1188: 1180: 1178: 1132: 1126: 1099: 1093: 1064: 1058: 1033: 1027: 1006: 1000: 971: 965: 937: 929: 924: 904: 896: 891: 802: 800: 716: 714: 623: 589: 542: 519: 501: 480: 457: 439: 421: 409: 401: 352: 328: 305: 287: 237: 219: 196: 178: 150: 138: 130: 4737:. These are, respectively, the standard 2600:Other names used for these matrices are 5939:Matrix representation of conic sections 5016:Problems and Theorems in Linear Algebra 4984:"Some Theorems on Commutative Matrices" 4879: 4877: 4875: 4871: 2487:is the product of its diagonal entries 1768:using the previously solved values for 393:, and analogously a matrix of the form 4170:{\displaystyle p(A_{1},\ldots ,A_{k})} 2640:All finite unitriangular matrices are 1533:{\displaystyle \ell _{1,1}x_{1}=b_{1}} 4638:Borel subgroups and Borel subalgebras 3607:containing all of the eigenvalues of 3444:{\displaystyle (e_{1},\ldots ,e_{n})} 2620:triangular matrix is not the same as 7: 1813:{\displaystyle x_{1},\dots ,x_{k-1}} 4762: 4591: 4561: 4551: 4538: 4514: 4483: 4086:{\displaystyle A_{1},\ldots ,A_{k}} 3888:{\displaystyle A_{1},\ldots ,A_{k}} 3706:{\displaystyle A_{1},\ldots ,A_{k}} 2271:{\displaystyle p_{A}(x)=\det(xI-A)} 1734:{\displaystyle x_{1},\dots ,x_{k}} 687:to triangular matrices are called 25: 4575:{\displaystyle {\mathfrak {n}}=.} 3611:(for example, any matrix over an 1484:Observe that the first equation ( 5973: 4494:{\displaystyle {\mathfrak {n}}.} 3657:Simultaneous triangularisability 3592:All flags are conjugate (as the 938: 930: 905: 897: 5841:Used in science and engineering 4770:{\displaystyle {\mathfrak {b}}} 4699:of this group and the group of 4599:{\displaystyle {\mathfrak {n}}} 4522:{\displaystyle {\mathfrak {b}}} 4444:. It is often referred to as a 4351:Algebras of triangular matrices 3717:simultaneously triangularisable 3368:{\displaystyle i,j=1,\ldots ,k} 3046:{\displaystyle i,j=1,\ldots ,k} 2727:A block triangular matrix is a 103:and an upper triangular matrix 5084:Explicitly constrained entries 4566: 4546: 4303: 4277: 4225: 4199: 4164: 4138: 4135: 4103: 4004: 3972: 3949: 3917: 3797: 3765: 3438: 3406: 2563: 2541: 2535: 2516: 2513: 2494: 2474: 2459: 2395: 2373: 2367: 2348: 2345: 2326: 2320: 2314: 2265: 2250: 2241: 2235: 1820:. The resulting formulas are: 1675:. Continuing in this way, the 886:A matrix equation in the form 1: 5858:Fundamental (computer vision) 4922:Bernstein, Dennis S. (2009). 4660:, which is a subgroup of the 4025:of the polynomial algebra in 3663:Simultaneously diagonalizable 2203:times on the diagonal, where 1567:, and thus one can solve for 882:Forward and back substitution 99:of a lower triangular matrix 80:the main diagonal are zero. 27:Special kind of square matrix 4192:-commuting variables, where 52:. A square matrix is called 5624:Duplication and elimination 5423:eigenvalues or eigenvectors 4884:Axler, Sheldon Jay (1997). 4366:matrices, multiplied using 2711:Gauss transformation matrix 2412:that is, the unique degree 1695:-th equation only involves 6033: 5557:With specific applications 5186:Discrete Fourier Transform 4641: 4630: 4451:All these results hold if 4375:operations. They form the 3660: 3613:algebraically closed field 2720: 2682: 2648:Strictly triangular matrix 2480:{\displaystyle \det(xI-A)} 2195:In fact more is true: the 110:all its leading principal 36: 30:Not to be confused with a 29: 5967: 5848:Cabibbo–Kobayashi–Maskawa 5475:Satisfying conditions on 4887:Linear Algebra Done Right 3905:Hilbert's Nullstellensatz 2217:characteristic polynomial 1080:, then substituting that 1022:, and repeats through to 792:is lower triangular, and 6012:Numerical linear algebra 5013:Prasolov, V. V. (1994). 5000:10.1112/jlms/s1-26.3.221 4947:Herstein, I. N. (1975). 2679:Atomic triangular matrix 2671:as a consequence of the 1741:, and one can solve for 1121:, and repeating through 987:, then substitutes that 5206:Generalized permutation 4032:This is generalized by 3451:and the resulting flag 2717:Block triangular matrix 2673:Cayley-Hamilton theorem 1114:{\displaystyle x_{n-1}} 662:right triangular matrix 658:upper triangular matrix 387:lower triangular matrix 18:Upper triangular matrix 5980:Mathematics portal 4845:Cholesky decomposition 4819:Möbius transformations 4771: 4720: 4688: 4600: 4576: 4523: 4495: 4391: 4341: 4310: 4263: 4232: 4171: 4087: 4023:algebra representation 4011: 3956: 3889: 3843: 3807: 3749: 3748:{\displaystyle A_{i},} 3707: 3586: 3445: 3369: 3325: 3256: 3083:lower block triangular 3075: 3057:Lower block triangular 3047: 3003: 2934: 2761:upper block triangular 2753: 2735:Upper block triangular 2589:If the entries on the 2570: 2481: 2443: 2402: 2272: 2213:multiplicity as a root 2209:algebraic multiplicity 2103: 2046: 1814: 1762: 1735: 1689: 1669: 1642: 1615: 1588: 1561: 1534: 1475: 1142: 1115: 1088:equation to solve for 1074: 1043: 1016: 995:equation to solve for 981: 946: 913: 869: 783: 647: 391:left triangular matrix 376: 122:A matrix of the