Knowledge

Vandermonde's identity

Source 📝

1348: 891: 1343:{\displaystyle {\begin{aligned}\sum _{r=0}^{m+n}{m+n \choose r}x^{r}&=(1+x)^{m+n}\\&=(1+x)^{m}(1+x)^{n}\\&={\biggl (}\sum _{i=0}^{m}{m \choose i}x^{i}{\biggr )}{\biggl (}\sum _{j=0}^{n}{n \choose j}x^{j}{\biggr )}\\&=\sum _{r=0}^{m+n}{\biggl (}\sum _{k=0}^{r}{m \choose k}{n \choose r-k}{\biggr )}x^{r},\end{aligned}}} 714: 2348: 455: 488: 3172: 2723: 177: 2127: 234: 3005: 872: 1586: 1711: 3370: 896: 2015: 2581: 709:{\displaystyle {\biggl (}\sum _{i=0}^{m}a_{i}x^{i}{\biggr )}{\biggl (}\sum _{j=0}^{n}b_{j}x^{j}{\biggr )}=\sum _{r=0}^{m+n}{\biggl (}\sum _{k=0}^{r}a_{k}b_{r-k}{\biggr )}x^{r},} 1855: 2445: 2416: 2387: 1471: 3258: 1780: 2533: 2511: 2489: 2467: 3210: 2872: 2827: 2788: 3032: 3390:
When both sides have been divided by the expression on the left, so that the sum is 1, then the terms of the sum may be interpreted as probabilities. The resulting
1353:
where the above convention for the coefficients of the polynomials agrees with the definition of the binomial coefficients, because both give zero for all
2343:{\displaystyle \sum _{k_{1}+\cdots +k_{p}=m}{n_{1} \choose k_{1}}{n_{2} \choose k_{2}}\cdots {n_{p} \choose k_{p}}={n_{1}+\dots +n_{p} \choose m}.} 450:{\displaystyle {n_{1}+\dots +n_{p} \choose m}=\sum _{k_{1}+\cdots +k_{p}=m}{n_{1} \choose k_{1}}{n_{2} \choose k_{2}}\cdots {n_{p} \choose k_{p}}.} 2605: 59: 3479: 2887: 759: 198: 2354: 1405: 3023: 2353:
This identity can be obtained through the algebraic derivation above when more than two polynomials are used, or through a simple
1498: 1716:
paths that start on the bottom left vertex and, moving only upwards or rightwards, end at the top right vertex (this is because
1618: 3278: 3484: 3395: 1951: 2538: 3433: 3379: 3391: 3213: 2092:) is confined to be within the square) to obtain the total number of paths that start at (0, 0) and end at ( 219: 3461:, Regional Conference Series in Applied Mathematics, vol. 21, Philadelphia, PA: SIAM, pp. 59–60 3428: 1813: 2421: 2392: 2363: 1426: 3423: 3219: 1746: 50: 202: 2516: 2494: 2472: 2450: 3180: 3167:{\displaystyle \;_{2}F_{1}(a,b;c;1)={\frac {\Gamma (c)\Gamma (c-a-b)}{\Gamma (c-a)\Gamma (c-b)}}} 2832: 31: 1396:, both sides of Vandermonde's identity are zero due to the definition of binomial coefficients. 2793: 2754: 2878: 3015: 750: 3011: 2748: 3261: 2744: 2729: 228:
Vandermonde's identity can be generalized in numerous ways, including to the identity
3473: 3454: 3019: 2591:
The identity generalizes to non-integer arguments. In this case, it is known as the
38: 17: 2583:
in the left-hand side, which is also exactly what is done in the right-hand side.
1732:
up moves must be made (or vice versa) in any order, and the total path length is
3022:). The Chu–Vandermonde identity can also be seen to be a special case of 471: 205: 2718:{\displaystyle {s+t \choose n}=\sum _{k=0}^{n}{s \choose k}{t \choose n-k}} 172:{\displaystyle {m+n \choose r}=\sum _{k=0}^{r}{m \choose k}{n \choose r-k}} 212: 3398:. That is the probability distribution of the number of red marbles in 885:, and then the above formula for the product of polynomials, we obtain 183: 3000:{\displaystyle (s+t)_{n}=\sum _{k=0}^{n}{n \choose k}(s)_{k}(t)_{n-k}} 2049: 2743:. It can be proved along the lines of the algebraic proof above by 867:{\displaystyle (1+x)^{m+n}=\sum _{r=0}^{m+n}{m+n \choose r}x^{r}.} 1581:{\displaystyle \sum _{k=0}^{r}{m \choose k}{n \choose r-k}.} 3264:. One regains the Chu–Vandermonde identity by taking 3018:(for more on umbral variants of the binomial theorem, see 1706:{\displaystyle {\binom {r+(m+n-r)}{r}}={\binom {m+n}{r}}} 1913:) upward moves must be made and the path length must be 3365:{\displaystyle {n \choose k}=(-1)^{k}{k-n-1 \choose k}} 2877:
