Knowledge

Vertex cover

Source 📝

1763: 31: 298: 290: 1523:
of this time bound (an estimate for the largest parameter value that could be solved in a reasonable amount of time) is approximately 190. That is, unless additional algorithmic improvements can be found, this algorithm is suitable only for instances whose vertex cover number is 190 or less. Under
1465:, and its idea is to repeatedly choose some vertex and recursively branch, with two cases at each step: place either the current vertex or all its neighbours into the vertex cover. The algorithm for solving vertex cover that achieves the best asymptotic dependence on the parameter runs in time 1429:, an algorithm finds a minimal vertex cover in polynomial time by finding the first leaf in the tree and adding its parent to the minimal vertex cover, then deleting the leaf and parent and all associated edges and continuing repeatedly until no edges remain in the tree. 2087:
Although finding the minimum-size vertex cover is equivalent to finding the maximum-size independent set, as described above, the two problems are not equivalent in an approximation-preserving way: The Independent Set problem has
2990: 449: 1916: 2308:
covering all hallways (edges) connecting all rooms (nodes) on a floor might model the objective as a vertex cover minimization problem. The problem has also been used to model the elimination of
1093: 736: 1851:
More involved techniques show that there are approximation algorithms with a slightly better approximation factor. For example, an approximation algorithm with an approximation factor of
1715: 1646: 271: 1517: 2052: 1151: 1246: 616: 2078: 1956: 1191: 3164: 3105: 2863: 1022: 1976: 671: 548: 499: 474: 366: 328: 1274: 3371: 1375:
is either 0, 1/2, or 1. A 2-approximate vertex cover can be obtained from this fractional solution by selecting the subset of vertices whose variables are nonzero.
1373: 575: 1575: 1546: 1339: 1315: 959: 939: 916: 896: 860: 840: 820: 798: 523: 386: 264: 1391:, which means it is unlikely that there is an efficient algorithm to solve it exactly for arbitrary graphs. NP-completeness can be proven by reduction from 2712:
Mathematical Foundations of Computer Science 2006: 31st International Symposium, MFCS 2006, Stará Lesná, Slovakia, August 28-September 1, 2006, Proceedings
2587:
Hossain, Ayaan; Lopez, Eriberto; Halper, Sean M.; Cetnar, Daniel P.; Reis, Alexander C.; Strickland, Devin; Klavins, Eric; Salis, Howard M. (2020-07-13).
3231: 1987: 257: 97:
is true. On the other hand, it has several simple 2-factor approximations. It is a typical example of an NP-hard optimization problem that has an
2642:
Reis, Alexander C.; Halper, Sean M.; Vezeau, Grace E.; Cetnar, Daniel P.; Hossain, Ayaan; Clauer, Phillip R.; Salis, Howard M. (November 2019).
3282: 3200: 3158: 2938: 2857: 2731: 2016:
proved in 2005 that minimum vertex cover cannot be approximated within a factor of 1.3606 for any sufficiently large vertex degree unless
1415: 3125:. DIMACS Series in Discrete Mathematics and Theoretical Computer Science. Vol. 40. American Mathematical Society. pp. 169–178. 759:
Consequently, the number of vertices of a graph is equal to its minimum vertex cover number plus the size of a maximum independent set.
3000: 2771: 2538: 970: 110: 3027: 1321:(allowing each variable to be in the interval from 0 to 1, rather than requiring the variables to be only 0 or 1) gives a factor- 3222: 974: 118: 3143:
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017
3070: 2842:
Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018
1392: 753: 219: 1854: 391: 3376: 1318: 1294: 1041: 51: 1654: 1525: 157: 676: 3381: 2757: 2528: 2305: 1650: 1450: 122: 1661: 1592: 2555: 638: 145: 126: 1468: 2309: 2081: 1727: 1341: 749: 207: 98: 94: 2027: 3254: 3079: 2893: 1025: 2884: 2317: 1734:
endpoints of an edge into the vertex cover, then removing them from the graph. Put otherwise, we find a
55: 3137:(2017). "On independent sets, 2-to-2 games, and Grassmann graphs". In Hatami, Hamed; McKenzie, Pierre; 1762: 1110: 1206: 2745: 2709:
Chen, Jianer; Kanj, Iyad A.; Xia, Ge (2006). "Improved Parameterized Upper Bounds for Vertex Cover".
2516: 773: 226: 74: 3084: 2763: 2057: 1344:
for the minimum vertex cover problem. Furthermore, the linear programming relaxation of that ILP is
2898: 2084:
is true then minimum vertex cover cannot be approximated within any constant factor better than 2.
1921: 231: 141: 90: 59: 1158: 3206: 3097: 2836:(2018). "Towards a proof of the 2-to-1 games conjecture?". In Diakonikolas, Ilias; Kempe, David; 2807: 2790: 2687: 2644:"Simultaneous repression of multiple bacterial genes using nonrepetitive extra-long sgRNA arrays" 2624: 2297: 1845: 1438: 167: 1584:, and more generally, for graphs excluding some fixed graph as a minor, a vertex cover of size 992: 580: 2304:
problems. For example, a commercial establishment interested in installing the fewest possible
3339: 3320: 3301: 3278: 3258: 3196: 3154: 3118: 2996: 2934: 2853: 2767: 2727: 2679: 2671: 2663: 2616: 2608: 2566: 2534: 2313: 1290: 243: 190: 178: 2589:"Automated design of thousands of nonrepetitive parts for engineering stable genetic systems" 1961: 643: 333: 3240: 3188: 3146: 3089: 3033: 3019: 3015: 3011: 2986: 2982: 2970: 2958: 2954: 2926: 2903: 2845: 2837: 2799: 2749: 2741: 2719: 2655: 2600: 2512: 1735: 1384: 1253: 867: 631: 238: 183: 102: 66: 1351: 560: 3123:
Proceedings of the DIMACS Workshop on Network Design: Connectivity and Facilities Location
2301: 1995: 1551: 1458: 1419: 1411: 82: 34:
Example graph that has a vertex cover comprising 2 vertices (bottom), but none with fewer.