form 95:may be written as the 39:triangular matrix ring 4777:of the Lie algebra gl 4772: 4721: 4719:{\displaystyle \pm 1} 4689: 4687:{\displaystyle 2^{n}} 4601: 4577: 4524: 4496: 4472:nilpotent Lie algebra 4358: 4342: 4340:{\displaystyle A_{k}} 4311: 4264: 4262:{\displaystyle A_{i}} 4233: 4172: 4088: 4012: 3957: 3890: 3844: 3808: 3750: 3708: 3587: 3446: 3370: 3326: 3257: 3076: 3048: 3004: 2935: 2754: 2699:off-diagonal elements 2571: 2482: 2444: 2403: 2273: 2104: 2020: 1815: 1763: 1761:{\displaystyle x_{k}} 1736: 1690: 1670: 1668:{\displaystyle x_{1}} 1643: 1641:{\displaystyle x_{2}} 1616: 1614:{\displaystyle x_{1}} 1589: 1587:{\displaystyle x_{1}} 1562: 1560:{\displaystyle x_{1}} 1535: 1476: 1143: 1141:{\displaystyle x_{1}} 1116: 1075: 1073:{\displaystyle x_{n}} 1044: 1042:{\displaystyle x_{n}} 1017: 1015:{\displaystyle x_{2}} 982: 980:{\displaystyle x_{1}} 947: 914: 878:is upper triangular. 870: 784: 648: 377: 48:is a special kind of 4835:Gaussian elimination 4757: 4735:solvable Lie algebra 4707: 4671: 4662:general linear group 4586: 4533: 4509: 4501:This algebra is the 4478: 4442:solvable Lie algebra 4362:lower unitriangular 4324: 4274: 4246: 4196: 4181:for all polynomials 4097: 4051: 4038:solvable Lie algebra 3966: 3911: 3853: 3827: 3759: 3729: 3671: 3594:general linear group 3455: 3403: 3335: 3270: 3092: 3065: 3013: 2948: 2770: 2743: 2585:Unitriangular matrix 2491: 2453: 2442:{\displaystyle xI-A} 2424: 2301: 2222: 1827: 1772: 1745: 1699: 1679: 1652: 1625: 1598: 1571: 1544: 1488: 1177: 1159:The matrix equation 1155:Forward substitution 1125: 1092: 1057: 1026: 999: 964: 954:forward substitution 923: 890: 799: 713: 683:. Matrices that are 400: 129: 34:, a related concept. 5929:Linear independence 5176:Diagonally dominant 4744:of the Lie group GL 4618:functional analysis 4503:derived Lie algebra 4421:associative algebra 4042:abelian Lie algebra 3842:{\displaystyle A,B} 3643:Schur decomposition 3379:Triangularisability 2168:conjugate transpose 76:if all the entries 60:if all the entries 37:For the rings, see 5934:Matrix exponential 5924:Jordan normal form 5758:Fisher information 5629:Euclidean distance 5543:Totally unimodular 4860:Invariant subspace 4855:Tridiagonal matrix 4767: 4716: 4697:semidirect product 4684: 4596: 4572: 4519: 4491: 4392: 4386:and correspond to 4337: 4306: 4259: 4228: 4167: 4083: 4007: 3952: 3898:commuting matrices 3885: 3849:or more generally 3839: 3822:commuting matrices 3806:{\displaystyle K.} 3803: 3745: 3703: 3667:A set of matrices 3645:. This means that 3628:Jordan normal form 3582: 3441: 3365: 3321: 3252: 3246: 3071: 3043: 2999: 2930: 2924: 2749: 2566: 2477: 2439: 2398: 2268: 2099: 2097: 1810: 1758: 1731: 1685: 1665: 1638: 1611: 1584: 1557: 1530: 1471: 1469: 1138: 1111: 1070: 1039: 1012: 977: 942: 909: 865: 859: 779: 773: 643: 637: 372: 366: 85:numerical analysis 44:In mathematics, a 5999: 5998: 5991:Category:Matrices 5863:Fuzzy associative 5753:Doubly stochastic 5461:Positive-definite 5141:Block tridiagonal 4950:Topics in Algebra 4933:978-0-691-14039-1 4850:Hessenberg matrix 4750:and the standard 4701:diagonal matrices 4010:{\displaystyle K} 3955:{\displaystyle K} 3383:A matrix that is 3074:{\displaystyle A} 2752:{\displaystyle A} 2695:triangular matrix 2693:(upper or lower) 2667:of index at most 2656:(upper or lower) 2612:(upper or lower) 2608:, or very rarely 2604:(upper or lower) 2090: 1979: 1976: 1964: 1879: 1688:{\displaystyle k} 958:back substitution 93:invertible matrix 46:triangular matrix 16:(Redirected from 6024: 5986:List of matrices 5978: 5977: 5954:Row echelon form 5898:State transition 5827:Seidel adjacency 5709:Totally positive 5569:Alternating sign 5166:Complex Hadamard 5069: 5062: 5055: 5046: 5039: 5038: 5010: 5004: 5003: 4979: 4973: 4972: 4944: 4938: 4937: 4919: 4910: 4909: 4881: 4840:QR decomposition 4823:Heisenberg group 4776: 4774: 4773: 4768: 4766: 4765: 4752:Borel subalgebra 4725: 4723: 4722: 4717: 4693: 4691: 4690: 4685: 4683: 4682: 4648:Borel subalgebra 4605: 4603: 4602: 4597: 4595: 4594: 4581: 4579: 4578: 4573: 4565: 4564: 4555: 4554: 4542: 4541: 4528: 4526: 4525: 4520: 4518: 4517: 4500: 4498: 4497: 4492: 4487: 4486: 4457:lower triangular 4453:upper triangular 4446:Borel subalgebra 4439: 4346: 4344: 4343: 4338: 4336: 4335: 4315: 4313: 4312: 4309:{\displaystyle } 4307: 4302: 4301: 4289: 4288: 4268: 4266: 4265: 4260: 4258: 4257: 4242:; for commuting 4237: 4235: 4234: 4231:{\displaystyle } 4229: 4224: 4223: 4211: 4210: 4176: 4174: 4173: 4168: 4163: 4162: 4150: 4149: 4134: 4133: 4115: 4114: 4092: 4090: 4089: 4084: 4082: 4081: 4063: 4062: 4016: 4014: 4013: 4008: 4003: 4002: 3984: 3983: 3961: 3959: 3958: 3953: 3948: 3947: 3929: 3928: 3894: 3892: 3891: 3886: 3884: 3883: 3865: 3864: 3848: 3846: 3845: 3840: 3815:Borel subalgebra 3812: 3810: 3809: 3804: 3796: 3795: 3777: 3776: 3754: 3752: 3751: 3746: 3741: 3740: 3719: 3718: 3712: 3710: 3709: 3704: 3702: 3701: 3683: 3682: 3591: 3589: 3588: 