This identity may be rewritten in terms of the falling
1476:
The answer is also the sum over all possible values of
27:
Mathematical theorem on convolved binomial coefficients
2542: 2520: 2498: 2476: 2454: 2425: 2396: 2367: 2121:
One can generalize Vandermonde's identity as follows:
3281: 3222: 3183: 3035: 2890: 2835: 2796: 2757: 2608: 2541: 2519: 2497: 2475: 2453: 2424: 2395: 2366: 2130: 1954: 1816: 1749: 1621: 1501: 1429: 894: 762: 491: 237: 201:(1772), although it was already known in 1303 by the 62: 1404:Vandermonde's identity also admits a combinatorial 3364: 3252: 3204: 3166: 2999: 2866: 2821: 2782: 2717: 2575: 2527: 2505: 2483: 2461: 2439: 2410: 2381: 2342: 2009: 1849: 1806:upward moves must be made (and the path length is 1774: 1705: 1580: 1465: 1376:, Vandermonde's identity follows for all integers 1342: 877:Using the binomial theorem also for the exponents 866: 708: 449: 171: 30:For the expression for a special determinant, see 3356: 3329: 3298: 3285: 2953: 2940: 2829:and comparing terms with the binomial series for 2709: 2688: 2679: 2666: 2633: 2612: 2331: 2290: 2278: 2251: 2239: 2212: 2203: 2176: 2001: 1980: 1971: 1958: 1841: 1820: 1766: 1753: 1697: 1676: 1664: 1625: 1569: 1548: 1539: 1526: 1454: 1433: 1318: 1310: 1289: 1280: 1267: 1238: 1194: 1176: 1163: 1134: 1127: 1109: 1096: 1067: 950: 929: 845: 824: 688: 634: 597: 549: 542: 494: 438: 411: 399: 372: 363: 336: 282: 241: 163: 142: 133: 120: 87: 66: 2010:{\displaystyle {\binom {m}{k}}{\binom {n}{r-k}}} 3010:in which form it is clearly recognizable as an 1480:, of the number of subcommittees consisting of 1416:women. In how many ways can a subcommittee of 1408:, as follows. Suppose a committee consists of 3382:is a further generalization of this identity. 2052:of all paths that start at (0, 0) and end at ( 2576:{\displaystyle \textstyle n_{1}+\dots +n_{p}} 8: 3459:Orthogonal polynomials and special functions 3386:The hypergeometric probability distribution 3185: 3037: 3355: 3328: 3326: 3320: 3297: 3284: 3282: 3280: 3221: 3196: 3186: 3182: 3084: 3048: 3038: 3034: 2985: 2969: 2952: 2939: 2937: 2931: 2920: 2907: 2889: 2852: 2834: 2813: 2795: 2774: 2756: 2708: 2687: 2685: 2678: 2665: 2663: 2657: 2646: 2632: 2611: 2609: 2607: 2566: 2547: 2540: 2518: 2496: 2474: 2452: 2430: 2423: 2401: 2394: 2372: 2365: 2330: 2319: 2300: 2289: 2287: 2277: 2270: 2260: 2250: 2248: 2238: 2231: 2221: 2211: 2209: 2202: 2195: 2185: 2175: 2173: 2159: 2140: 2135: 2129: 2000: 1979: 1977: 1970: 1957: 1955: 1953: 1840: 1819: 1817: 1815: 1765: 1752: 1750: 1748: 1696: 1675: 1673: 1663: 1624: 1622: 1620: 1568: 1547: 1545: 1538: 1525: 1523: 1517: 1506: 1500: 1453: 1432: 1430: 1428: 1327: 1317: 1316: 1309: 1288: 1286: 1279: 1266: 1264: 1258: 1247: 1237: 1236: 1224: 1213: 1193: 1192: 1186: 1175: 1162: 1160: 1154: 1143: 1133: 1132: 1126: 1125: 1119: 1108: 1095: 1093: 1087: 1076: 1066: 1065: 1049: 1027: 989: 960: 949: 928: 926: 914: 903: 895: 893: 855: 844: 823: 821: 809: 798: 779: 761: 697: 687: 686: 674: 664: 654: 643: 633: 632: 620: 609: 596: 595: 589: 579: 569: 558: 548: 547: 541: 540: 534: 524: 514: 503: 493: 492: 490: 437: 430: 420: 410: 408: 398: 391: 381: 371: 369: 362: 355: 345: 335: 333: 319: 300: 295: 281: 270: 251: 240: 238: 236: 162: 141: 139: 132: 119: 117: 111: 100: 86: 65: 63: 61: 3445: 2447:out of another set, and so on, through 1740:). Call the bottom left vertex (0, 0). 