2786:"Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs" 2710: 3323: 2718:. Lecture Notes in Computer Science. Vol. 4162. Springer-Verlag. pp. 238–249. 528: 479: 454: 308: 3342: 3270: 2920: 2753: 2524: 2329: 1531: 1396: 1324: 1300: 944: 924: 901: 881: 845: 825: 805: 783: 508: 371: 137: 30: 3365: 2691: 2628: 2643: 297: 17: 3218: 3210: 3176: 3138: 3134: 3130: 3101: 3045: 2916: 2879: 2833: 2829: 2811: 2781: 2588: 2013: 1581: 1404: 618:. The lower figure shows examples of minimum vertex covers in the previous graphs. 133: 39: 3304: 2785: 1024:. The (weighted) minimum vertex cover problem can be formulated as the following 2907: 2005: 1400: 1388: 966: 195: 114: 3245: 3226: 3180: 3168: 3109: 3062: 3023: 2867: 525:. The upper figure shows two examples of vertex covers, with some vertex cover 86: 3356: 2875: 2825: 2784:; Fomin, Fedor V.; Hajiaghayi, Mohammad Taghi; Thilikos, Dimitrios M. (2005). 2659: 2604: 2520: 2009: 1520: 1426: 202: 152: 2667: 2612: 3347: 3328: 3309: 3192: 3150: 3093: 2849: 2803: 2683: 2620: 1817:, then any vertex cover – including an optimal vertex cover – must contain 27:
Subset of a graph's vertices, including at least one endpoint of every edge
3037: 2930: 289: 3185:
2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS)
1414:, the equivalence between vertex cover and maximum matching described by 2723: 1844:
This simple algorithm was discovered independently by Fanica Gavril and
1918:
is known. The problem can be approximated with an approximation factor
978: 78: 2992:
Computers and Intractability: A Guide to the Theory of NP-Completeness
2675: 557:
is a vertex cover of smallest possible size. The vertex cover number
3029:
Proceedings of the Sixth Annual ACM Symposium on Theory of Computing
2974: 3181:"Pseudorandom Sets in Grassmann Graph Have Near-Perfect Expansion" 296: 288: 29: 2882:(2005). "On the hardness of approximating minimum vertex cover". 1990:
than the above one is known. The minimum vertex cover problem is
1348:, that is, there exists an optimal solution for which each entry 93:– it cannot be approximated up to a factor smaller than 2 if the 1653:. This algorithm is again optimal, in the sense that, under the 3227:"Vertex cover might be hard to approximate to within 2−ε" 2961:(1977). "The rectilinear Steiner tree problem is NP-complete". 2533:(2nd ed.). MIT Press and McGraw-Hill. pp. 1024–1027. 1657:, no algorithm can solve vertex cover on planar graphs in time 476:
where every edge has at least one endpoint in the vertex cover
2409: 1994:, that is, it cannot be approximated arbitrarily well unless 1991: 1773:
constructed this way is a vertex cover: suppose that an edge
1829:
is not covered. That is, an optimal cover contains at least
3063:"A better approximation ratio for the vertex cover problem" 1449:
is the size of the vertex cover. Vertex cover is therefore
1418:
allows the bipartite vertex cover problem to be solved in
3145:. Association for Computing Machinery. pp. 576–589. 2844:. Association for Computing Machinery. pp. 376–389. 1841:
is at most 2 times as large as the optimal vertex cover.
2762:. Cambridge, Mass.: MIT Press and McGraw-Hill. pp.  1524:
reasonable complexity-theoretic assumptions, namely the
132:
The minimum vertex cover problem can be formulated as a
1911:{\textstyle 2-\Theta \left(1/{\sqrt {\log |V|}}\right)} 1289:
This ILP belongs to the more general class of ILPs for
748:
A set of vertices is a vertex cover if and only if its
2485: 2432: 2371: 1857: 1528:, the running time cannot be improved to 2, even when 1461:. One algorithmic technique that works here is called 1045: 444:{\displaystyle uv\in E\Rightarrow u\in V'\lor v\in V'} 3263:
Combinatorial Optimization: Algorithms and Complexity
2060: 2030: 1964: 1924: 1741:
with a greedy algorithm and construct a vertex cover
1664: 1595: 1554: 1534: 1471: 1354: 1327: 1303: 1256: 1209: 1161: 1113: 1044: 995: 947: 927: 904: 884: 848: 828: 808: 786: 776:
of finding a smallest vertex cover in a given graph.