3583: 3578: 3577: 3565: 3561: 3560: 3559: 3541: 3540: 3517: 3513: 3512: 3511: 3499: 3498: 3481: 3477: 3476: 3450: 3448: 3447: 3442: 3437: 3436: 3418: 3417: 3389:triangularizable 3374: 3372: 3371: 3366: 3330: 3328: 3327: 3322: 3320: 3319: 3318: 3317: 3305: 3304: 3294: 3285: 3284: 3261: 3259: 3258: 3253: 3251: 3250: 3243: 3242: 3223: 3222: 3208: 3207: 3159: 3158: 3147: 3146: 3118: 3117: 3080: 3078: 3077: 3072: 3052: 3050: 3049: 3044: 3008: 3006: 3005: 3000: 2998: 2997: 2996: 2995: 2983: 2982: 2972: 2963: 2962: 2939: 2937: 2936: 2931: 2929: 2928: 2921: 2920: 2867: 2866: 2847: 2846: 2828: 2827: 2808: 2807: 2796: 2795: 2758: 2756: 2755: 2750: 2703:Frobenius matrix 2685:Frobenius matrix 2575: 2573: 2572: 2567: 2562: 2561: 2534: 2533: 2512: 2511: 2486: 2484: 2483: 2478: 2448: 2446: 2445: 2440: 2407: 2405: 2404: 2399: 2394: 2393: 2366: 2365: 2344: 2343: 2313: 2312: 2277: 2275: 2274: 2269: 2234: 2233: 2108: 2106: 2105: 2100: 2098: 2091: 2089: 2088: 2073: 2072: 2071: 2062: 2061: 2045: 2034: 2016: 2015: 2005: 1996: 1995: 1977: 1974: 1972: 1965: 1963: 1962: 1947: 1946: 1945: 1936: 1935: 1917: 1916: 1906: 1897: 1896: 1880: 1878: 1877: 1862: 1861: 1852: 1843: 1842: 1819: 1817: 1816: 1811: 1809: 1808: 1784: 1783: 1767: 1765: 1764: 1759: 1757: 1756: 1740: 1738: 1737: 1732: 1730: 1729: 1711: 1710: 1694: 1692: 1691: 1686: 1674: 1672: 1671: 1666: 1664: 1663: 1647: 1645: 1644: 1639: 1637: 1636: 1620: 1618: 1617: 1612: 1610: 1609: 1593: 1591: 1590: 1585: 1583: 1582: 1566: 1564: 1563: 1558: 1556: 1555: 1540:) only involves 1539: 1537: 1536: 1531: 1529: 1528: 1516: 1515: 1506: 1505: 1480: 1478: 1477: 1472: 1470: 1466: 1465: 1449: 1448: 1439: 1438: 1406: 1405: 1396: 1395: 1373: 1372: 1363: 1362: 1339: 1338: 1337: 1331: 1325: 1316: 1315: 1300: 1299: 1298: 1297: 1295: 1294: 1285: 1284: 1262: 1261: 1252: 1251: 1232: 1231: 1216: 1215: 1214: 1213: 1212: 1211: 1209: 1208: 1199: 1198: 1147: 1145: 1144: 1139: 1137: 1136: 1120: 1118: 1117: 1112: 1110: 1109: 1079: 1077: 1076: 1071: 1069: 1068: 1053:first computing 1048: 1046: 1045: 1040: 1038: 1037: 1021: 1019: 1018: 1013: 1011: 1010: 986: 984: 983: 978: 976: 975: 951: 949: 948: 943: 941: 933: 918: 916: 915: 910: 908: 900: 874: 872: 871: 866: 864: 863: 788: 786: 785: 780: 778: 777: 689:triangularisable 652: 650: 649: 644: 642: 641: 634: 633: 617: 616: 615: 606: 605: 578: 577: 576: 558: 557: 553: 552: 530: 529: 512: 511: 495: 491: 490: 468: 467: 450: 449: 432: 431: 381: 379: 378: 373: 371: 370: 363: 362: 345: 344: 316: 315: 298: 297: 279: 256: 255: 248: 247: 230: 229: 211: 210: 209: 207: 206: 189: 188: 165: 164: 163: 161: 160: 89:LU decomposition 74: 73: 72:upper triangular 58: 57: 56:lower triangular 32:triangular array 21: 6032: 6031: 6027: 6026: 6025: 6023: 6022: 6021: 6002: 6001: 6000: 5995: 5972: 5963: 5912: 5836: 5782: 5718: 5552: 5470: 5416: 5355: 5156:Centrosymmetric 5079: 5073: 5043: 5042: 5027: 5012: 5011: 5007: 4981: 4980: 4976: 4961: 4946: 4945: 4941: 4934: 4921: 4920: 4913: 4898: 4883: 4882: 4873: 4868: 4831: 4807: 4792:Borel subgroups 4782: 4755: 4754: 4749: 4705: 4704: 4674: 4669: 4668: 4650: 4642:Main articles: 4640: 4635: 4611:Engel's theorem 4584: 4583: 4531: 4530: 4507: 4506: 4476: 4475: 4455:is replaced by 4435: 4384: 4373: 4353: 4327: 4322: 4321: 4293: 4280: 4272: 4271: 4249: 4244: 4243: 4215: 4202: 4194: 4193: 4154: 4141: 4125: 4106: 4095: 4094: 4073: 4054: 4049: 4048: 3994: 3975: 3964: 3963: 3939: 3920: 3909: 3908: 3875: 3856: 3851: 3850: 3825: 3824: 3787: 3768: 3757: 3756: 3732: 3727: 3726: 3716: 3715: 3713:are said to be 3693: 3674: 3669: 3668: 3665: 3659: 3569: 3551: 3532: 3531: 3527: 3503: 3490: 3489: 3485: 3468: 3464: 3453: 3452: 3428: 3409: 3401: 3400: 3381: 3333: 3332: 3309: 3296: 3289: 3273: 3268: 3267: 3245: 3244: 3231: 3229: 3224: 3211: 3209: 3196: 3193: 3192: 3187: 3182: 3177: 3171: 3170: 3165: 3160: 3150: 3148: 3138: 3135: 3134: 3129: 3124: 3119: 3109: 3102: 3090: 3089: 3063: 3062: 3059: 3011: 3010: 2987: 2974: 2967: 2951: 2946: 2945: 2923: 2922: 2909: 2907: 2902: 2897: 2891: 2890: 2885: 2880: 2875: 2869: 2868: 2855: 2853: 2848: 2838: 2836: 2830: 2829: 2816: 2814: 2809: 2799: 2797: 2787: 2780: 2768: 2767: 2741: 2740: 2737: 2725: 2719: 2687: 2681: 2650: 2587: 2582: 2550: 2525: 2503: 2489: 2488: 2451: 2450: 2422: 2421: 2382: 2357: 2335: 2304: 2299: 2298: 2225: 2220: 2219: 2211:, that is, its 2138: 2128:to construct a 2122: 2096: 2095: 2074: 2063: 2047: 2007: 2006: 1997: 1987: 1984: 1983: 1970: 1969: 1948: 1937: 1921: 1908: 1907: 1898: 1888: 1885: 1884: 1863: 1853: 1844: 1834: 1825: 1824: 1794: 1775: 1770: 1769: 1748: 1743: 1742: 1721: 1702: 1697: 1696: 1677: 1676: 1655: 1650: 1649: 1628: 1623: 1622: 1601: 1596: 1595: 1574: 1569: 1568: 1547: 1542: 1541: 1520: 1507: 1491: 1486: 1485: 1468: 1467: 1457: 1455: 1450: 1440: 1424: 1422: 1417: 1412: 1407: 1397: 1381: 1379: 1374: 1364: 1348: 1345: 1344: 1336: 1330: 1324: 1318: 1317: 1307: 1305: 1296: 1286: 1270: 1268: 1263: 1253: 1237: 1234: 1233: 