Knowledge (XXG)

Vibronic spectroscopy

Source šŸ“

548:. The intensity distribution within a progression is governed by the difference in the equilibrium bond lengths of the initial electronic ground state and the final electronic excited state of the molecule. In accordance with the Born-Oppenheimer approximation, where electronic motion is near instantaneous compared to nuclear motion, transitions between vibrational levels happen with essentially no change in nuclear coordinates between the ground and excited electronic states. These nuclear coordinates are referred to as classical "turning points", where the equilibrium bond lengths of the initial and final electronic states are equal. These transitions can be represented as vertical lines between the various vibrational levels within electronic states on an energy level diagram. 578:. In this case, the emission spectrum is identical to the absorbance spectrum. Resonance fluorescence, however, is not very common and is mainly observed in small molecules (such as diatomics) in the gas phase. This lack of prevalence is due to short radiative lifetimes of the excited state, during which energy can be lost. Emission from the ground vibrational level of the excited state after vibrational relaxation is much more prevalent, referred to as relaxed fluorescence. Emission peaks for a molecule exhibiting relaxed fluorescence are found at longer wavelengths than the corresponding absorption spectra, with the difference being the 1157: 799:. (For B also, a double prime indicates the ground state and a single prime an electronically excited state.) The values of the rotational constants may differ appreciably because the bond length in the electronic excited state may be quite different from the bond length in the ground state, because of the operation of the Franck-Condon principle. The rotational constant is inversely proportional to the square of the bond length. Usually 563:, where energy is lost non-radiatively from the Franckā€“Condon state (the vibrational state achieved after a vertical transition) to surroundings or to internal processes. The molecules can settle in the ground vibrational level of the excited electronic state, where they can continue to decay to various vibrational levels in the ground electronic state, before ultimately returning to the lowest vibrational level of the ground state. 1460: 211: 3616: 2078: 2205: 195: 2249: 567: 3628: 833: 191:. With emission, the molecule can start in various populated vibrational states, and finishes in the electronic ground state in one of many populated vibrational levels. The emission spectrum is more complicated than the absorption spectrum of the same molecule because there are more changes in vibrational energy level. 540:
into a continuum of states. The second formula is adequate for small values of the vibrational quantum number. For higher values further anharmonicity terms are needed as the molecule approaches the dissociation limit, at the energy corresponding to the upper (final state) potential curve at infinite
2107:
The analysis of vibronic spectra of diatomic molecules provides information concerning both the ground electronic state and the excited electronic state. Data for the ground state can also be obtained by vibrational or pure rotational spectroscopy, but data for the excited state can only be obtained
551:
It is generally true that the greater the changes to the bond length of a molecule upon excitation, the greater the contribution of vibrational states to a progression. The width of this progression itself is dependent on the range of transition energies available for internuclear distances close to
1651: 515: 2346:
the observed electronic spectrum is entirely vibronic. At the temperature of liquid helium, 4 K, the vibronic structure was completely resolved, with zero intensity for the purely electronic transition, and three side-lines corresponding to the asymmetric Uā€“Cl stretching vibration and two
781: 172:
Each electronic transition may show vibrational coarse structure, and for molecules in the gas phase, rotational fine structure. This is true even when the molecule has a zero dipole moment and therefore has no vibration-rotation infrared spectrum or pure rotational microwave spectrum.
2069:, so that the two states have equal energy at some internuclear distance. This allows the possibility of a radiationless transition to the repulsive state whose energy levels form a continuum, so that there is blurring of the particular vibrational band in the vibrational progression. 1761:
increases the wavenumbers at first lie increasingly on the high wavenumber side of the band origin but then start to decrease, eventually lying on the low wavenumber side. The Fortrat diagram illustrates this effect. In the rigid rotor approximation the line wavenumbers lie on a
872: 202:(blue) and harmonic oscillator potential (green). The potential at infinite internuclear distance is the dissociation energy for pure vibrational spectra. For vibronic spectra there are two potential curves (see Figure at right), and the dissociation limit is the 552:
the turning points of the initial vibration state. As the "well" of the potential energy curve of the final electronic state grows steeper, there are more final vibrational states available for transitions, and thus more energy levels to yield a wider spectrum.