1782:paths starting at (0, 0) that end at ( 7: 2020:paths that start at (0, 0), end at ( 2491:elements have been chosen from the 3333: 3289: 3223: 3143: 3125: 3099: 3087: 2944: 2692: 2670: 2616: 2294: 2255: 2216: 2180: 2117:Generalized Vandermonde's identity 1984: 1962: 1824: 1757: 1680: 1629: 1552: 1530: 1437: 1420:members be formed? The answer is 1293: 1271: 1167: 1100: 933: 828: 415: 376: 340: 245: 146: 124: 70: 25: 1850:{\displaystyle {\binom {n}{r-k}}} 719:where we use the convention that 2440:{\displaystyle \textstyle k_{2}} 2411:{\displaystyle \textstyle n_{1}} 2382:{\displaystyle \textstyle k_{1}} 1466:{\displaystyle {m+n \choose r}.} 741: = 0 for all integers 726: = 0 for all integers 49:) is the following identity for 3253:{\displaystyle \Gamma (n+1)=n!} 2389:elements out of a first set of 1775:{\displaystyle {\binom {m}{k}}} 470:In general, the product of two 199:Alexandre-Théophile Vandermonde 197:. The identity is named after 3317: 3307: 3238: 3226: 3158: 3146: 3140: 3128: 3120: 3102: 3096: 3090: 3078: 3054: 3024:Gauss's hypergeometric theorem 2982: 2975: 2966: 2959: 2904: 2891: 2849: 2836: 2810: 2797: 2771: 2758: 2596: 2593:Chu–Vandermonde identity 2587:Chu–Vandermonde identity 1655: 1637: 1046: 1033: 1024: 1011: 986: 973: 776: 763: 1: 3480:Factorial and binomial topics 2739:and any non-negative integer 2513:sets. One therefore chooses 2360:On the one hand, one chooses 1372:By comparing coefficients of 2528:{\displaystyle \textstyle m} 2506:{\displaystyle \textstyle p} 2484:{\displaystyle \textstyle m} 2469:such sets, until a total of 2462:{\displaystyle \textstyle p} 482:, respectively, is given by 3396:hypergeometric distribution 3205:{\displaystyle \;_{2}F_{1}} 2867:{\displaystyle (1+x)^{s+t}} 2597:Askey 1975, pp. 59–60 1596:Take a rectangular grid of 218:to this theorem called the 3501: 3272:and applying the identity 29: 2822:{\displaystyle (1+x)^{t}} 2783:{\displaystyle (1+x)^{s}} 47:Vandermonde's convolution 3392:probability distribution 2116: 1810:). Similarly, there are 3406:from an urn containing 3214:hypergeometric function 3366: 3254: 3206: 3168: 3001: 2936: 2868: 2823: 2784: 2719: 2662: 2577: 2529: 2507: 2485: 2463: 2441: 2412: 2383: 2344: 2011: 1851: 1776: 1707: 1582: 1522: 1467: 1392:. For larger integers 1344: 1263: 1235: 1159: 1092: 925: 868: 820: 710: 659: 631: 574: 519: 451: 173: 116: 43:Vandermonde's identity 3429:Hockey-stick identity 3367: 3255: 3207: 3169: 3002: 2916: 2869: 2824: 2785: 2720: 2642: 2599:) and takes the form 2578: 2530: 2508: 2486: 2464: 2442: 2413: 2384: 2345: 2012: 1852: 1777: 1708: 1612:) squares. There are 1583: 1502: 1468: 1406:double counting proof 1345: 1243: 1209: 1139: 1072: 899: 869: 794: 711: 639: 605: 554: 499: 452: 223:-Vandermonde identity 203:Chinese mathematician 174: 96: 51:binomial coefficients 3485:Algebraic identities 3434:Rothe–Hagen identity 3380:Rothe–Hagen identity 3279: 3220: 3181: 3033: 3026:, which states that 2888: 2833: 2794: 2755: 2606: 2539: 2517: 2495: 2473: 2451: 2422: 2393: 2364: 2128: 1952: 1814: 1747: 1619: 1499: 1427: 892: 760: 489: 235: 182:for any nonnegative 60: 18:Vandermonde identity 3404:without replacement 2036:), and go through ( 1857:paths starting at ( 1400:Combinatorial proof 1380:with 0 ≤  3362: 3250: 3202: 3164: 2997: 2879:Pochhammer symbols 2864: 