1223: 1221: 1210: 1200: 1184: 1175: 1174: 1157: 1128: 1123: 1122: 1095: 1090: 1089: 1060: 1055: 1054: 1029: 1024: 1023: 1002: 997: 996: 967: 962: 961: 921: 920: 888: 887: 884: 858: 857: 852: 847: 841: 840: 835: 830: 824: 823: 818: 813: 803: 797: 796: 772: 771: 766: 761: 755: 754: 749: 744: 738: 737: 732: 727: 717: 711: 710: 704: 636: 635: 619: 614: 608: 607: 585: 583: 574: 573: 568: 563: 555: 554: 538: 536: 531: 515: 513: 497: 493: 492: 476: 474: 469: 453: 451: 435: 433: 417: 410: 398: 397: 365: 364: 348: 346: 324: 322: 317: 301: 299: 283: 280: 278: 273: 268: 263: 257: 254: 249: 233: 231: 215: 212: 208: 192: 190: 174: 171: 170: 162: 146: 139: 127: 126: 120: 71: 70: 55: 54: 42: 35: 28: 23: 22: 15: 12: 11: 5: 6030: 6028: 6020: 6019: 6014: 6004: 6003: 5997: 5996: 5994: 5993: 5988: 5983: 5968: 5965: 5964: 5962: 5961: 5956: 5951: 5946: 5944:Perfect matrix 5941: 5936: 5931: 5926: 5920: 5918: 5914: 5913: 5911: 5910: 5905: 5900: 5895: 5890: 5885: 5880: 5875: 5870: 5865: 5860: 5855: 5850: 5844: 5842: 5838: 5837: 5835: 5834: 5829: 5824: 5819: 5814: 5809: 5804: 5799: 5793: 5791: 5784: 5783: 5781: 5780: 5775: 5770: 5765: 5760: 5755: 5750: 5745: 5740: 5735: 5729: 5727: 5720: 5719: 5717: 5716: 5714:Transformation 5711: 5706: 5701: 5696: 5691: 5686: 5681: 5676: 5671: 5666: 5661: 5656: 5651: 5646: 5641: 5636: 5631: 5626: 5621: 5616: 5611: 5606: 5601: 5596: 5591: 5586: 5581: 5576: 5571: 5566: 5560: 5558: 5554: 5553: 5551: 5550: 5545: 5540: 5535: 5530: 5525: 5520: 5515: 5510: 5505: 5500: 5491: 5485: 5483: 5472: 5471: 5469: 5468: 5463: 5458: 5453: 5451:Diagonalizable 5448: 5443: 5438: 5433: 5427: 5425: 5421:Conditions on 5418: 5417: 5415: 5414: 5409: 5404: 5399: 5394: 5389: 5384: 5379: 5374: 5369: 5363: 5361: 5357: 5356: 5354: 5353: 5348: 5343: 5338: 5333: 5328: 5323: 5318: 5313: 5308: 5303: 5301:Skew-symmetric 5298: 5296:Skew-Hermitian 5293: 5288: 5283: 5278: 5273: 5268: 5263: 5258: 5253: 5248: 5243: 5238: 5233: 5228: 5223: 5218: 5213: 5208: 5203: 5198: 5193: 5188: 5183: 5178: 5173: 5168: 5163: 5158: 5153: 5148: 5143: 5138: 5133: 5131:Block-diagonal 5128: 5123: 5118: 5113: 5108: 5106:Anti-symmetric 5103: 5101:Anti-Hermitian 5098: 5093: 5087: 5085: 5081: 5080: 5074: 5072: 5071: 5064: 5057: 5049: 5041: 5040: 5025: 5005: 4994:(3): 221–228. 4974: 4959: 4939: 4932: 4911: 4896: 4870: 4869: 4867: 4864: 4863: 4862: 4857: 4852: 4847: 4842: 4837: 4830: 4827: 4815:additive group 4806: 4803: 4778: 4764: 4745: 4739:Borel subgroup 4715: 4712: 4681: 4677: 4644:Borel subgroup 4639: 4636: 4626:Hilbert spaces 4593: 4571: 4568: 4563: 4558: 4553: 4548: 4545: 4540: 4516: 4490: 4485: 4413: 4412: 4409: 4402: 4399: 4382: 4371: 4352: 4349: 4334: 4330: 4305: 4300: 4296: 4292: 4287: 4283: 4279: 4256: 4252: 4227: 4222: 4218: 4214: 4209: 4205: 4201: 4166: 4161: 4157: 4153: 4148: 4144: 4140: 4137: 4132: 4128: 4124: 4121: 4118: 4113: 4109: 4105: 4102: 4080: 4076: 4072: 4069: 4066: 4061: 4057: 4006: 4001: 3997: 3993: 3990: 3987: 3982: 3978: 3974: 3971: 3951: 3946: 3942: 3938: 3935: 3932: 3927: 3923: 3919: 3916: 3882: 3878: 3874: 3871: 3868: 3863: 3859: 3838: 3835: 3832: 3802: 3799: 3794: 3790: 3786: 3783: 3780: 3775: 3771: 3767: 3764: 3744: 3739: 3735: 3700: 3696: 3692: 3689: 3686: 3681: 3677: 3658: 3655: 3651:unitary matrix 3581: 3576: 3572: 3568: 3564: 3558: 3554: 3550: 3547: 3544: 3539: 3535: 3530: 3526: 3523: 3520: 3516: 3510: 3506: 3502: 3497: 3493: 3488: 3484: 3480: 3475: 3471: 3467: 3463: 3460: 3440: 3435: 3431: 3427: 3424: 3421: 3416: 3412: 3408: 3380: 3377: 3364: 3361: 3358: 3355: 3352: 3349: 3346: 3343: 3340: 3316: 3312: 3308: 3303: 3299: 3293: 3288: 3283: 3280: 3276: 3264: 3263: 3249: 3241: 3238: 3234: 3230: 3228: 3225: 3221: 3218: 3214: 3210: 3206: 3203: 3199: 3195: 3194: 3191: 3188: 3186: 3183: 3181: 3178: 3176: 3173: 3172: 3169: 3166: 3164: 3161: 3157: 3153: 3149: 3145: 3141: 3137: 3136: 3133: 3130: 3128: 3125: 3123: 3120: 3116: 3112: 3108: 3107: 3105: 3100: 3097: 3070: 3058: 3055: 3042: 3039: 3036: 3033: 3030: 3027: 3024: 3021: 3018: 2994: 2990: 2986: 2981: 2977: 2971: 2966: 2961: 2958: 2954: 2942: 2941: 2927: 2919: 2916: 2912: 2908: 2906: 2903: 2901: 2898: 2896: 2893: 2892: 2889: 2886: 2884: 2881: 2879: 2876: 2874: 2871: 2870: 2865: 2862: 2858: 2854: 2852: 2849: 2845: 2841: 2837: 2835: 2832: 2831: 2826: 2823: 2819: 2815: 2813: 2810: 2806: 2802: 2798: 2794: 2790: 2786: 2785: 2783: 2778: 2775: 2748: 2736: 2733: 2721:Main article: 2718: 2715: 2683:Main article: 2680: 2677: 2649: 2646: 2586: 2583: 2581: 2578: 2565: 2560: 2557: 2553: 2549: 2546: 2543: 2540: 2537: 2532: 2528: 2524: 2521: 2518: 2515: 2510: 2506: 2502: 2499: 2496: 2476: 2473: 2470: 2467: 2464: 2461: 2458: 2438: 2435: 2432: 2429: 2410: 2409: 2397: 2392: 2389: 2385: 2381: 2378: 2375: 2372: 2369: 2364: 2360: 2356: 2353: 2350: 2347: 2342: 2338: 2334: 2331: 2328: 2325: 2322: 2319: 2316: 2311: 2307: 2267: 2264: 2261: 2258: 2255: 2252: 2249: 2246: 2243: 2240: 2237: 2232: 2228: 2137: 2134: 2121: 2118: 2110: 2109: 2094: 