679: 646: 583: 563: 531: 511: 482: 457: 394: 374: 336: 311: 1797:, which is a contradiction with the assumption that 1281:(every vertex is either in the vertex cover or not) 2527:(2001) . "Section 35.1: The vertex-cover problem". 2459: 989:Assume that every vertex has an associated cost of 3357:River Crossings (and Alcuin Numbers) – Numberphile 2072: 2046: 1970: 1950: 1910: 1709: 1640: 1569: 1540: 1511: 1367: 1333: 1309: 1268: 1240: 1185: 1145: 1088:{\displaystyle \textstyle \sum _{v\in V}c(v)x_{v}} 1087: 1016: 953: 933: 910: 890: 854: 834: 814: 792: 730: 665: 610: 569: 542: 517: 493: 468: 443: 380: 360: 322: 3119:"Approximating dense cases of covering problems" 3117:Karpinski, Marek; Zelikovsky, Alexander (1998). 3048:(1959). "Über extreme Punkt- und Kantenmengen". 708: 2489: 2481: 2435:, p. 432, mentions both Gavril and Yannakakis. 1745:that consists of all endpoints of the edges in 151:Vertex cover problems have been generalized to 1749:. In the following figure, a maximal matching 731:{\displaystyle \tau (K_{m,n})=\min\{\,m,n\,\}} 265: 58:that includes at least one endpoint of every 8: 2436: 2386: 2382: 1235: 1223: 1174: 1162: 725: 711: 577:is the size of a minimum vertex cover, i.e. 3050:Ann. Univ. Sci. Budapest, Eötvös Sect. Math 2398: 1399:. Vertex cover remains NP-complete even in 121:. Furthermore, the vertex cover problem is 2470: 2448: 1710:{\displaystyle 2^{o({\sqrt {k}})}n^{O(1)}} 1641:{\displaystyle 2^{O({\sqrt {k}})}n^{O(1)}} 627:The set of all vertices is a vertex cover. 272: 258: 163: 3244: 3083: 2897: 2500: 2420: 2059: 2031: 2029: 1963: 1928: 1923: 1896: 1888: 1880: 1875: 1856: 1753:is marked with red, and the vertex cover 1692: 1676: 1669: 1663: 1623: 1607: 1600: 1594: 1553: 1533: 1482: 1470: 1453:, and if we are only interested in small 1441:algorithm can solve the problem in time 2 1359: 1353: 1326: 1302: 1255: 1214: 1208: 1160: 1131: 1118: 1112: 1078: 1050: 1043: 994: 946: 926: 903: 883: 847: 827: 807: 785: 724: 714: 690: 678: 651: 645: 603: 590: 582: 562: 530: 510: 481: 456: 451:, that is to say it is a set of vertices 393: 373: 335: 310: 2556:"Approximation Algorithms: Vertex Cover" 2359: 1512:{\displaystyle O(1.2738^{k}+(k\cdot n))} 3232:Journal of Computer and System Sciences 2340: 1988:constant-factor approximation algorithm 1395:or, as Karp did, by reduction from the 1387:variant of the vertex cover problem is 166: 3372:Computational problems in graph theory 3024:"Some simplified NP-complete problems" 2347: 2296:Vertex cover optimization serves as a 1649:, i.e., the problem is subexponential 2092:constant-factor approximation unless 2047:{\displaystyle {\sqrt {2}}-\epsilon } 2024:. Later, the factor was improved to 7: 3061:Karakostas, George (November 2009). 2372:Garey, Johnson & Stockmeyer 1974 941:have a vertex cover of size at most 3179:; Minzer, Dor; Safra, Muli (2018). 2963:SIAM Journal on Applied Mathematics 673:has a minimum vertex cover of size 2433:Papadimitriou & Steiglitz 1998 1864: 25: 2554:Chakrabarti, Amit (Winter 2005). 1197:(cover every edge of the graph), 1146:{\displaystyle x_{u}+x_{v}\geq 1} 301:Examples of minimum vertex covers 1761: 1241:{\displaystyle x_{v}\in \{0,1\}} 2922:Parameterized Complexity Theory 2460:Karpinski & Zelikovsky 1998 975:computational complexity theory 965:The vertex cover problem is an 127:parameterized complexity theory 119:computational complexity theory 3071:ACM Transactions on Algorithms 2073:{\displaystyle \epsilon >0} 1945: 1933: 1897: 1889: 1825:(or both); otherwise the edge 1702: 1696: 1683: 1673: 1633: 1627: 1614: 1604: 1564: 1558: 1506: 1503: 1491: 1475: 1457:, we can solve the problem in 1071: 1065: 1005: 999: 971:Karp's 21 NP-complete problems 866:If the problem is stated as a 702: 683: 604: 591: 407: 355: 343: 168:Covering/packing-problem pairs 111:Karp's 21 NP-complete problems 81:, so it cannot be solved by a 1: 2832:; Kindler, Guy; Minzer, Dor; 2490:Khot, Minzer & Safra 2018 2482:Khot, Minzer & Safra 2017 1951:{\displaystyle 2/(1+\delta )} 1463:bounded search tree algorithm 113:and is therefore a classical 2004:. Using techniques from the 1801:is maximal. Furthermore, if 1433:Fixed-parameter tractability 1186:{\displaystyle \{u,v\}\in E} 842:has a vertex cover of size 770:minimum vertex cover problem 2908:10.4007/annals.2005.162.439 1655:exponential time hypothesis 1526:exponential time hypothesis 