2819: 2780: 2715: 2573: 2572: 2525: 2524: 2503: 2502: 2481: 2480: 2459: 2458: 2437: 2436: 2408: 2407: 2379: 2378: 2340: 2172: 2007: 1847: 1772: 1703: 1578: 1463: 1340: 1338: 864: 706: 447: 332: 169: 32:Vandermonde matrix 3424:Pascal's identity 3354: 3296: 3162: 2951: 2707: 2677: 2631: 2329: 2276: 2237: 2201: 2131: 1999: 1969: 1945:. Thus there are 1893:right moves and ( 1885:), as a total of 1839: 1764: 1695: 1662: 1592:Geometrical proof 1567: 1537: 1452: 1308: 1278: 1174: 1107: 948: 843: 436: 397: 361: 291: 280: 161: 131: 85: 16:(Redirected from 3492: 3464: 3463:for the history. 3462: 3450: 3371: 3369: 3368: 3363: 3361: 3360: 3359: 3350: 3332: 3325: 3324: 3303: 3302: 3301: 3288: 3259: 3257: 3256: 3251: 3211: 3209: 3208: 3203: 3201: 3200: 3191: 3190: 3173: 3171: 3170: 3165: 3163: 3161: 3123: 3085: 3053: 3052: 3043: 3042: 3016:binomial theorem 3006: 3004: 3003: 2998: 2996: 2995: 2974: 2973: 2958: 2957: 2956: 2943: 2935: 2930: 2912: 2911: 2873: 2871: 2870: 2865: 2863: 2862: 2828: 2826: 2825: 2820: 2818: 2817: 2789: 2787: 2786: 2781: 2779: 2778: 2724: 2722: 2721: 2716: 2714: 2713: 2712: 2706: 2691: 2684: 2683: 2682: 2669: 2661: 2656: 2638: 2637: 2636: 2627: 2615: 2582: 2580: 2579: 2574: 2571: 2570: 2552: 2551: 2535:elements out of 2534: 2532: 2531: 2526: 2512: 2510: 2509: 2504: 2490: 2488: 2487: 2482: 2468: 2466: 2465: 2460: 2446: 2444: 2443: 2438: 2435: 2434: 2417: 2415: 2414: 2409: 2406: 2405: 2388: 2386: 2385: 2380: 2377: 2376: 2349: 2347: 2346: 2341: 2336: 2335: 2334: 2325: 2324: 2323: 2305: 2304: 2293: 2283: 2282: 2281: 2275: 2274: 2265: 2264: 2254: 2244: 2243: 2242: 2236: 2235: 2226: 2225: 2215: 2208: 2207: 2206: 2200: 2199: 2190: 2189: 2179: 2171: 2164: 2163: 2145: 2144: 2016: 2014: 2013: 2008: 2006: 2005: 2004: 1998: 1983: 1976: 1975: 1974: 1961: 1856: 1854: 1853: 1848: 1846: 1845: 1844: 1838: 1823: 1798:right moves and 1781: 1779: 1778: 1773: 1771: 1770: 1769: 1756: 1720:right moves and 1712: 1710: 1709: 1704: 1702: 1701: 1700: 1691: 1679: 1669: 1668: 1667: 1658: 1628: 1587: 1585: 1584: 1579: 1574: 1573: 1572: 1566: 1551: 1544: 1543: 1542: 1529: 1521: 1516: 1472: 1470: 1469: 1464: 1459: 1458: 1457: 1448: 1436: 1369:, respectively. 1365: >  1357: >  1349: 1347: 1346: 1341: 1339: 1332: 1331: 1322: 1321: 1315: 1314: 1313: 1307: 1292: 1285: 1284: 1283: 1270: 1262: 1257: 1242: 1241: 1234: 1223: 1202: 1198: 1197: 1191: 1190: 1181: 1180: 1179: 1166: 1158: 1153: 1138: 1137: 1131: 1130: 1124: 1123: 1114: 1113: 1112: 1099: 1091: 1086: 1071: 1070: 1058: 1054: 1053: 1032: 1031: 1004: 1000: 999: 965: 964: 955: 954: 953: 944: 932: 924: 913: 873: 871: 870: 865: 860: 859: 850: 849: 848: 839: 827: 819: 808: 790: 789: 751:binomial theorem 745: >  730: >  715: 713: 712: 707: 702: 701: 692: 691: 685: 684: 669: 668: 658: 653: 638: 637: 630: 619: 601: 600: 594: 593: 584: 583: 573: 568: 553: 552: 546: 545: 539: 538: 529: 528: 518: 513: 498: 497: 456: 454: 453: 448: 443: 442: 441: 435: 434: 425: 424: 414: 404: 403: 402: 396: 395: 386: 385: 375: 368: 367: 366: 360: 359: 350: 349: 339: 331: 324: 323: 305: 304: 287: 286: 285: 276: 275: 274: 256: 255: 244: 178: 176: 175: 170: 168: 167: 166: 160: 145: 138: 137: 136: 123: 115: 110: 92: 91: 90: 81: 69: 21: 3500: 3499: 3495: 3494: 3493: 3491: 3490: 3489: 3470: 3469: 3468: 3467: 3453: 3451: 3447: 3442: 3420: 3388: 3334: 3327: 3316: 3283: 3277: 3276: 3218: 3217: 3192: 3184: 3179: 3178: 3124: 3086: 3044: 3036: 3031: 3030: 3014:variant of the 2981: 2965: 2938: 2903: 2886: 2885: 2848: 2831: 