2087: 2084: 2081: 2077: 2070: 2066: 2060: 2057: 2054: 2050: 2044: 2041: 2038: 2033: 2030: 2027: 2023: 2019: 2014: 2010: 2003: 2000: 1998: 1994: 1990: 1986: 1985: 1982: 1973: 1971: 1968: 1961: 1958: 1955: 1951: 1944: 1940: 1934: 1931: 1928: 1924: 1920: 1915: 1911: 1904: 1901: 1899: 1895: 1891: 1887: 1886: 1883: 1876: 1873: 1870: 1866: 1860: 1856: 1850: 1847: 1845: 1841: 1837: 1833: 1832: 1807: 1804: 1801: 1797: 1793: 1790: 1787: 1782: 1778: 1755: 1751: 1728: 1724: 1720: 1717: 1714: 1709: 1705: 1684: 1662: 1658: 1635: 1631: 1608: 1604: 1581: 1577: 1554: 1550: 1527: 1523: 1519: 1514: 1510: 1504: 1501: 1498: 1494: 1482: 1481: 1464: 1460: 1456: 1454: 1451: 1447: 1443: 1437: 1434: 1431: 1427: 1423: 1421: 1418: 1416: 1413: 1411: 1408: 1404: 1400: 1394: 1391: 1388: 1384: 1380: 1378: 1375: 1371: 1367: 1361: 1358: 1355: 1351: 1347: 1346: 1343: 1340: 1335: 1332: 1329: 1326: 1323: 1320: 1319: 1314: 1310: 1306: 1304: 1301: 1293: 1289: 1283: 1280: 1277: 1273: 1269: 1267: 1264: 1260: 1256: 1250: 1247: 1244: 1240: 1236: 1235: 1230: 1226: 1222: 1220: 1217: 1207: 1203: 1197: 1194: 1191: 1187: 1183: 1182: 1156: 1153: 1135: 1131: 1108: 1105: 1102: 1098: 1067: 1063: 1036: 1032: 1009: 1005: 974: 970: 940: 936: 932: 928: 907: 903: 899: 895: 883: 880: 876: 875: 862: 856: 853: 851: 848: 846: 843: 842: 839: 836: 834: 831: 829: 826: 825: 822: 819: 817: 814: 812: 809: 808: 806: 790: 789: 776: 770: 767: 765: 762: 760: 757: 756: 753: 750: 748: 745: 743: 740: 739: 736: 733: 731: 728: 726: 723: 722: 720: 703: 700: 654: 653: 640: 632: 629: 626: 622: 618: 613: 610: 609: 604: 601: 598: 595: 592: 588: 584: 582: 579: 575: 572: 569: 567: 564: 562: 559: 556: 551: 548: 545: 541: 537: 535: 532: 528: 525: 522: 518: 514: 510: 507: 504: 500: 496: 494: 489: 486: 483: 479: 475: 473: 470: 466: 463: 460: 456: 452: 448: 445: 442: 438: 434: 430: 427: 424: 420: 416: 415: 413: 408: 405: 383: 382: 369: 361: 358: 355: 351: 347: 343: 340: 337: 334: 331: 327: 323: 321: 318: 314: 311: 308: 304: 300: 296: 293: 290: 286: 282: 281: 277: 274: 272: 269: 267: 264: 262: 259: 258: 253: 250: 246: 243: 240: 236: 232: 228: 225: 222: 218: 214: 213: 205: 202: 199: 195: 191: 187: 184: 181: 177: 173: 172: 169: 166: 159: 156: 153: 149: 145: 144: 142: 137: 134: 119: 116: 114:are non-zero. 108:if and only if 91:algorithm, an 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 6029: 6018: 6015: 6013: 6010: 6009: 6007: 5992: 5989: 5987: 5984: 5982: 5981: 5976: 5970: 5969: 5966: 5960: 5957: 5955: 5952: 5950: 5949:Pseudoinverse 5947: 5945: 5942: 5940: 5937: 5935: 5932: 5930: 5927: 5925: 5922: 5921: 5919: 5917:Related terms 5915: 5909: 5908:Z (chemistry) 5906: 5904: 5901: 5899: 5896: 5894: 5891: 5889: 5886: 5884: 5881: 5879: 5876: 5874: 5871: 5869: 5866: 5864: 5861: 5859: 5856: 5854: 5851: 5849: 5846: 5845: 5843: 5839: 5833: 5830: 5828: 5825: 5823: 5820: 5818: 5815: 5813: 5810: 5808: 5805: 5803: 5800: 5798: 5795: 5794: 5792: 5790: 5785: 5779: 5776: 5774: 5771: 5769: 5766: 5764: 5761: 5759: 5756: 5754: 5751: 5749: 5746: 5744: 5741: 5739: 5736: 5734: 5731: 5730: 5728: 5726: 5721: 5715: 5712: 5710: 5707: 5705: 5702: 5700: 5697: 5695: 5692: 5690: 5687: 5685: 5682: 5680: 5677: 5675: 5672: 5670: 5667: 5665: 5662: 5660: 5657: 5655: 5652: 5650: 5647: 5645: 5642: 5640: 5637: 5635: 5632: 5630: 5627: 5625: 5622: 5620: 5617: 5615: 5612: 5610: 5607: 5605: 5602: 5600: 5597: 5595: 5592: 5590: 5587: 5585: 5582: 5580: 5577: 5575: 5572: 5570: 5567: 5565: 5562: 5561: 5559: 5555: 5549: 5546: 5544: 5541: 5539: 5536: 5534: 5531: 5529: 5526: 5524: 5521: 5519: 5516: 5514: 5511: 5509: 5506: 5504: 5501: 5499: 5495: 5492: 5490: 5487: 5486: 5484: 5482: 5478: 5473: 5467: 5464: 5462: 5459: 5457: 5454: 5452: 5449: 5447: 5444: 5442: 5439: 5437: 5434: 5432: 5429: 5428: 5426: 5424: 5419: 5413: 5410: 5408: 5405: 5403: 5400: 5398: 5395: 5393: 5390: 5388: 5385: 5383: 5380: 5378: 5375: 5373: 5370: 5368: 5365: 5364: 5362: 5358: 5352: 5349: 5347: 5344: 5342: 5339: 5337: 5334: 5332: 5329: 5327: 5324: 5322: 5319: 5317: 5314: 5312: 5309: 5307: 5304: 5302: 5299: 5297: 5294: 5292: 5289: 5287: 5284: 5282: 5279: 5277: 5274: 5272: 5269: 5267: 5266:Pentadiagonal 5264: 5262: 5259: 5257: 5254: 5252: 5249: 5247: 5244: 5242: 5239: 5237: 5234: 5232: 5229: 5227: 5224: 5222: 5219: 5217: 5214: 5212: 5209: 5207: 5204: 5202: 5199: 5197: 5194: 5192: 5189: 5187: 5184: 5182: 5179: 5177: 5174: 5172: 5169: 5167: 5164: 5162: 5159: 5157: 5154: 5152: 5149: 5147: 5144: 5142: 5139: 5137: 5134: 5132: 5129: 5127: 5124: 5122: 5119: 5117: 5114: 5112: 5109: 5107: 5104: 5102: 5099: 5097: 5096:Anti-diagonal 5094: 5092: 5089: 5088: 5086: 5082: 5077: 5070: 5065: 5063: 5058: 5056: 5051: 5050: 5047: 5036: 5032: 5028: 5026:9780821802366 5022: 5018: 5017: 5009: 5006: 5001: 4997: 4993: 4989: 4985: 4978: 4975: 4970: 4966: 4962: 4960:0-471-01090-1 4956: 4952: 4951: 4943: 4940: 4935: 4929: 4925: 4918: 4916: 4912: 4907: 4903: 4899: 4897:0-387-22595-1 4893: 4889: 4888: 4880: 4878: 4876: 4872: 4865: 