158:Vertex cover in hypergraphs 69:, the problem of finding a 3398: 3255:Papadimitriou, Christos H. 3246:10.1016/j.jcss.2007.06.019 2759:Introduction to Algorithms 2530:Introduction to Algorithms 1100:(minimize the total cost) 1017:{\displaystyle c(v)\geq 0} 611:{\displaystyle \tau =|V'|} 2660:10.1038/s41587-019-0286-9 2605:10.1038/s41587-020-0584-2 2399:Chen, Kanj & Xia 2006 1833:endpoint of each edge in 1651:fixed-parameter tractable 1451:fixed-parameter tractable 1038: 305:Formally, a vertex cover 293:Examples of vertex covers 125:and a central problem in 123:fixed-parameter tractable 3275:Approximation Algorithms 2437:Garey & Johnson 1979 2387:Garey & Johnson 1979 2383:Garey & Johnson 1977 2310:repetitive DNA sequences 2300:for many real-world and 2107: 1726:One can find a factor-2 977:as a starting point for 802:OUTPUT: Smallest number 639:complete bipartite graph 501:. Such a set is said to 146:maximum matching problem 3193:10.1109/FOCS.2018.00062 3151:10.1145/3055399.3055432 3094:10.1145/1597036.1597045 2850:10.1145/3188745.3188804 2804:10.1145/1101821.1101823 2439:, p. 134, cites Gavril. 2082:unique games conjecture 1971:{\displaystyle \delta } 1342:approximation algorithm 969:problem: it was one of 666:{\displaystyle K_{m,n}} 361:{\displaystyle G=(V,E)} 330:of an undirected graph 220:Maximum independent set 99:approximation algorithm 95:unique games conjecture 3324:"Minimum Vertex Cover" 2471:Dinur & Safra 2005 2421:Flum & Grohe (2006 2306:closed circuit cameras 2074: 2048: 1972: 1952: 1912: 1722:Approximate evaluation 1711: 1642: 1571: 1542: 1513: 1369: 1335: 1311: 1270: 1269:{\displaystyle v\in V} 1242: 1187: 1147: 1089: 1026:integer linear program 1018: 973:. It is often used in 955: 935: 912: 892: 856: 836: 816: 794: 732: 667: 612: 571: 544: 519: 495: 470: 445: 382: 362: 324: 302: 294: 35: 3343:"Vertex Cover Number" 3038:10.1145/800119.803884 2931:10.1007/3-540-29953-X 2885:Annals of Mathematics 2746:Leiserson, Charles E. 2517:Leiserson, Charles E. 2501:Khot & Regev 2008 2318:metabolic engineering 2075: 2049: 1973: 1953: 1913: 1757:is marked with blue. 1730:by repeatedly taking 1712: 1643: 1588:can be found in time 1572: 1543: 1514: 1407:of degree at most 3. 1370: 1368:{\displaystyle x_{v}} 1336: 1312: 1271: 1243: 1188: 1148: 1090: 1019: 956: 936: 913: 898:and positive integer 893: 857: 837: 817: 795: 764:Computational problem 733: 668: 630:The endpoints of any 613: 572: 570:{\displaystyle \tau } 545: 520: 496: 471: 446: 383: 363: 325: 300: 292: 33: 3377:NP-complete problems 3187:. pp. 592–601. 2648:Nature Biotechnology 2593:Nature Biotechnology 2563:Computer Science 105 2058: 2028: 1962: 1922: 1855: 1837:; in total, the set 1789:} is a matching and 1662: 1593: 1570:{\displaystyle O(k)} 1552: 1532: 1469: 1352: 1325: 1301: 1254: 1207: 1159: 1111: 1042: 993: 945: 925: 902: 882: 872:vertex cover problem 846: 826: 806: 784: 774:optimization problem 677: 644: 634:form a vertex cover. 581: 561: 555:minimum vertex cover 529: 509: 480: 455: 392: 372: 334: 309: 215:Minimum vertex cover 107:vertex cover problem 75:optimization problem 71:minimum vertex cover 18:Vertex cover problem 3277:. Springer-Verlag. 2724:10.1007/11821069_21 2410:Demaine et al. 2005 2080:. Moreover, if the 870:, it is called the 196:Maximum set packing 142:dual linear program 91:hard to approximate 3340:Weisstein, Eric W. 3321:Weisstein, Eric W. 3302:Weisstein, Eric W. 3271:Vazirani, Vijay V. 3259:Steiglitz, Kenneth 3032:. pp. 47–63. 3007:A1.1: GT1, pg.190. 2791:Journal of the ACM 2389:, pp. 190 and 195. 2362:, pp. 121–122 2070: 2044: 1968: 1948: 1908: 1846:Mihalis Yannakakis 1777:is not covered by 1707: 1638: 1567: 1538: 1509: 1365: 1331: 1307: 1266: 1238: 1183: 1143: 1085: 1084: 1061: 1014: 951: 931: 908: 888: 852: 832: 812: 790: 728: 663: 608: 567: 543:{\displaystyle V'} 540: 515: 494:{\displaystyle V'} 491: 469:{\displaystyle V'} 466: 441: 378: 358: 323:{\displaystyle V'} 320: 303: 295: 203:Minimum edge cover 89:. Moreover, it is 36: 3382:Covering problems 3284:978-3-662-04565-7 3202:978-1-5386-4230-6 3160:978-1-4503-4528-6 3020:Stockmeyer, Larry 3016:Johnson, David S. 3012:Garey, Michael R. 2987:Johnson, David S. 2983:Garey, Michael R. 2959:Johnson, David S. 2955:Garey, Michael R. 2940:978-3-540-29952-3 2859:978-1-4503-5559-9 2838:Henzinger, Monika 2750:Rivest, Ronald L. 2742:Cormen, Thomas H. 2733:978-3-540-37791-7 2654:(11): 1294–1301. 