2830: 2809: 2792: 2791: 2770: 2753: 2752: 2749:binomial series 2696: 2686: 2664: 2617: 2610: 2604: 2603: 2589: 2562: 2543: 2537: 2536: 2515: 2514: 2493: 2492: 2471: 2470: 2449: 2448: 2426: 2420: 2419: 2418:elements; then 2397: 2391: 2390: 2368: 2362: 2361: 2355:double counting 2315: 2296: 2295: 2288: 2266: 2256: 2249: 2227: 2217: 2210: 2191: 2181: 2174: 2155: 2136: 2126: 2125: 2119: 2114: 2112:Generalizations 2080:(as the point ( 2068:), so sum from 1988: 1978: 1956: 1950: 1949: 1869:) that end at ( 1828: 1818: 1812: 1811: 1751: 1745: 1744: 1736: +  1681: 1674: 1630: 1623: 1617: 1616: 1594: 1556: 1546: 1524: 1497: 1496: 1488: −  1438: 1431: 1425: 1424: 1402: 1388: +  1337: 1336: 1323: 1297: 1287: 1265: 1200: 1199: 1182: 1161: 1115: 1094: 1056: 1055: 1045: 1023: 1002: 1001: 985: 966: 956: 934: 927: 890: 889: 851: 829: 822: 775: 758: 757: 739: 724: 693: 670: 660: 585: 575: 530: 520: 487: 486: 468: 466:Algebraic proof 463: 426: 416: 409: 387: 377: 370: 351: 341: 334: 315: 296: 266: 247: 246: 239: 233: 232: 150: 140: 118: 71: 64: 58: 57: 35: 28: 23: 22: 15: 12: 11: 5: 3498: 3496: 3488: 3487: 3482: 3472: 3471: 3466: 3465: 3455:Askey, Richard 3444: 3443: 3441: 3438: 3437: 3436: 3431: 3426: 3419: 3416: 3414:blue marbles. 3387: 3384: 3373: 3372: 3358: 3353: 3349: 3346: 3343: 3340: 3337: 3331: 3323: 3319: 3315: 3312: 3309: 3306: 3300: 3295: 3292: 3287: 3268: = − 3262:gamma function 3249: 3246: 3243: 3240: 3237: 3234: 3231: 3228: 3225: 3199: 3195: 3189: 3175: 3174: 3160: 3157: 3154: 3151: 3148: 3145: 3142: 3139: 3136: 3133: 3130: 3127: 3122: 3119: 3116: 3113: 3110: 3107: 3104: 3101: 3098: 3095: 3092: 3089: 3083: 3080: 3077: 3074: 3071: 3068: 3065: 3062: 3059: 3056: 3051: 3047: 3041: 3008: 3007: 2994: 2991: 2988: 2984: 2980: 2977: 2972: 2968: 2964: 2961: 2955: 2950: 2947: 2942: 2934: 2929: 2926: 2923: 2919: 2915: 2910: 2906: 2902: 2899: 2896: 2893: 2861: 2858: 2855: 2851: 2847: 2844: 2841: 2838: 2816: 2812: 2808: 2805: 2802: 2799: 2777: 2773: 2769: 2766: 2763: 2760: 2730:complex-valued 2726: 2725: 2711: 2705: 2702: 2699: 2695: 2690: 2681: 2676: 2673: 2668: 2660: 2655: 2652: 2649: 2645: 2641: 2635: 2630: 2626: 2623: 2620: 2614: 2588: 2585: 2569: 2565: 2561: 2558: 2555: 2550: 2546: 2523: 2501: 2479: 2457: 2433: 2429: 2404: 2400: 2375: 2371: 2351: 2350: 2339: 2333: 2328: 2322: 2318: 2314: 2311: 2308: 2303: 2299: 2292: 2286: 2280: 2273: 2269: 2263: 2259: 2253: 2247: 2241: 2234: 2230: 2224: 2220: 2214: 2205: 2198: 2194: 2188: 2184: 2178: 2170: 2167: 2162: 2158: 2154: 2151: 2148: 2143: 2139: 2134: 2118: 2115: 2113: 2110: 2018: 2017: 2003: 1997: 1994: 1991: 1987: 1982: 1973: 1968: 1965: 1960: 1843: 1837: 1834: 1831: 1827: 1822: 1768: 1763: 1760: 1755: 1714: 1713: 1699: 1694: 1690: 1687: 1684: 1678: 1672: 1666: 1661: 1657: 1654: 1651: 1648: 1645: 1642: 1639: 1636: 1633: 1627: 1593: 1590: 1589: 1588: 1577: 1571: 1565: 1562: 1559: 1555: 1550: 1541: 1536: 1533: 1528: 1520: 1515: 1512: 1509: 1505: 1474: 1473: 1462: 1456: 1451: 1447: 1444: 1441: 1435: 1401: 1398: 1351: 1350: 1335: 1330: 1326: 1320: 1312: 1306: 1303: 1300: 1296: 1291: 1282: 1277: 1274: 1269: 1261: 1256: 1253: 1250: 1246: 1240: 1233: 1230: 1227: 1222: 1219: 1216: 1212: 1208: 1205: 1203: 1201: 1196: 1189: 1185: 1178: 1173: 1170: 1165: 1157: 1152: 1149: 1146: 1142: 1136: 1129: 1122: 1118: 1111: 1106: 1103: 1098: 1090: 1085: 1082: 1079: 1075: 1069: 1064: 1061: 1059: 1057: 1052: 1048: 1044: 1041: 1038: 1035: 1030: 1026: 1022: 1019: 1016: 1013: 1010: 1007: 1005: 1003: 998: 995: 