4861: 4858: 4856: 4853: 4851: 4848: 4846: 4843: 4841: 4838: 4836: 4833: 4832: 4828: 4826: 4824: 4820: 4816: 4812: 4804: 4802: 4800: 4795: 4793: 4789: 4788:standard flag 4784: 4781: 4753: 4748: 4743: 4740: 4736: 4732: 4727: 4713: 4710: 4702: 4698: 4679: 4675: 4665: 4663: 4659: 4655: 4649: 4645: 4637: 4634: 4629: 4627: 4623: 4622:nest algebras 4620:which yields 4619: 4614: 4612: 4607: 4582:In addition, 4569: 4556: 4543: 4504: 4488: 4473: 4468: 4466: 4461: 4458: 4454: 4449: 4447: 4443: 4438: 4434: 4431:given by the 4430: 4426: 4422: 4418: 4410: 4407: 4403: 4400: 4397: 4396: 4395: 4389: 4385: 4378: 4374: 4370: 4365: 4361: 4357: 4350: 4348: 4332: 4328: 4319: 4298: 4294: 4290: 4285: 4281: 4254: 4250: 4241: 4220: 4216: 4212: 4207: 4203: 4191: 4188: 4184: 4180: 4159: 4155: 4151: 4146: 4142: 4130: 4126: 4122: 4119: 4116: 4111: 4107: 4100: 4078: 4074: 4070: 4067: 4064: 4059: 4055: 4045: 4043: 4039: 4035: 4034:Lie's theorem 4030: 4028: 4024: 4020: 3999: 3995: 3991: 3988: 3985: 3980: 3976: 3969: 3944: 3940: 3936: 3933: 3930: 3925: 3921: 3914: 3906: 3901: 3899: 3880: 3876: 3872: 3869: 3866: 3861: 3857: 3836: 3833: 3830: 3823: 3818: 3816: 3800: 3792: 3788: 3784: 3781: 3778: 3773: 3769: 3762: 3742: 3737: 3733: 3724: 3720: 3698: 3694: 3690: 3687: 3684: 3679: 3675: 3664: 3656: 3654: 3652: 3648: 3644: 3640: 3635: 3633: 3629: 3624: 3622: 3618: 3614: 3610: 3606: 3602: 3597: 3595: 3579: 3574: 3570: 3566: 3562: 3556: 3552: 3548: 3545: 3542: 3537: 3533: 3528: 3524: 3521: 3518: 3514: 3508: 3504: 3500: 3495: 3491: 3486: 3482: 3478: 3473: 3469: 3465: 3461: 3458: 3433: 3429: 3425: 3422: 3419: 3414: 3410: 3398: 3397:standard flag 3394: 3390: 3386: 3378: 3376: 3362: 3359: 3356: 3353: 3350: 3347: 3344: 3341: 3338: 3314: 3310: 3306: 3301: 3297: 3286: 3281: 3278: 3274: 3247: 3239: 3236: 3232: 3226: 3219: 3216: 3212: 3204: 3201: 3197: 3189: 3184: 3179: 3174: 3167: 3162: 3155: 3151: 3143: 3139: 3131: 3126: 3121: 3114: 3110: 3103: 3098: 3095: 3088: 3087: 3086: 3084: 3068: 3056: 3054: 3040: 3037: 3034: 3031: 3028: 3025: 3022: 3019: 3016: 2992: 2988: 2984: 2979: 2975: 2964: 2959: 2956: 2952: 2925: 2917: 2914: 2910: 2904: 2899: 2894: 2887: 2882: 2877: 2872: 2863: 2860: 2856: 2850: 2843: 2839: 2833: 2824: 2821: 2817: 2811: 2804: 2800: 2792: 2788: 2781: 2776: 2773: 2766: 2765: 2764: 2762: 2746: 2734: 2732: 2730: 2724: 2716: 2714: 2712: 2708: 2704: 2700: 2696: 2692: 2686: 2678: 2676: 2674: 2670: 2666: 2661: 2659: 2655: 2647: 2645: 2643: 2638: 2636: 2632: 2628: 2627: 2623: 2619: 2616:. However, a 2615: 2611: 2607: 2603: 2598: 2596: 2595:unitriangular 2592: 2591:main diagonal 2584: 2580:Special forms 2579: 2577: 2558: 2555: 2551: 2547: 2544: 2538: 2530: 2526: 2522: 2519: 2508: 2504: 2500: 2497: 2471: 2468: 2465: 2462: 2436: 2433: 2430: 2427: 2419: 2415: 2390: 2387: 2383: 2379: 2376: 2370: 2362: 2358: 2354: 2351: 2340: 2336: 2332: 2329: 2323: 2317: 2309: 2305: 2297: 2296: 2295: 2293: 2289: 2285: 2281: 2262: 2259: 2256: 2253: 2244: 2238: 2230: 2226: 2218: 2214: 2210: 2206: 2202: 2198: 2193: 2191: 2187: 2182: 2180: 2176: 2173: 2169: 2165: 2161: 2157: 2154: 2150: 2145: 2143: 2135: 2133: 2131: 2127: 2126:bootstrapping 2119: 2117: 2115: 2092: 2085: 2082: 2079: 2075: 2068: 2064: 2058: 2055: 2052: 2048: 2042: 2039: 2036: 2031: 2028: 2025: 2021: 2017: 2012: 2008: 2001: 1999: 1992: 1988: 1980: 1966: 1959: 1956: 1953: 1949: 1942: 1938: 1932: 1929: 1926: 1922: 1918: 1913: 1909: 1902: 1900: 1893: 1889: 1881: 1874: 1871: 1868: 1864: 1858: 1854: 1848: 1846: 1839: 1835: 1823: 1822: 1821: 1805: 1802: 1799: 1795: 1791: 1788: 1785: 1780: 1776: 1753: 1749: 1726: 1722: 1718: 1715: 1712: 1707: 1703: 1682: 1660: 1656: 1633: 1629: 1606: 1602: 1579: 1575: 1552: 1548: 1525: 1521: 1517: 1512: 1508: 1502: 1499: 1496: 1492: 1462: 1458: 1452: 1445: 1441: 1435: 1432: 1429: 1425: 1419: 1414: 1409: 1402: 1398: 1392: 1389: 1386: 1382: 1376: 1369: 1365: 1359: 1356: 1353: 1349: 1341: 1333: 1327: 1321: 1312: 1308: 1302: 1291: 1287: 1281: 1278: 1275: 1271: 1265: 1258: 1254: 1248: 1245: 1242: 1238: 1228: 1224: 1218: 1205: 1201: 1195: 1192: 1189: 1185: 1173: 1172: 1171: 1169: 1165: 1162: 1154: 1152: 1149: 1133: 1129: 1106: 1103: 1100: 1096: 1087: 1083: 1065: 1061: 1052: 1034: 1030: 1007: 1003: 994: 990: 972: 968: 959: 955: 934: 926: 901: 893: 881: 879: 860: 854: 849: 844: 837: 832: 827: 820: 815: 810: 804: 795: 794: 793: 774: 768: 763: 758: 751: 746: 741: 734: 729: 724: 718: 709: 708: 707: 701: 699: 697: 692: 690: 686: 682: 677: 675: 671: 667: 663: 659: 656:is called an 638: 630: 627: 624: 620: 611: 602: 599: 596: 593: 590: 586: 580: 570: 565: 560: 549: 546: 543: 539: 533: 526: 523: 520: 516: 508: 505: 502: 498: 487: 484: 481: 477: 471: 464: 461: 458: 454: 446: 443: 440: 436: 428: 425: 422: 418: 411: 406: 403: 396: 395: 394: 392: 388: 367: 359: 356: 353: 349: 341: 338: 335: 332: 329: 325: 319: 312: 309: 306: 302: 294: 291: 288: 284: 275: 270: 265: 260: 251: 244: 241: 238: 234: 226: 223: 220: 216: 203: 200: 197: 193: 