2599:(12): 1466–1475. 2567:Dartmouth College 2521:Rivest, Ronald L. 2513:Cormen, Thomas H. 2486:Dinur et al. 2018 2314:synthetic biology 2036: 1982:Inapproximability 1901: 1681: 1612: 1541:{\displaystyle n} 1439:exhaustive search 1334:{\displaystyle 2} 1310:{\displaystyle 2} 1291:covering problems 1285: 1284: 1046: 954:{\displaystyle k} 934:{\displaystyle G} 911:{\displaystyle k} 891:{\displaystyle G} 855:{\displaystyle k} 835:{\displaystyle G} 815:{\displaystyle k} 793:{\displaystyle G} 518:{\displaystyle G} 381:{\displaystyle V} 282: 281: 249: 248: 244:Rectangle packing 191:Minimum set cover 179:Covering problems 16:(Redirected from 3389: 3353: 3352: 3334: 3333: 3315: 3314: 3288: 3266: 3250: 3248: 3214: 3172: 3126: 3113: 3087: 3078:(4): 41:1–41:8. 3067: 3057: 3041: 3006: 2995:. W.H. Freeman. 2978: 2950: 2948: 2947: 2911: 2901: 2871: 2821: 2819: 2818: 2777: 2737: 2717: 2696: 2695: 2639: 2633: 2632: 2584: 2578: 2577: 2575: 2573: 2560: 2551: 2545: 2544: 2509: 2503: 2498: 2492: 2479: 2473: 2468: 2462: 2457: 2451: 2446: 2440: 2430: 2424: 2418: 2412: 2407: 2401: 2396: 2390: 2380: 2374: 2369: 2363: 2357: 2351: 2345: 2285: 2282: 2279: 2276: 2273: 2270: 2267: 2264: 2261: 2258: 2255: 2252: 2249: 2246: 2243: 2240: 2237: 2234: 2231: 2228: 2225: 2222: 2219: 2216: 2213: 2210: 2207: 2204: 2201: 2198: 2195: 2192: 2189: 2186: 2183: 2180: 2177: 2174: 2171: 2168: 2165: 2162: 2159: 2156: 2153: 2150: 2147: 2144: 2141: 2138: 2135: 2132: 2129: 2126: 2123: 2120: 2117: 2114: 2111: 2079: 2077: 2076: 2071: 2053: 2051: 2050: 2045: 2037: 2032: 1978:- dense graphs. 1977: 1975: 1974: 1969: 1957: 1955: 1954: 1949: 1932: 1917: 1915: 1914: 1909: 1907: 1903: 1902: 1900: 1892: 1881: 1879: 1765: 1736:maximal matching 1716: 1714: 1713: 1708: 1706: 1705: 1687: 1686: 1682: 1677: 1647: 1645: 1644: 1639: 1637: 1636: 1618: 1617: 1613: 1608: 1576: 1574: 1573: 1568: 1547: 1545: 1544: 1539: 1518: 1516: 1515: 1510: 1487: 1486: 1412:bipartite graphs 1393:3-satisfiability 1379:Exact evaluation 1374: 1372: 1371: 1366: 1364: 1363: 1340: 1338: 1337: 1332: 1316: 1314: 1313: 1308: 1275: 1273: 1272: 1267: 1247: 1245: 1244: 1239: 1219: 1218: 1192: 1190: 1189: 1184: 1152: 1150: 1149: 1144: 1136: 1135: 1123: 1122: 1094: 1092: 1091: 1086: 1083: 1082: 1060: 1033: 1032: 1023: 1021: 1020: 1015: 960: 958: 957: 952: 940: 938: 937: 932: 917: 915: 914: 909: 897: 895: 894: 889: 878:INSTANCE: Graph 868:decision problem 861: 859: 858: 853: 841: 839: 838: 833: 821: 819: 818: 813: 799: 797: 796: 791: 780:INSTANCE: Graph 737: 735: 734: 729: 701: 700: 672: 670: 669: 664: 662: 661: 632:maximal matching 617: 615: 614: 609: 607: 602: 594: 576: 574: 573: 568: 549: 547: 546: 541: 539: 524: 522: 521: 516: 500: 498: 497: 492: 490: 475: 473: 472: 467: 465: 450: 448: 447: 442: 440: 423: 387: 385: 384: 379: 367: 365: 364: 359: 329: 327: 326: 321: 319: 274: 267: 260: 239:Polygon covering 208:Maximum matching 184:Packing problems 175: 174: 164: 103:decision version 67:computer science 21: 3397: 3396: 3392: 3391: 3390: 3388: 3387: 3386: 3362: 3361: 3338: 3337: 3319: 3318: 3300: 3299: 3296: 3291: 3285: 3269: 3253: 3217: 3203: 3175: 3161: 3133:; Minzer, Dor; 3129: 3116: 3085:10.1.1.649.7407 3065: 3060: 3044: 3010: 3003: 2981: 2975:10.1137/0132071 2953: 2945: 2943: 2941: 2914: 2874: 2860: 2824: 2816: 2814: 2780: 2774: 2754:Stein, Clifford 2740: 2734: 2715: 2708: 2704: 2699: 2641: 2640: 2636: 2586: 2585: 2581: 2571: 2569: 2558: 2553: 2552: 2548: 2541: 2525:Stein, Clifford 2511: 2510: 2506: 2499: 2495: 2480: 2476: 2469: 2465: 2458: 2454: 2449:Karakostas 2009 2447: 2443: 2431: 2427: 2419: 2415: 2408: 2404: 2397: 2393: 2381: 2377: 2370: 2366: 2358: 2354: 2346: 2342: 2338: 2326: 2294: 2287: 2286: 2283: 2280: 2277: 2274: 2271: 2268: 2265: 2262: 2259: 2256: 2253: 2250: 2247: 2244: 2241: 2238: 2235: 2232: 2229: 2226: 2223: 2220: 2217: 2214: 2211: 2208: 2205: 2202: 2199: 2196: 2193: 2190: 2187: 2184: 2181: 2178: 2175: 2172: 2169: 2166: 2163: 2160: 2157: 2154: 2151: 2148: 2145: 2142: 2139: 2136: 2133: 2130: 2127: 2124: 2121: 2118: 2115: 2112: 2109: 2106: 2056: 2055: 2026: 2025: 1984: 1960: 1959: 1920: 1919: 1871: 1867: 1853: 1852: 1724: 1688: 1665: 1660: 1659: 1619: 1596: 1591: 1590: 1550: 1549: 1530: 1529: 1478: 1467: 1466: 1459:polynomial time 1435: 1420:polynomial time 1416:Kőnig's theorem 1381: 1355: 1350: 1349: 1323: 1322: 1299: 1298: 1297:of this ILP is 1295:integrality gap 1252: 1251: 1210: 1205: 1204: 1157: 1156: 1127: 1114: 1109: 1108: 1074: 1040: 1039: 991: 990: 987: 985:ILP formulation 943: 942: 923: 922: 921:QUESTION: Does 900: 899: 880: 879: 844: 843: 824: 823: 804: 803: 782: 781: 766: 754:independent set 745: 686: 675: 674: 647: 642: 641: 624: 595: 579: 578: 559: 558: 550:marked in red. 532: 527: 526: 507: 506: 483: 478: 477: 458: 453: 452: 433: 416: 390: 389: 370: 369: 368:is a subset of 332: 331: 312: 307: 306: 287: 278: 83:polynomial-time 73:is a classical 62:of the graph. 