2035: 1175: 585:
Vibronic spectra of diatomic molecules in the gas phase have been analyzed in detail. Vibrational coarse structure can sometimes be observed in the spectra of molecules in liquid or solid phases and of molecules in solution. Related phenomena including
353: 369: 247:. There are no selection rules for vibrational quantum numbers, which are zero in the ground vibrational level of the initial electronic ground state, but can take any integer values in the final electronic excited state. The term values 2287:(LMCT) in much of the visible region. This band shows a progression in the symmetric Mnā€“O stretching vibration. The individual lines overlap each other extensively, giving rise to a broad overall profile with some coarse structure. 2232:
involves excitation of an electron from a non-bonding orbital to an antibonding pi orbital which weakens and lengthens the Cā€“O bond. This produces a long progression in the Cā€“O stretching vibration. Another example is furnished by
144:
applies. The overall molecular energy depends not only on the electronic state but also on vibrational and rotational quantum numbers, denoted v and J respectively for diatomic molecules. It is conventional to add a double prime
2212:
For polyatomic molecules, progressions are most often observed when the change in bond lengths upon electronic excitation coincides with the change due to a ā€³totally symmetricā€³ vibration. This is the same process that occurs in
127:
regions, in the wavelength range approximately 200ā€“700 nm (50,000ā€“14,000 cm), whereas fundamental vibrations are observed below about 4000 cm. When the electronic and vibrational energy changes are so different,
183:
because at ordinary temperatures the energy necessary for vibrational excitation is large compared to the average thermal energy. The molecule is excited to another electronic state and to many possible vibrational states
2440:
In a ā€³totally symmetricā€³ vibration the lengths of all symmetrically-equivalent bonds vary in phase with each other. The symmetry of the molecule is the same in the vibrational excited state as in the vibrational ground
2060:
The phenomenon of predissociation occurs when an electronic transition results in dissociation of the molecule at an excitation energy less than the normal dissociation limit of the upper state. This can occur when the
1845: 2190: 1740: 1467: 1180: 877: 858:
transitions and differs principally in the fact that the ground and excited states correspond to two different electronic states as well as to two different vibrational levels. For the P-branch
176:
It is necessary to distinguish between absorption and emission spectra. With absorption the molecule starts in the ground electronic state, and usually also in the vibrational ground state
818:, causing bond lengthening. But this is not always the case; if an electron is promoted from a non-bonding or antibonding orbital to a bonding orbital, there will be bond-shortening and 614:. For some electronic transitions there will also be a Q-branch. The transition energies, expressed in wavenumbers, of the lines for a particular vibronic transition are given, in the 265: 3447: 1152:{\displaystyle {\begin{aligned}{\bar {\nu }}_{P}&={\bar {\nu }}_{v'-v''}+B'(J''-1)J''-B''J''(J''+1)\\&={\bar {\nu }}_{v'-v''}-(B'+B'')J''+(B'-B''){J''}^{2}\end{aligned}}} 2405: 1898: 1455:{\displaystyle {\begin{aligned}{\bar {\nu }}_{R}&={\bar {\nu }}_{v'-v''}+B'J'(J'+1)-B''J'(J'-1)\\&={\bar {\nu }}_{v'-v''}+(B'+B'')J'+(B'-B''){J'}^{2}\end{aligned}}} 3120: 2102: 102: 3338: 625: 3271: 3216: 3185: 3180: 510:{\displaystyle G(v)={\bar {\nu }}_{\text{electronic}}+\omega _{e}\left(v+{\tfrac {1}{2}}\right)-\omega _{e}\chi _{e}\left(v+{\tfrac {1}{2}}\right)^{2}\,} 3553: 3371: 3233: 2469: 3502: 3321: 3165: 3442: 3244: 3145: 2108:
from the analysis of vibronic spectra. For example, the bond length in the excited state may be derived from the value of the rotational constant
610:
The vibronic spectra of diatomic molecules in the gas phase also show rotational fine structure. Each line in a vibrational progression will show
536:
decreases with increasing quantum number because of anharmonicity in the vibration. Eventually the separation decreases to zero when the molecule
850:, showing displacement of rotational lines from the vibrational line position (at 0 cm). Centrifugal distortion is ignored in this diagram. 3388: 3366: 3113: 3454: 3376: 2347:
asymmetric Clā€“Uā€“Cl bending modes. Later studies on the same anion were also able to account for vibronic transitions involving low-frequency
3206: 124: 27: 3311: 3256: 855: 611: 114: 2895:
Pollack, S. A. (1963). "Application of Spaceā€Group Theory to the Vibrational Problem of diā€Tetramethyl Ammonium Uranium Hexachloride".