185: 182: 179: 175: 167: 157: 154: 151: 147: 140: 135: 132: 125: 124: 123: 117: 115: 113: 109: 106: 102: 98: 94: 90: 86: 81: 79: 75: 67: 66:main diagonal 63: 59: 51: 50:square matrix 47: 40: 33: 19: 5971: 5903:Substitution 5789:graph theory 5330: 5286:Quaternionic 5276:Persymmetric 5015: 5008: 4991: 4987: 4977: 4949: 4942: 4923: 4886: 4808: 4798: 4796: 4785: 4779: 4746: 4741: 4728: 4666: 4651: 4633:Affine group 4615: 4609:In fact, by 4608: 4469: 4462: 4456: 4452: 4450: 4436: 4414: 4393: 4377:Cayley table 4368: 4317: 4189: 4186: 4182: 4046: 4031: 4026: 4018: 3902: 3819: 3722: 3714: 3666: 3646: 3638: 3636: 3631: 3625: 3620: 3616: 3608: 3600: 3598: 3388: 3382: 3265: 3082: 3060: 2943: 2760: 2738: 2729:block matrix 2726: 2723:Block matrix 2710: 2707:Gauss matrix 2706: 2702: 2694: 2690: 2688: 2668: 2662: 2657: 2653: 2651: 2639: 2630: 2624: 2621: 2617: 2613: 2609: 2605: 2601: 2599: 2594: 2588: 2417: 2413: 2411: 2291: 2287: 2283: 2279: 2204: 2200: 2194: 2183: 2178: 2174: 2171: 2163: 2159: 2155: 2152: 2146: 2139: 2123: 2120:Applications 2113: 2111: 1483: 1167: 1163: 1160: 1158: 1150: 1085: 1081: 1050: 992: 988: 957: 953: 885: 877: 791: 705: 693: 688: 678: 673: 669: 665: 661: 657: 655: 390: 386: 385:is called a 384: 121: 104: 100: 82: 77: 69: 61: 53: 45: 43: 5878:Hamiltonian 5802:Biadjacency 5738:Correlation 5654:Householder 5604:Commutation 5341:Vandermonde 5336:Tridiagonal 5271:Permutation 5261:Nonnegative 5246:Matrix unit 5126:Bisymmetric 4731:Lie algebra 4656:, indeed a 4429:Lie bracket 4425:Lie algebra 4029:variables. 2635:matrix norm 2626:unit matrix 2294:is exactly 2197:eigenvalues 2186:determinant 2130:yield curve 706:The matrix 118:Description 6006:Categories 5778:Transition 5773:Stochastic 5743:Covariance 5725:statistics 5704:Symplectic 5699:Similarity 5528:Unimodular 5523:Orthogonal 5508:Involutory 5503:Invertible 5498:Projection 5494:Idempotent 5436:Convergent 5331:Triangular 5281:Polynomial 5226:Hessenberg 5196:Equivalent 5191:Elementary 5171:Copositive 5161:Conference 5121:Bidiagonal 4866:References 4811:isomorphic 4631:See also: 4474:, denoted 4433:commutator 4417:subalgebra 4240:commutator 3661:See also: 2658:triangular 2614:triangular 2606:triangular 2151:(meaning 2136:Properties 1051:backwards, 5959:Wronskian 5883:Irregular 5873:Gell-Mann 5822:Laplacian 5817:Incidence 5797:Adjacency 5768:Precision 5733:Centering 5639:Generator 5609:Confusion 5594:Circulant 5574:Augmented 5533:Unipotent 5513:Nilpotent 5489:Congruent 5466:Stieltjes 5441:Defective 5431:Companion 5402:Redheffer 5321:Symmetric 5316:Sylvester 5291:Signature 5221:Hermitian 5201:Frobenius 5111:Arrowhead 5091:Alternant 4711:± 4658:Lie group 4465:Lie group 4179:nilpotent 4120:… 4068:… 3989:… 3934:… 3870:… 3782:… 3688:… 3546:… 3522:⋯ 3423:… 3357:… 3307:× 3287:∈ 3227:⋯ 3190:⋮ 3185:⋱ 3180:⋮ 3175:⋮ 3163:⋯ 3127:⋯ 3061:A matrix 3035:… 2985:× 2965:∈ 2905:⋯ 2888:⋮ 2883:⋱ 2878:⋮ 2873:⋮ 2851:⋯ 2812:⋯ 2739:A matrix 2665:nilpotent 2642:unipotent 2548:− 2539:⋯ 2523:− 2501:− 2469:− 2434:− 2380:− 2371:⋯ 2355:− 2333:− 2260:− 2190:permanent 2142:transpose 2076:ℓ 2049:ℓ 2040:− 2022:∑ 2018:− 1981:⋮ 1950:ℓ 1923:ℓ 1919:− 1865:ℓ 1803:− 1789:… 1716:… 1493:ℓ 1426:ℓ 1415:⋯ 1383:ℓ 1350:ℓ 1342:⋮ 1334:⋱ 1328:⋮ 1322:⋮ 1272:ℓ 1239:ℓ 1186:ℓ 1104:− 1084:into the 991:into the 696:trapezoid 594:− 581:⋱ 571:⋮ 566:⋱ 561:⋱ 534:… 472:… 350:ℓ 339:− 326:ℓ 320:… 303:ℓ 285:ℓ 276:⋱ 271:⋱ 266:⋮ 261:⋮ 252:⋱ 235:ℓ 217:ℓ 194:ℓ 176:ℓ 148:ℓ 87:. By the 6017:Matrices 5787:Used in 5723:Used in 5684:Rotation 5659:Jacobian 5619:Distance 5599:Cofactor 5584:Carleman 5564:Adjugate 5548:Weighing 5481:inverses 5477:products 5446:Definite 5377:Identity 5367:Exchange 5360:Constant 5326:Toeplitz 5211:Hadamard 5181:Diagonal 5035:30076024 4906:54850562 4829:See also 4805:Examples 4364:Toeplitz 4318:strictly 3755:denoted 3563:⟩ 3529:⟨ 3515:⟩ 3487:⟨ 3479:⟩ 3466:⟨ 3331:for all 3009:for all 2654:strictly 2629:, and a 2162:, where 1086:previous 702:Examples 681:diagonal 5888:Overlap 5853:Density 5812:Edmonds 5689:Seifert 5649:Hessian 5614:Coxeter 5538:Unitary 5456:Hurwitz 5387:Of ones 5372:Hilbert 5306:Skyline 5251:Metzler 5241:Logical 5236:Integer 5146:Boolean 5078:classes 4969:3307396 4813:to the 4437:ab − ba 4419:of the 4406:inverse 4238:is the 3603:over a 3385:similar 2709:, or a 2290:matrix 2215:of the 2207:is its 2166:is the 989:forward 685:similar 97:product 5807:Degree 5748:Design 5679:Random 5669:Payoff 5664:Moment 5589:Cartan 5579:Bézout 5518:Normal 5392:Pascal 5382:Lehmer 5311:Sparse 5231:Hollow 5216:Hankel 5151:Cauchy 5076:Matrix 5033:  5023:  4967:  4957:  4930:  4904:  4894:  4360:Binary 3641:has a 3266:where 2944:where 2691:atomic 2631:normed 2610:normed 2149:normal 1978:  1975:  112:minors 5868:Gamma 5832:Tutte 5694:Shear 5407:Shift 5397:Pauli 5346:Walsh 5256:Moore 5136:Block 4703:with 4654:group 3962:over 3605:field 78:below 62:above 5674:Pick 5644:Gram 5412:Zero 5116:Band 5031:OCLC 5021:ISBN 4965:OCLC 4955:ISBN 4928:ISBN 4902:OCLC 4892:ISBN 4729:The 4646:and 4404:The 3525:< 3519:< 3483:< 3462:< 3393:flag 2705:, a 2618:unit 2602:unit 2188:and 2184:The 2177:and 2140:The 1621:and 1082:back 993:next 64:the 5763:Hat 5496:or 5479:or 4996:doi 4799:not 4624:on 4505:of 4379:of 4316:is 4190:non 4185:in 4177:is 3085:if 3081:is 2763:if 2759:is 2689:An 2622:the 2457:det 2278:of 2248:det 919:or 672:or 660:or 389:or 6008:: 5029:. 