28: 23: 22: 15: 12: 11: 5: 3395: 3393: 3385: 3384: 3379: 3374: 3364: 3363: 3360: 3359: 3354: 3335: 3316: 3305:"Vertex Cover" 3295: 3294:External links 3292: 3290: 3289: 3283: 3267: 3251: 3239:(3): 335–349. 3215: 3201: 3173: 3159: 3127: 3114: 3058: 3042: 3008: 3001: 2979: 2969:(4): 826–834. 2951: 2939: 2912: 2899:10.1.1.125.334 2892:(1): 439–485. 2872: 2858: 2822: 2798:(6): 866–893. 2778: 2772: 2738: 2732: 2705: 2703: 2700: 2698: 2697: 2634: 2579: 2546: 2539: 2504: 2493: 2474: 2463: 2452: 2441: 2425: 2423:, p. 437) 2413: 2402: 2391: 2375: 2364: 2352: 2339: 2337: 2334: 2333: 2332: 2330:Dominating set 2325: 2322: 2320:applications. 2293: 2290: 2108: 2105: 2102: 2069: 2066: 2063: 2043: 2040: 2035: 1983: 1980: 1967: 1947: 1944: 1941: 1938: 1935: 1931: 1927: 1906: 1899: 1895: 1891: 1887: 1884: 1878: 1874: 1870: 1866: 1863: 1860: 1805: = { 1785: ∪ { 1767: 1766: 1723: 1720: 1704: 1701: 1698: 1695: 1691: 1685: 1680: 1675: 1672: 1668: 1635: 1632: 1629: 1626: 1622: 1616: 1611: 1606: 1603: 1599: 1566: 1563: 1560: 1557: 1537: 1508: 1505: 1502: 1499: 1496: 1493: 1490: 1485: 1481: 1477: 1474: 1434: 1431: 1397:clique problem 1380: 1377: 1362: 1358: 1330: 1306: 1287: 1286: 1283: 1282: 1279: 1277: 1265: 1262: 1259: 1248: 1237: 1234: 1231: 1228: 1225: 1222: 1217: 1213: 1202: 1199: 1198: 1195: 1193: 1182: 1179: 1176: 1173: 1170: 1167: 1164: 1153: 1142: 1139: 1134: 1130: 1126: 1121: 1117: 1106: 1102: 1101: 1098: 1095: 1081: 1077: 1073: 1070: 1067: 1064: 1059: 1056: 1053: 1049: 1037: 1013: 1010: 1007: 1004: 1001: 998: 986: 983: 963: 962: 950: 930: 919: 907: 887: 864: 863: 851: 831: 811: 800: 789: 765: 762: 761: 760: 757: 744: 741: 740: 739: 727: 723: 720: 717: 713: 710: 707: 704: 699: 696: 693: 689: 685: 682: 660: 657: 654: 650: 635: 628: 623: 620: 606: 601: 598: 593: 589: 586: 566: 538: 535: 514: 489: 486: 464: 461: 439: 436: 432: 429: 426: 422: 419: 415: 412: 409: 406: 403: 400: 397: 377: 357: 354: 351: 348: 345: 342: 339: 318: 315: 286: 283: 280: 279: 277: 276: 269: 262: 254: 251: 250: 247: 246: 241: 235: 234: 229: 223: 222: 217: 211: 210: 205: 199: 198: 193: 187: 186: 181: 171: 170: 138:linear program 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3394: 3383: 3380: 3378: 3375: 3373: 3370: 3369: 3367: 3358: 3355: 3350: 3349: 3344: 3341: 3336: 3331: 3330: 3325: 3322: 3317: 3312: 3311: 3306: 3303: 3298: 3297: 3293: 3286: 3280: 3276: 3272: 3268: 3264: 3260: 3256: 3252: 3247: 3242: 3238: 3234: 3233: 3228: 3224: 3220: 3219:Khot, Subhash 3216: 3212: 3208: 3204: 3198: 3194: 3190: 3186: 3182: 3178: 3177:Khot, Subhash 3174: 3170: 3166: 3162: 3156: 3152: 3148: 3144: 3140: 3139:King, Valerie 3136: 3132: 3131:Khot, Subhash 3128: 3124: 3120: 3115: 3111: 3107: 3103: 3099: 3095: 3091: 3086: 3081: 3077: 3073: 3072: 3064: 3059: 3055: 3051: 3047: 3046:Gallai, Tibor 3043: 3039: 3035: 3031: 3030: 3025: 3021: 3017: 3013: 3009: 3004: 3002:0-7167-1045-5 2998: 2994: 2993: 2988: 2984: 2980: 2976: 2972: 2968: 2964: 2960: 2956: 2952: 2942: 2936: 2932: 2928: 2924: 2923: 2918: 2917:Grohe, Martin 2913: 2909: 2905: 2900: 2895: 2891: 2887: 2886: 2881: 2880:Safra, Samuel 2877: 2873: 2869: 2865: 2861: 2855: 2851: 2847: 2843: 2839: 2835: 2831: 2830:Khot, Subhash 2827: 2823: 2813: 2809: 2805: 2801: 2797: 2793: 2792: 2787: 2783: 2782:Demaine, Erik 2779: 2775: 2773:0-262-03293-7 2769: 2765: 2761: 2760: 2755: 2751: 2747: 2743: 2739: 2735: 2729: 2725: 2721: 2714: 2713: 2707: 2706: 2701: 2693: 2689: 2685: 2681: 2677: 2673: 2669: 2665: 2661: 2657: 2653: 2649: 2645: 2638: 2635: 2630: 2626: 2622: 2618: 2614: 2610: 2606: 2602: 2598: 2594: 2590: 2583: 2580: 2568: 2564: 2557: 2550: 2547: 2542: 2540:0-262-03293-7 2536: 2532: 2531: 2526: 2522: 2518: 2514: 2508: 2505: 2502: 2497: 2494: 2491: 2487: 2483: 2478: 2475: 2472: 2467: 2464: 2461: 2456: 2453: 2450: 2445: 2442: 2438: 2434: 2429: 2426: 