992: 988: 984: 981: 978: 975: 972: 969: 967: 963: 959: 952: 947: 943: 940: 937: 931: 923: 920: 917: 912: 909: 906: 902: 898: 897: 875: 874: 863: 858: 854: 847: 842: 838: 835: 832: 826: 818: 815: 812: 807: 804: 801: 797: 793: 788: 785: 782: 778: 774: 771: 768: 765: 737: 722: 717: 716: 705: 700: 696: 690: 683: 680: 677: 673: 667: 663: 657: 652: 649: 646: 642: 636: 629: 626: 623: 618: 615: 612: 608: 604: 599: 592: 588: 582: 578: 572: 567: 564: 561: 557: 551: 544: 537: 533: 527: 523: 517: 512: 509: 506: 502: 496: 467: 464: 462: 459: 458: 457: 446: 440: 433: 429: 423: 419: 413: 407: 401: 394: 390: 384: 380: 374: 365: 358: 354: 348: 344: 338: 330: 327: 322: 318: 314: 311: 308: 303: 299: 294: 290: 284: 279: 273: 269: 265: 262: 259: 254: 250: 243: 180: 179: 165: 159: 156: 153: 149: 144: 135: 130: 127: 122: 114: 109: 106: 103: 99: 95: 89: 84: 80: 77: 74: 68: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3497: 3486: 3483: 3481: 3478: 3477: 3475: 3460: 3456: 3449: 3446: 3439: 3435: 3432: 3430: 3427: 3425: 3422: 3421: 3417: 3415: 3413: 3409: 3405: 3401: 3397: 3393: 3385: 3383: 3381: 3376: 3351: 3347: 3344: 3341: 3338: 3335: 3321: 3313: 3310: 3304: 3293: 3290: 3275: 3274: 3273: 3271: 3267: 3263: 3247: 3244: 3241: 3235: 3232: 3229: 3215: 3197: 3193: 3187: 3155: 3152: 3149: 3137: 3134: 3131: 3117: 3114: 3111: 3108: 3105: 3093: 3081: 3075: 3072: 3069: 3066: 3063: 3060: 3057: 3049: 3045: 3039: 3029: 3028: 3027: 3025: 3021: 3020:binomial type 3017: 3013: 2992: 2989: 2986: 2978: 2970: 2962: 2948: 2945: 2932: 2927: 2924: 2921: 2917: 2913: 2908: 2900: 2897: 2894: 2884: 2883: 2882: 2880: 2875: 2859: 2856: 2853: 2845: 2842: 2839: 2814: 2806: 2803: 2800: 2775: 2767: 2764: 2761: 2750: 2746: 2742: 2738: 2734: 2731: 2703: 2700: 2697: 2693: 2674: 2671: 2658: 2653: 2650: 2647: 2643: 2639: 2628: 2624: 2621: 2618: 2602: 2601: 2600: 2598: 2594: 2586: 2584: 2567: 2563: 2559: 2556: 2553: 2548: 2544: 2521: 2499: 2477: 2455: 2431: 2427: 2402: 2398: 2373: 2369: 2358: 2356: 2337: 2326: 2320: 2316: 2312: 2309: 2306: 2301: 2297: 2284: 2271: 2267: 2261: 2257: 2245: 2232: 2228: 2222: 2218: 2196: 2192: 2186: 2182: 2168: 2165: 2160: 2156: 2152: 2149: 2146: 2141: 2137: 2132: 2124: 2123: 2122: 2111: 2109: 2107: 2103: 2099: 2095: 2091: 2087: 2083: 2079: 2075: 2071: 2067: 2063: 2059: 2055: 2051: 2048:). This is a 2047: 2043: 2039: 2035: 2031: 2027: 2023: 1995: 1992: 1989: 1985: 1966: 1963: 1948: 1947: 1946: 1944: 1940: 1936: 1932: 1928: 1924: 1920: 1916: 1912: 1908: 1904: 1900: 1896: 1892: 1888: 1884: 1880: 1876: 1872: 1868: 1864: 1860: 1835: 1832: 1829: 1825: 1809: 1805: 1801: 1797: 1793: 1789: 1785: 1761: 1758: 1741: 1739: 1735: 1731: 1727: 1723: 1719: 1692: 1688: 1685: 1682: 1670: 1659: 1652: 1649: 1646: 1643: 1640: 1634: 1631: 1615: 1614: 1613: 1611: 1607: 1603: 1599: 1591: 1575: 1563: 1560: 1557: 1553: 1534: 1531: 1518: 1513: 1510: 1507: 1503: 1495: 1494: 1493: 1491: 1487: 1483: 1479: 1460: 1449: 1445: 1442: 1439: 1423: 1422: 1421: 1419: 1415: 1411: 1407: 1399: 1397: 1395: 1391: 1387: 1384: ≤  1383: 1379: 1375: 1370: 1368: 1364: 1360: 1356: 1333: 1328: 1324: 1304: 1301: 1298: 1294: 1275: 1272: 1259: 1254: 1251: 1248: 1244: 1231: 1228: 1225: 1220: 1217: 1214: 1210: 1206: 1204: 1187: 1183: 1171: 1168: 1155: 1150: 1147: 1144: 1140: 1120: 1116: 1104: 1101: 1088: 1083: 1080: 1077: 1073: 1062: 1060: 1050: 1042: 1039: 1036: 1028: 1020: 1017: 1014: 1008: 1006: 996: 993: 990: 982: 979: 976: 970: 968: 961: 957: 945: 941: 938: 935: 921: 918: 915: 910: 907: 904: 