4992:26 4990:. 4986:. 4963:. 4914:^ 4900:. 4874:^ 4825:. 4783:. 4628:. 4467:. 3817:. 3723:P. 3375:. 3156:22 3144:21 3115:11 3053:. 2844:22 2805:12 2793:11 2713:. 2675:. 2660:. 2644:. 2637:. 2597:. 2576:. 2531:22 2509:11 2363:22 2341:11 2181:. 2179:AA 2160:AA 2158:= 2132:. 1166:= 1148:. 769:69 747:96 698:. 691:. 676:. 5893:S 5351:Z 5068:e 5061:t 5054:v 5037:. 5002:. 4998:: 4971:. 4936:. 4908:. 4780:n 4763:b 4747:n 4742:B 4714:1 4680:n 4676:2 4592:n 4570:. 4567:] 4562:b 4557:, 4552:b 4547:[ 4544:= 4539:n 4515:b 4489:. 4484:n 4390:. 4383:4 4381:Z 4372:2 4369:F 4333:k 4329:A 4304:] 4299:j 4295:A 4291:, 4286:i 4282:A 4278:[ 4255:i 4251:A 4226:] 4221:j 4217:A 4213:, 4208:i 4204:A 4200:[ 4187:k 4183:p 4165:] 4160:j 4156:A 4152:, 4147:i 4143:A 4139:[ 4136:) 4131:k 4127:A 4123:, 4117:, 4112:1 4108:A 4104:( 4101:p 4079:k 4075:A 4071:, 4065:, 4060:1 4056:A 4027:k 4019:k 4005:] 4000:k 3996:x 3992:, 3986:, 3981:1 3977:x 3973:[ 3970:K 3950:] 3945:k 3941:A 3937:, 3931:, 3926:1 3922:A 3918:[ 3915:K 3881:k 3877:A 3873:, 3867:, 3862:1 3858:A 3837:B 3834:, 3831:A 3801:. 3798:] 3793:k 3789:A 3785:, 3779:, 3774:1 3770:A 3766:[ 3763:K 3743:, 3738:i 3734:A 3699:k 3695:A 3691:, 3685:, 3680:1 3676:A 3647:A 3639:A 3632:A 3621:A 3617:A 3609:A 3601:A 3580:. 3575:n 3571:K 3567:= 3557:n 3553:e 3549:, 3543:, 3538:1 3534:e 3509:2 3505:e 3501:, 3496:1 3492:e 3474:1 3470:e 3459:0 3439:) 3434:n 3430:e 3426:, 3420:, 3415:1 3411:e 3407:( 3363:k 3360:, 3354:, 3351:1 3348:= 3345:j 3342:, 3339:i 3315:j 3311:n 3302:i 3298:n 3292:F 3282:j 3279:i 3275:A 3262:, 3248:] 3240:k 3237:k 3233:A 3220:2 3217:k 3213:A 3205:1 3202:k 3198:A 3168:0 3152:A 3140:A 3132:0 3122:0 3111:A 3104:[ 3099:= 3096:A 3069:A 3041:k 3038:, 3032:, 3029:1 3026:= 3023:j 3020:, 3017:i 2993:j 2989:n 2980:i 2976:n 2970:F 2960:j 2957:i 2953:A 2940:, 2926:] 2918:k 2915:k 2911:A 2900:0 2895:0 2864:k 2861:2 2857:A 2840:A 2834:0 2825:k 2822:1 2818:A 2801:A 2789:A 2782:[ 2777:= 2774:A 2747:A 2669:n 2564:) 2559:n 2556:n 2552:a 2545:x 2542:( 2536:) 2527:a 2520:x 2517:( 2514:) 2505:a 2498:x 2495:( 2475:) 2472:A 2466:I 2463:x 2460:( 2437:A 2431:I 2428:x 2418:A 2414:n 2408:, 2396:) 2391:n 2388:n 2384:a 2377:x 2374:( 2368:) 2359:a 2352:x 2349:( 2346:) 2337:a 2330:x 2327:( 2324:= 2321:) 2318:x 2315:( 2310:A 2306:p 2292:A 2288:n 2286:× 2284:n 2280:A 2266:) 2263:A 2257:I 2254:x 2251:( 2245:= 2242:) 2239:x 2236:( 2231:A 2227:p 2205:k 2201:k 2175:A 2172:A 2164:A 2156:A 2153:A 2114:U 2093:. 2086:m 2083:, 2080:m 2069:i 2065:x 2059:i 2056:, 2053:m 2043:1 2037:m 2032:1 2029:= 2026:i 2013:m 2009:b 2002:= 1993:m 1989:x 1967:, 1960:2 1957:, 1954:2 1943:1 1939:x 1933:1 1930:, 1927:2 1914:2 1910:b 1903:= 1894:2 1890:x 1882:, 1875:1 1872:, 1869:1 1859:1 1855:b 1849:= 1840:1 1836:x 1806:1 1800:k 1796:x 1792:, 1786:, 1781:1 1777:x 1754:k 1750:x 1727:k 1723:x 1719:, 1713:, 1708:1 1704:x 1683:k 1661:1 1657:x 1634:2 1630:x 1607:1 1603:x 1580:1 1576:x 1553:1 1549:x 1526:1 1522:b 1518:= 1513:1 1509:x 1503:1 1500:, 1497:1 1463:m 1459:b 1453:= 1446:m 1442:x 1436:m 1433:, 1430:m 1420:+ 1410:+ 1403:2 1399:x 1393:2 1390:, 1387:m 1377:+ 1370:1 1366:x 1360:1 1357:, 1354:m 1313:2 1309:b 1303:= 1292:2 1288:x 1282:2 1279:, 1276:2 1266:+ 1259:1 1255:x 1249:1 1246:, 1243:2 1229:1 1225:b 1219:= 1206:1 1202:x 1196:1 1193:, 1190:1 1168:b 1164:x 1161:L 1134:1 1130:x 1107:1 1101:n 1097:x 1066:n 1062:x 1035:n 1031:x 1008:2 1004:x 973:1 969:x 939:b 935:= 931:x 927:U 906:b 902:= 898:x 894:L 861:] 855:1 850:0 845:0 838:9 833:6 828:0 821:1 816:4 811:1 805:[ 775:] 764:9 759:4 752:0 742:2 735:0 730:0 725:1 719:[ 674:R 670:U 666:L 639:] 631:n 628:, 625:n 621:u 612:0 603:n 600:, 597:1 591:n 587:u 550:n 547:, 544:2 540:u 527:3 524:, 521:2 517:u 509:2 506:, 503:2 499:u 488:n 485:, 482:1 478:u 465:3 462:, 459:1 455:u 447:2 444:, 441:1 437:u 429:1 426:, 423:1 419:u 412:[ 407:= 404:U 368:] 360:n 357:, 354:n 342:1 336:n 333:, 330:n 313:2 310:, 307:n 295:1 292:, 289:n 245:2 242:, 239:3 227:1 224:, 221:3 204:2 201:, 198:2 186:1 183:, 180:2 168:0 158:1 155:, 152:1 141:[ 136:= 133:L 105:U 101:L 41:. 20:)

Index

Upper triangular matrix
triangular array
triangular matrix ring
square matrix
main diagonal
numerical analysis
LU decomposition
invertible matrix
product
if and only if
minors
diagonal
similar
trapezoid
bootstrapping
yield curve
transpose
normal
conjugate transpose
determinant
permanent
eigenvalues
algebraic multiplicity
multiplicity as a root
characteristic polynomial
main diagonal
unit matrix
matrix norm
unipotent
nilpotent

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.