2422: 2417: 2414: 2411: 2406: 2403: 2400: 2395: 2392: 2388: 2384: 2379: 2376: 2373: 2368: 2365: 2361: 2360:Vazirani 2003 2356: 2353: 2349: 2344: 2341: 2335: 2331: 2328: 2327: 2323: 2321: 2319: 2315: 2311: 2307: 2303: 2299: 2291: 2289: 2110:APPROXIMATION 2103: 2101: 2099: 2096: =  2095: 2091: 2085: 2083: 2067: 2064: 2061: 2041: 2038: 2033: 2023: 2020: =  2019: 2015: 2011: 2007: 2003: 2002: 1999: =  1998: 1993: 1989: 1981: 1979: 1965: 1942: 1939: 1936: 1929: 1925: 1904: 1893: 1885: 1882: 1876: 1872: 1868: 1861: 1858: 1849: 1847: 1842: 1840: 1836: 1832: 1828: 1824: 1820: 1816: 1812: 1808: 1804: 1800: 1796: 1793: ∉  1792: 1788: 1784: 1780: 1776: 1772: 1764: 1760: 1759: 1758: 1756: 1752: 1748: 1744: 1740: 1737: 1733: 1729: 1728:approximation 1721: 1719: 1717: 1699: 1693: 1689: 1678: 1670: 1666: 1656: 1652: 1648: 1630: 1624: 1620: 1609: 1601: 1597: 1587: 1583: 1582:planar graphs 1580:However, for 1578: 1561: 1555: 1535: 1527: 1522: 1500: 1497: 1494: 1488: 1483: 1479: 1472: 1464: 1460: 1456: 1452: 1448: 1444: 1440: 1432: 1430: 1428: 1423: 1421: 1417: 1413: 1408: 1406: 1405:planar graphs 1402: 1398: 1394: 1390: 1386: 1378: 1376: 1360: 1356: 1347: 1346:half-integral 1343: 1328: 1320: 1304: 1296: 1292: 1280: 1278: 1263: 1260: 1257: 1249: 1232: 1229: 1226: 1220: 1215: 1211: 1203: 1201: 1200: 1196: 1194: 1180: 1177: 1171: 1168: 1165: 1154: 1140: 1137: 1132: 1128: 1124: 1119: 1115: 1107: 1104: 1103: 1099: 1097:   1096: 1079: 1075: 1068: 1062: 1057: 1054: 1051: 1047: 1035: 1034: 1031: 1030: 1029: 1027: 1011: 1008: 1002: 996: 984: 982: 980: 976: 972: 968: 948: 928: 920: 905: 885: 877: 876: 875: 873: 869: 849: 829: 809: 801: 787: 779: 778: 777: 775: 771: 763: 758: 755: 751: 747: 746: 742: 721: 718: 715: 705: 697: 694: 691: 687: 680: 658: 655: 652: 648: 640: 636: 633: 629: 626: 625: 621: 619: 599: 596: 587: 584: 564: 556: 551: 536: 533: 512: 505:the edges of 504: 487: 484: 462: 459: 437: 434: 430: 427: 424: 420: 417: 413: 410: 404: 401: 398: 395: 375: 352: 349: 346: 340: 337: 316: 313: 299: 291: 284: 275: 270: 268: 263: 261: 256: 255: 253: 252: 245: 242: 240: 237: 236: 233: 230: 228: 225: 224: 221: 218: 216: 213: 212: 209: 206: 204: 201: 200: 197: 194: 192: 189: 188: 185: 182: 180: 177: 176: 173: 172: 169: 165: 162: 160: 159: 154: 149: 147: 143: 139: 135: 134:half-integral 130: 128: 124: 120: 116: 112: 109:, was one of 108: 104: 100: 96: 92: 88: 85:algorithm if 84: 80: 76: 72: 68: 63: 61: 57: 53: 49: 45: 41: 32: 19: 3346: 3327: 3308: 3274: 3262: 3236: 3230: 3184: 3142: 3122: 3075: 3069: 3053: 3049: 3028: 2991: 2966: 2962: 2944:. Retrieved 2925:. Springer. 2921: 2915:Flum, Jörg; 2889: 2883: 2841: 2815:. Retrieved 2795: 2789: 2758: 2711: 2651: 2647: 2637: 2596: 2592: 2582: 2570:. Retrieved 2562: 2549: 2529: 2507: 2496: 2477: 2466: 2455: 2444: 2428: 2416: 2405: 2394: 2378: 2367: 2355: 2343: 2295: 2292:Applications 2288: 2097: 2093: 2089: 2086: 2021: 2017: 2000: 1996: 1992:APX-complete 1985: 1850: 1843: 1838: 1834: 1830: 1826: 1822: 1818: 1814: 1810: 1806: 1802: 1798: 1794: 1790: 1786: 1782: 1778: 1774: 1770: 1768: 1754: 1750: 1746: 1742: 1738: 1731: 1725: 1658: 1589: 1585: 1579: 1462: 1454: 1446: 1442: 1436: 1424: 1409: 1403:and even in 1401:cubic graphs 1382: 1345: 1288: 988: 964: 871: 865: 769: 767: 554: 552: 502: 304: 227:Bin covering 214: 156: 150: 131: 106: 70: 64: 54:is a set of 47: 44:vertex cover 43: 40:graph theory 37: 3223:Regev, Oded 3135:Safra, Muli 2876:Dinur, Irit 2834:Safra, Muli 2826:Dinur, Irit 2572:21 February 2348:Gallai 1959 2302:theoretical 2006:PCP theorem 1427:tree graphs 1389:NP-complete 1105:subject to 979:NP-hardness 967:NP-complete 232:Bin packing 153:hypergraphs 117:problem in 115:NP-complete 46:(sometimes 3366:Categories 3056:: 133–138. 2946:2010-03-05 2817:2010-03-05 2702:References 2104:Pseudocode 1986:No better 1521:klam value 1319:relaxation 822:such that 750:complement 743:Properties 388:such that 285:Definition 48:node cover 3348:MathWorld 3329:MathWorld 3310:MathWorld 3080:CiteSeerX 2894:CiteSeerX 2692:203852115 2668:1546-1696 2629:220506228 2613:1087-0156 2203:arbitrary 2062:ϵ 2042:ϵ 2039:− 1966:δ 1943:δ 1886:⁡ 1865:Θ 1862:− 1498:⋅ 1317:, so its 1261:∈ 1221:∈ 1178:∈ 1138:≥ 1055:∈ 1048:∑ 1036:minimize 1009:≥ 681:τ 585:τ 565:τ 431:∈ 425:∨ 414:∈ 408:⇒ 402:∈ 3273:(2003). 3265:. Dover. 3261:(1998). 3225:(2008). 3169:TR16-124 3141:(eds.). 3110:TR04-084 3022:(1974). 2989:(1979). 