900: 888: 887: 886: 884: 880: 861: 856: 852: 840: 836: 833: 830: 816: 813: 810: 805: 802: 799: 795: 791: 786: 783: 780: 772: 769: 766: 756: 755: 754: 752: 748: 744: 740: 733: 729: 725: 703: 698: 694: 681: 678: 675: 671: 665: 661: 655: 650: 647: 644: 640: 627: 624: 621: 616: 613: 610: 606: 602: 590: 586: 580: 576: 570: 565: 562: 559: 555: 535: 531: 525: 521: 515: 510: 507: 504: 500: 485: 484: 483: 481: 477: 474:with degrees 473: 465: 460: 444: 431: 427: 421: 417: 405: 392: 388: 382: 378: 356: 352: 346: 342: 328: 325: 320: 316: 312: 309: 306: 301: 297: 292: 288: 277: 271: 267: 263: 260: 257: 252: 248: 231: 230: 229: 226: 224: 222: 217: 215: 209: 207: 204: 200: 196: 192: 188: 185: 157: 154: 151: 147: 128: 125: 112: 107: 104: 101: 97: 93: 82: 78: 75: 72: 56: 55: 54: 52: 48: 44: 40: 39:combinatorics 33: 19: 3458: 3448: 3411: 3407: 3403: 3399: 3389: 3377: 3374: 3269: 3265: 3176: 3009: 2876: 2740: 2736: 2732: 2728:for general 2727: 2592: 2590: 2359: 2352: 2120: 2105: 2101: 2097: 2093: 2089: 2085: 2081: 2077: 2073: 2069: 2065: 2061: 2057: 2053: 2045: 2041: 2037: 2033: 2029: 2025: 2021: 2019: 1942: 1938: 1934: 1930: 1926: 1922: 1918: 1914: 1910: 1906: 1902: 1898: 1894: 1890: 1886: 1882: 1878: 1874: 1870: 1866: 1862: 1858: 1807: 1803: 1799: 1795: 1791: 1787: 1783: 1742: 1737: 1733: 1729: 1725: 1721: 1717: 1715: 1609: 1605: 1601: 1597: 1595: 1489: 1485: 1481: 1477: 1475: 1417: 1413: 1409: 1403: 1393: 1389: 1385: 1381: 1377: 1373: 1371: 1366: 1362: 1358: 1354: 1352: 882: 878: 876: 746: 742: 735: 731: 727: 720: 718: 479: 475: 469: 227: 220: 213: 210: 194: 190: 186: 181: 46: 42: 36: 3375:liberally. 2745:multiplying 472:polynomials 211:There is a 3474:Categories 3440:References 2357:argument. 1743:There are 206:Zhu Shijie 3345:− 3339:− 3311:− 3224:Γ 3153:− 3144:Γ 3135:− 3126:Γ 3115:− 3109:− 3100:Γ 3088:Γ 2990:− 2918:∑ 2701:− 2644:∑ 2557:⋯ 2310:⋯ 2246:⋯ 2150:⋯ 2133:∑ 1993:− 1833:− 1650:− 1561:− 1504:∑ 1302:− 1245:∑ 1211:∑ 1141:∑ 1074:∑ 901:∑ 796:∑ 749:. By the 679:− 641:∑ 607:∑ 556:∑ 501:∑ 406:⋯ 310:⋯ 293:∑ 261:⋯ 155:− 98:∑ 3457:(1975), 3418:See also 3410:red and 1484:men and 1412:men and 184:integers 3394:is the 3260:is the 3212:is the 2072:= 0 to 1492:women: 216:-analog 3402:draws 3177:where 3012:umbral 2050:subset 1794:), as 461:Proofs 2595:(see 1933:) − ( 1905:) − ( 3452:See 3378:The 3216:and 2790:and 2751:for 2747:the 2735:and 1941:) = 1361:and 881:and 734:and 478:and 45:(or 2881:as 2108:). 1921:+ ( 1600:x ( 37:In 3476:: 2874:. 2096:, 2084:, 2076:= 2056:, 2040:, 2024:, 1873:, 1861:, 1786:, 753:, 225:. 208:. 193:, 189:, 53:: 41:, 3412:m 3408:n 3400:r 3357:) 3352:k 3348:1 3342:n 3336:k 3330:( 3322:k 3318:) 3314:1 3308:( 3305:= 3299:) 3294:k 3291:n 3286:( 3270:n 3266:a 3248:! 3245:n 3242:= 3239:) 3236:1 3233:+ 3230:n 3227:( 3198:1 3194:F 3188:2 3159:) 3156:b 3150:c 3147:( 3141:) 3138:a 3132:c 3129:( 3121:) 3118:b 3112:a 3106:c 3103:( 3097:) 3094:c 3091:( 3082:= 3079:) 3076:1 3073:; 3070:c 3067:; 3064:b 3061:, 3058:a 3055:( 3050:1 3046:F 3040:2 2993:k 2987:n 2983:) 2979:t 2976:( 2971:k 2967:) 2963:s 2960:( 2954:) 2949:k 2946:n 2941:( 2933:n 2928:0 2925:= 2922:k 2914:= 2909:n 2905:) 2901:t 2898:+ 2895:s 2892:( 2860:t 2857:+ 2854:s 2850:) 2846:x 2843:+ 2840:1 2837:( 2815:t 2811:) 2807:x 2804:+ 2801:1 2798:( 2776:s 2772:) 2768:x 2765:+ 2762:1 2759:( 2741:n 2737:t 2733:s 2710:) 2704:k 2698:n 2694:t 2689:( 2680:) 2675:k 2672:s 2667:( 2659:n 2654:0 2651:= 2648:k 2640:= 2634:) 2629:n 2625:t 2622:+ 2619:s 2613:( 2568:p 2564:n 2560:+ 2554:+ 2549:1 2545:n 2522:m 2500:p 2478:m 2456:p 2432:2 2428:k 2403:1 2399:n 2374:1 2370:k 2338:. 