141: 3538: 3290: 3106: 3031: 2993: 2974: 2502: 1769: 3543: 3361: 2135: 3558: 3528: 3459: 3393: 2226: 2112:ā€². In addition to stable diatomic molecules, vibronic spectroscopy has been used to study unstable species, including CH, NH, 3487: 3278: 3175: 3088: 3069: 3050: 3012: 2950: 2431:
When centrifugal distortion is included the R-branch lines below the vibrational origin do not coincide with P-branch lines
3285: 3190: 2245:. In both gas and liquid phase the band around 250 nm shows a progression in the symmetric ring-breathing vibration. 1464:
Thus, the wavenumbers of transitions in both P- and R-branches are given, to a first approximation, by the single formula
560: 3419: 3266: 3155: 2214: 591: 3575: 545: 215: 66: 3414: 3383: 3316: 259: 140:
of a vibronic level can be taken as the sum of the electronic and vibrational (and rotational) energies; that is, the
1876:
When a Q-branch is allowed for a particular electronic transition, the lines of the Q-branch correspond to the case
555:
Emission spectra are complicated due to the variety of processes through which electronically excited molecules can
3565: 3507: 3356: 3228: 587: 35: 3591: 3570: 3333: 3211: 2774:"Vibronic Structure of the Permanganate Absorption Spectrum from Time-Dependent Density Functional Calculations" 2062: 574:
If emission occurs before vibrational relaxation can occur, then the resulting fluorescence is referred to as
3632: 1690: 3464: 3160: 1646:{\displaystyle {\bar {\nu }}_{P,R}={\bar {\nu }}_{v',v''}+(B'+B'')m+(B'-B'')m^{2},\quad m=\pm 1,\pm 2\ etc.} 788: 619: 118: 47: 3251: 2253: 575: 236:
For absorption spectra, the vibrational coarse structure for a given electronic transition forms a single
3654: 3620: 3492: 3137: 2315: 2369: 2904: 2867: 2788: 2724: 2669: 2322:. The spectra of many of these complexes have some vibronic character. The same rule also applies to 2284: 2037:
The Q-branch then consists of a series of lines with increasing separation between adjacent lines as
556: 3548: 3261: 3170: 2260: 2086: 815: 31: 854:
The treatment of rotational fine structure of vibronic transitions is similar to the treatment of
348:{\displaystyle G(v)={\bar {\nu }}_{\text{electronic}}+\omega _{e}\left(v+{\tfrac {1}{2}}\right)\,} 3596: 3533: 3512: 3328: 3306: 3239: 3150: 2812: 2715:
Clouthier, D. J.; Ramsay, D. A. (1983). "The Spectroscopy of Formaldehyde and Thioformaldehyde".
94: 82: 78: 62: 2942: 3497: 3424: 3398: 3084: 3065: 3046: 3027: 3008: 2989: 2970: 2946: 2804: 2697: 2498: 2420: 2348: 537: 129: 98: 54: 2934: 2912: 2875: 2796: 2732: 2687: 2677: 2319: 2293: 2113: 58: 2412: 2066: 811: 529: 2030:{\displaystyle {\bar {\nu }}_{Q}={\bar {\nu }}_{v',v''}+(B'-B'')J(J+1)\quad J=1,2,\dots } 2908: 2871: 2792: 2736: 2728: 2673: 2461: 2692: 2657: 2304: 2077: 796: 2248: 2124:
in hydrocarbon flame spectra are a progression in the Cā€“C stretching vibration of the
210: 3648: 2935: 2773: 2117: 533: 525: 133: 74: 3129: 2816: 2308: 2264: 2218: 1858: 1683:). The wavenumbers of the lines in the P-branch, on the low wavenumber side of the 599: 595: 579: 366:
is the harmonic wavenumber. In the next approximation the term values are given by
137: 23: 602:
are not discussed in this article, though they also involve vibronic transitions.
2963: 2290:
Progressions in vibrations which are not totally symmetric may also be observed.