2919:(2006). 2868:TR16-198 2840:(eds.). 2756:(2001). 2684:31591552 2621:32661437 2324:See also 2263:incident 2054:for any 1769:The set 1445:, where 1385:decision 1250:for all 1155:for all 981:proofs. 622:Examples 600:′ 537:′ 488:′ 463:′ 438:′ 421:′ 317:′ 77:. It is 56:vertices 3211:3688775 3102:2525818 2812:6238832 2766:–1027. 2676:1569832 1809:,  1781:; then 1028:(ILP). 772:is the 144:is the 79:NP-hard 50:) of a 3281:  3209:  3199:  3167:  3157:  3108:  3100:  3082:  2999:  2937:  2896:  2866:  2856:  2810:  2770:  2730:  2690:  2682:  2674:  2666:  2627:  2619:  2611:  2537:  2281:return 2269:either 2245:remove 2116:VERTEX 1519:. The 1480:1.2738 1293:. The 752:is an 155:, see 140:whose 105:, the 101:. Its 87:P ≠ NP 3207:S2CID 3098:S2CID 3066:(PDF) 2808:S2CID 2716:(PDF) 2688:S2CID 2625:S2CID 2559:(PDF) 2336:Notes 2298:model 2257:every 2254:' 2215:' 2167:' 2161:while 2146:' 2122:COVER 2014:Safra 2010:Dinur 503:cover 52:graph 3279:ISBN 3197:ISBN 3165:ECCC 3155:ISBN 3106:ECCC 2997:ISBN 2935:ISBN 2864:ECCC 2854:ISBN 2768:ISBN 2764:1024 2728:ISBN 2680:PMID 2672:OSTI 2664:ISSN 2617:PMID 2609:ISSN 2574:2005 2535:ISBN 2316:and 2312:for 2260:edge 2248:from 2206:edge 2065:> 2012:and 1813:} ∈ 1732:both 1425:For 1410:For 1383:The 768:The 637:The 60:edge 42:, a 3241:doi 3189:doi 3147:doi 3090:doi 3034:doi 2971:doi 2927:doi 2904:doi 2890:162 2846:doi 2800:doi 2720:doi 2656:doi 2601:doi 2179:let 1958:in 1883:log 1831:one 1821:or 1548:is 1437:An 709:min 65:In 38:In 3368:: 3345:. 3326:. 3307:. 3257:; 3237:74 3235:. 3229:. 3221:; 3205:. 3195:. 3183:. 3163:. 3153:. 3121:. 3104:. 3096:. 3088:. 3074:. 3068:. 3052:. 3026:. 3018:; 3014:; 2985:; 2967:32 2965:. 2957:; 2933:. 2902:. 2888:. 2878:; 2862:. 2852:. 2828:; 2806:. 2796:52 2794:. 2788:. 2752:; 2748:; 2744:; 2726:. 2686:. 2678:. 2670:. 2662:. 2652:37 2650:. 2646:. 2623:. 2615:. 2607:. 2597:38 2595:. 2591:. 2565:. 2561:. 2523:; 2519:; 2515:; 2488:; 2484:; 2385:; 2275:or 2266:on 2209:of 2200:an 2197:be 2100:. 2098:NP 2090:no 2022:NP 2008:, 2001:NP 1848:. 1718:. 1577:. 1422:. 1276:. 874:: 553:A 161:. 148:. 136:, 129:. 3351:. 3332:. 3313:. 3287:. 3249:. 3243:: 3213:. 3191:: 3171:. 3149:: 3112:. 3092:: 3076:5 3054:2 3040:. 3036:: 3005:. 2977:. 2973:: 2949:. 2929:: 2910:. 2906:: 2870:. 2848:: 2820:. 2802:: 2776:. 2736:. 2722:: 2694:. 2658:: 2631:. 2603:: 2576:. 2543:. 2350:. 2284:C 2278:v 2272:u 2251:E 2242:} 2239:v 2236:, 2233:u 2230:{ 2227:∪ 2224:C 2221:= 2218:C 2212:E 2194:) 2191:v 2188:, 2185:u 2182:( 2176:: 2173:∅ 2170:≠ 2164:E 2158:E 2155:. 2152:G 2149:= 2143:E 2140:∅ 2137:= 2134:C 2131:) 2128:G 2125:( 2119:- 2113:- 2094:P 2068:0 2034:2 2018:P 1997:P 1946:) 1940:+ 1937:1 1934:( 1930:/ 1926:2 1905:) 1898:| 1894:V 1890:| 1877:/ 1873:1 1869:( 1859:2 1839:C 1835:M 1827:e 1823:v 1819:u 1815:M 1811:v 1807:u 1803:e 1799:M 1795:M 1791:e 1787:e 1783:M 1779:C 1775:e 1771:C 1755:C 1751:M 1747:M 1743:C 1739:M 1703:) 1700:1 1697:( 1694:O 1690:n 1684:) 1679:k 1674:( 1671:o 1667:2 1634:) 1631:1 1628:( 1625:O 1621:n 1615:) 1610:k 1605:( 1602:O 1598:2 1586:k 1565:) 1562:k 1559:( 1556:O 1536:n 1507:) 1504:) 1501:n 1495:k 1492:( 1489:+ 1484:k 1476:( 1473:O 1455:k 1447:k 1443:n 1361:v 1357:x 1329:2 1305:2 1264:V 1258:v 1236:} 1233:1 1230:, 1227:0 1224:{ 1216:v 1212:x 1181:E 1175:} 1172:v 1169:, 1166:u 1163:{ 1141:1 1133:v 1129:x 1125:+ 1120:u 1116:x 1080:v 1076:x 1072:) 1069:v 1066:( 1063:c 1058:V 1052:v 1012:0 1006:) 1003:v 1000:( 997:c 961:? 949:k 929:G 918:. 906:k 886:G 862:. 850:k 830:G 810:k 788:G 756:. 738:. 726:} 722:n 719:, 716:m 712:{ 706:= 703:) 698:n 695:, 692:m 688:K 684:( 659:n 656:, 653:m 649:K 605:| 597:V 592:| 588:= 534:V 513:G 485:V 460:V 435:V 428:v 418:V 411:u 405:E 399:v 396:u 376:V 356:) 353:E 350:, 347:V 344:( 341:= 338:G 314:V 273:e 266:t 259:v 20:)

Index

Vertex cover problem

graph theory
graph
vertices
edge
computer science
optimization problem
NP-hard
polynomial-time
P ≠ NP
hard to approximate
unique games conjecture
approximation algorithm
decision version
Karp's 21 NP-complete problems
NP-complete
computational complexity theory
fixed-parameter tractable
parameterized complexity theory
half-integral
linear program
dual linear program
maximum matching problem
hypergraphs
Vertex cover in hypergraphs
Covering/packing-problem pairs
Covering problems
Packing problems
Minimum set cover

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.