2332:) 2327:m 2321:p 2317:n 2313:+ 2307:+ 2302:1 2298:n 2291:( 2285:= 2279:) 2272:p 2268:k 2262:p 2258:n 2252:( 2240:) 2233:2 2229:k 2223:2 2219:n 2213:( 2204:) 2197:1 2193:k 2187:1 2183:n 2177:( 2169:m 2166:= 2161:p 2157:k 2153:+ 2147:+ 2142:1 2138:k 2106:r 2104:− 2102:n 2100:+ 2098:m 2094:r 2090:k 2088:− 2086:m 2082:k 2078:r 2074:k 2070:k 2066:r 2064:− 2062:n 2060:+ 2058:m 2054:r 2046:k 2044:− 2042:m 2038:k 2034:r 2032:− 2030:n 2028:+ 2026:m 2022:r 2002:) 1996:k 1990:r 1986:n 1981:( 1972:) 1967:k 1964:m 1959:( 1943:n 1939:k 1937:− 1935:m 1931:r 1929:− 1927:n 1925:+ 1923:m 1919:k 1917:− 1915:r 1911:k 1909:− 1907:m 1903:r 1901:− 1899:n 1897:+ 1895:m 1891:k 1889:− 1887:r 1883:r 1881:− 1879:n 1877:+ 1875:m 1871:r 1867:k 1865:− 1863:m 1859:k 1842:) 1836:k 1830:r 1826:n 1821:( 1808:m 1804:k 1802:− 1800:m 1796:k 1792:k 1790:− 1788:m 1784:k 1767:) 1762:k 1759:m 1754:( 1738:n 1734:m 1730:r 1728:- 1726:n 1724:+ 1722:m 1718:r 1698:) 1693:r 1689:n 1686:+ 1683:m 1677:( 1671:= 1665:) 1660:r 1656:) 1653:r 1647:n 1644:+ 1641:m 1638:( 1635:+ 1632:r 1626:( 1610:r 1608:− 1606:n 1604:+ 1602:m 1598:r 1576:. 1570:) 1564:k 1558:r 1554:n 1549:( 1540:) 1535:k 1532:m 1527:( 1519:r 1514:0 1511:= 1508:k 1490:k 1486:r 1482:k 1478:k 1461:. 1455:) 1450:r 1446:n 1443:+ 1440:m 1434:( 1418:r 1414:n 1410:m 1394:r 1390:n 1386:m 1382:r 1378:r 1374:x 1367:n 1363:j 1359:m 1355:i 1334:, 1329:r 1325:x 1319:) 1311:) 1305:k 1299:r 1295:n 1290:( 1281:) 1276:k 1273:m 1268:( 1260:r 1255:0 1252:= 1249:k 1239:( 1232:n 1229:+ 1226:m 1221:0 1218:= 1215:r 1207:= 1195:) 1188:j 1184:x 1177:) 1172:j 1169:n 1164:( 1156:n 1151:0 1148:= 1145:j 1135:( 1128:) 1121:i 1117:x 1110:) 1105:i 1102:m 1097:( 1089:m 1084:0 1081:= 1078:i 1068:( 1063:= 1051:n 1047:) 1043:x 1040:+ 1037:1 1034:( 1029:m 1025:) 1021:x 1018:+ 1015:1 1012:( 1009:= 997:n 994:+ 991:m 987:) 983:x 980:+ 977:1 974:( 971:= 962:r 958:x 951:) 946:r 942:n 939:+ 936:m 930:( 922:n 919:+ 916:m 911:0 908:= 905:r 883:n 879:m 862:. 857:r 853:x 846:) 841:r 837:n 834:+ 831:m 825:( 817:n 814:+ 811:m 806:0 803:= 800:r 792:= 787:n 784:+ 781:m 777:) 773:x 770:+ 767:1 764:( 747:n 743:j 738:j 736:b 732:m 728:i 723:i 721:a 704:, 699:r 695:x 689:) 682:k 676:r 672:b 666:k 662:a 656:r 651:0 648:= 645:k 635:( 628:n 625:+ 622:m 617:0 614:= 611:r 603:= 598:) 591:j 587:x 581:j 577:b 571:n 566:0 563:= 560:j 550:( 543:) 536:i 532:x 526:i 522:a 516:m 511:0 508:= 505:i 495:( 480:n 476:m 445:. 439:) 432:p 428:k 422:p 418:n 412:( 400:) 393:2 389:k 383:2 379:n 373:( 364:) 357:1 353:k 347:1 343:n 337:( 329:m 326:= 321:p 317:k 313:+ 307:+ 302:1 298:k 289:= 283:) 278:m 272:p 268:n 264:+ 258:+ 253:1 249:n 242:( 221:q 214:q 195:n 191:m 187:r 164:) 158:k 152:r 148:n 143:( 134:) 129:k 126:m 121:( 113:r 108:0 105:= 102:k 94:= 88:) 83:r 79:n 76:+ 73:m 67:( 34:. 20:)

Index

Vandermonde identity
Vandermonde matrix
combinatorics
binomial coefficients
integers
Alexandre-Théophile Vandermonde
Chinese mathematician
Zhu Shijie
q-analog
q-Vandermonde identity
polynomials
binomial theorem
double counting proof
subset
double counting
Askey 1975, pp. 59–60
complex-valued
multiplying
binomial series
Pochhammer symbols
umbral
binomial theorem
binomial type
Gauss's hypergeometric theorem
hypergeometric function
gamma function
Rothe–Hagen identity
probability distribution
hypergeometric distribution
Pascal's identity

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.