615: 70: 2658:"The Rotational Structure of the Ultra-Violet Absorption Bands of Formaldehyde" 2331: 2312: 2204: 832: 194: 2192:
electronic transition. Vibronic bands for 9 other electronic transitions of C
2121: 2090: 566: 559:
return to lower energy states. There is a tendency for molecules to undergo
43: 2808: 2749:
Hollas shows the vibration on p. 140 (Fig.6.13f) and the spectrum on p. 245
2701: 2682: 2335: 2125: 2052:
the Q-branch lies to lower wavenumbers relative to the vibrational line.
1763: 776:{\displaystyle G(J',J'')={\bar {\nu }}_{v'-v''}+B'J'(J'+1)-B''J''(J''+1)} 86: 2628:
Banwell and McCash, p. 174 illustrates a spectrum with pre-dissociation.
2339: 2234: 2916: 2880: 2855: 2800: 570:
Image of fluorimeter used to obtain emission spectra, courtesy of NYU.
16:
Study of simultaneous change in atoms' electronic and vibration energy
2082: 240:, or series of transitions with a common level, here the lower level 39: 3095:
Chapter 4: Fundamentals of Fluorescence and Fluorescence Microscopy
65:. The intensity of allowed vibronic transitions is governed by the 2841:
An Introduction to Transition Metal Chemistry. Ligand field theory
2203: 2076: 565: 193: 544:
The intensity of allowed vibronic transitions is governed by the
26:
concerned with vibronic transitions: the simultaneous changes in
3026:. Vol. 3 (3rd ed.). Chapman and Hall. pp. 50ā€“84. 3102: 3098: 1849:
The line of highest wavenumber in the R-branch is known as the
2279:, in aqueous solution has an intense purple colour due to an 157:
for levels of the electronic ground state and a single prime
2196:
have been observed in the infrared and ultraviolet regions.
528:
constant. This is, in effect, a better approximation to the
3083:. Vol. 114 (4th ed.). CRC Press. pp. 69ā€“97. 2854:
Satten, Robert A.; Young, Donald; Gruen, Dieter M. (1960).
2338:. In the case of the octahedral actinide chloro-complex of 2185:{\displaystyle d^{3}\Pi _{u}\Leftrightarrow a^{3}\Pi _{g}} 532:
near the potential minimum. The spacing between adjacent
69:. Vibronic spectroscopy may provide information, such as 484: 432: 328: 2372: 2138: 1901: 1772: 1693: 1470: 1178: 875: 628: 372: 268: 123:
Electronic transitions are typically observed in the
46:, vibronic transitions are accompanied by changes in 34:
energy levels of a molecule due to the absorption or
3584: 3521: 3480: 3473: 3435: 3407: 3349: 3299: 3199: 3136: 2856:"Preliminary Analysis of U Ion Spectra in Crystals" 2962: 2941:(8th ed.). Oxford University Press. pp.  2772:Neugebauer, Johannes; Baerends, Evert Jan (2005). 2399: 2184: 2029: 1839: 1734: 1672:) and negative values refer to the P-branch (with 1645: 1454: 1151: 775: 509: 347: 2495:Flame Spectroscopy : Atlas of Spectral Lines 2307:environment are electric-dipole forbidden by the 2103:List of interstellar and circumstellar molecules 810:as is true when an electron is promoted from a 2252:Absorption spectrum of an aqueous solution of 1840:{\displaystyle x=-{\frac {B'+B''}{2(B'-B'')}}} 3114: 3060:McQuarrie, Donald A.; Simon, John D. (1997). 3045:(2nd ed.). CRC Press. pp. 259ā€“263. 2961:Banwell, Colin N.; McCash, Elaine M. (1994). 2762:(2nd ed., Pearson Prentice-Hall 2005), p. 612 8: 3186:Vibrational spectroscopy of linear molecules 2330:transitions in centrosymmetric complexes of 3079:Wolf, David E.; Sluder, Greenfield (2013). 2479: 2477: 2065:of the upper state crosses the curve for a 1746:. In the R-branch, for the usual case that 81:. It has also been applied to the study of 3477: 3181:Nuclear resonance vibrational spectroscopy 3121: 3107: 3099: 3064:(1st ed.). University Science Books. 2656:Dieke, G. H.; Kistiakowsky, G. B. (1934). 3554:Inelastic electron tunneling spectroscopy 3234:Resonance-enhanced multiphoton ionization 2879: 2691: 2681: 2463:Molecular spectra and molecular structure 2386: 2385: 2371: 2176: 2166: 2153: 2143: 2137: 1937: 1926: 1925: 1915: 1904: 1903: 1900: 1782: 1771: 1707: 1696: 1695: 1692: 1597: 1512: 1501: 1500: 1484: 1473: 1472: 1469: 1442: 1432: 1345: 1334: 1333: 1222: 1211: 1210: 1196: 1185: 1184: 1179: 1177: 1139: 1129: 1042: 1031: 1030: 919: 908: 907: 893: 882: 881: 876: 874: 673: 662: 661: 627: 506: 500: 483: 465: 455: 431: 414: 401: 390: 389: 371: 344: 327: 310: 297: 286: 285: 267: 3322:Extended X-ray absorption fine structure 3062:Physical chemistry: a molecular Approach 2247: 831: 209: 2597: 2595: 2452: 2359: 1735:{\displaystyle {\bar {\nu }}_{v',v''},} 2965:Fundamentals of molecular spectroscopy 214:Energy level diagram illustrating the 132:(mixing of electronic and vibrational 3022:Straughan, B. P.; Walker, S. (1976). 359:is a vibrational quantum number, and 7: 3627: 2933:Atkins, P. W.; de Paula, J. (2006). 2843:(2nd ed.). Methuen. p. 94. 2737:10.1146/annurev.pc.34.100183.000335 2717:Annual Review of Physical Chemistry 2366:Energy is related to wavenumber by 1657:values refer to the R-branch (with 169:for electronically excited states. 115:Rotational-vibrational spectroscopy 2957:Chapter: Molecular Spectroscopy 2. 2758:Housecroft C. E. and Sharpe A. G. 2173: 2150: 2081:Spectrum of the blue flame from a 206:state energy at infinite distance. 42:of the appropriate energy. In the 14: 3539:Deep-level transient spectroscopy 3291:Saturated absorption spectroscopy 2400:{\displaystyle E=hc{\bar {\nu }}} 618:approximation, that is, ignoring 3626: 3615: 3614: 3544:Dual-polarization interferometry 2085:torch showing excited molecular 3559:Scanning tunneling spectroscopy 3534:Circular dichroism spectroscopy 3529:Acoustic resonance spectroscopy 2005: 1606: 3488:Fourier-transform spectroscopy 3176:Vibrational circular dichroism 2984:Gaydon, Alfred Gordon (1974). 2466:(2nd. ed.). Van Nostrand. 2391: 2159: 2002: 1990: 1984: 1962: 1931: 1909: 1831: 1809: 1701: 1590: 1568: 1559: 1537: 1506: 1478: 1428: 1406: 1392: 1370: 1339: 1319: 1302: 1280: 1263: 1216: 1190: 1125: 1103: 1089: 1067: 1036: 1016: 999: 969: 952: 913: 887: 770: 753: 731: 714: 667: 654: 632: 395: 382: 376: 291: 278: 272: 142:Bornā€“Oppenheimer approximation 57:have been analysed in detail; 1: 3286:Cavity ring-down spectroscopy 3191:Thermal infrared spectroscopy 2969:(4th ed.). McGraw-Hill. 2200:Polyatomic molecules and ions 1895:and wavenumbers are given by 836:Fortrat diagram created with 561:vibrational energy relaxation 3420:Inelastic neutron scattering 2988:. London: Chapman and Hall. 2215:resonance Raman spectroscopy 1853:. It occurs at the value of 592:resonance Raman spectroscopy 3481:Data collection, processing 3357:Photoelectron/photoemission 2610:Straughan and Walker, p. 74 2526:Banwell and McCash, p. 163. 2517:Banwell and McCash, p. 162. 1161:Similarly for the R-branch 136:) can be neglected and the 3671: 3566:Photoacoustic spectroscopy 3508:Time-resolved spectroscopy 3041:McHale, Jeanne L. (2017). 2986:The spectroscopy of flames 2637:Banwell and McCash, p. 176 2601:Banwell and McCash, p. 171 2468:Available for download at 2460:Herzberg, Gerhard (1950). 2100: 588:photoelectron spectroscopy 112: 61:are more complicated than 3610: 3592:Astronomical spectroscopy 3571:Photothermal spectroscopy 22:is a branch of molecular 3576:Pumpā€“probe spectroscopy 3465:Ferromagnetic resonance 3257:Laser-induced breakdown 3007:(3rd ed.). Wiley. 2493:Parsons, M. L. (1971). 1766:which has a maximum at 546:Franckā€“Condon principle 541:internuclear distance. 216:Franckā€“Condon principle 125:visible and ultraviolet 119:Rotational spectroscopy 67:Franckā€“Condon principle 3272:Glow-discharge optical 3252:Raman optical activity 3166:Rotationalā€“vibrational 3043:Molecular Spectroscopy 3003:Hollas, M. J. (1996). 2401: 2316:coordination compounds 2301:electronic transitions 2256: 2254:potassium permanganate 2209: 2186: 2098: 2063:potential energy curve 2031: 1857:which is equal to the 1841: 1736: 1647: 1456: 1153: 851: 777: 620:centrifugal distortion 576:resonance fluorescence 571: 511: 349: 233: 218:. Transitions between 207: 3493:Hyperspectral imaging 2839:Orgel, L. E. (1966). 2683:10.1073/pnas.18.5.367 2662:Proc. Natl. Acad. Sci 2402: 2311:. This will apply to 2251: 2207: 2187: 2080: 2032: 1842: 1737: 1648: 1457: 1154: 835: 778: 569: 512: 350: 213: 197: 20:Vibronic spectroscopy 3245:Coherent anti-Stokes 3200:UVā€“Visā€“NIR "Optical" 2370: 2285:charge transfer band 2136: 1899: 1770: 1691: 1468: 1176: 873: 789:rotational constants 626: 370: 266: 103:astronomical objects 53:Vibronic spectra of 3549:Hadron spectroscopy 3339:Conversion electron 3300:X-ray and Gamma ray 3207:Ultravioletā€“visible 3005:Modern Spectroscopy 2909:1963JChPh..38...98P 2872:1960JChPh..33.1140S 2793:2005JPCA..109.1168N 2760:Inorganic Chemistry 2729:1983ARPC...34...31C 2674:1932PNAS...18..367D 2589:Hollas, pp. 210ā€“228 2261:inorganic chemistry 2259:As an example from 816:antibonding orbital 260:harmonic oscillator 3597:Force spectroscopy 3522:Measured phenomena 3513:Video spectroscopy 3217:Cold vapour atomic 3081:Digital Microscopy 2937:Physical Chemistry 2397: 2349:lattice vibrations 2257: 2217:. For example, in 2210: 2182: 2099: 2089:band emission and 2027: 1837: 1732: 1643: 1452: 1450: 1149: 1147: 856:rotation-vibration 852: 773: 606:Diatomic molecules 572: 507: 493: 441: 345: 337: 234: 208: 189:= 0, 1, 2, 3, ... 85:molecules such as 63:absorption spectra 55:diatomic molecules 3642: 3641: 3606: 3605: 3498:Spectrophotometry 3425:Neutron spin echo 3399:Beta spectroscopy 3312:Energy-dispersive 2917:10.1063/1.1733502 2881:10.1063/1.1731348 2801:10.1021/jp0456990 2562:McQuarrie, p. 592 2421:velocity of light 2394: 2320:transition metals 1934: 1912: 1835: 1704: 1630: 1509: 1481: 1342: 1219: 1193: 1039: 916: 890: 670: 612:P- and R-branches 582:of the molecule. 538:photo-dissociates 534:vibrational lines 492: 440: 404: 398: 336: 300: 294: 130:vibronic coupling 3662: 3630: 3629: 3618: 3617: 3478: 3389:phenomenological 3138:Vibrational (IR) 3123: 3116: 3109: 3100: 3094: 3075: 3056: 3037: 3018: 2999: 2980: 2968: 2956: 2940: 2921: 2920: 2892: 2886: 2885: 2883: 2866:(4): 1160ā€“1171. 2851: 2845: 2844: 2836: 2830: 2827: 2821: 2820: 2787:(6): 1168ā€“1179. 2778: 2769: 2763: 2756: 2750: 2747: 2741: 2740: 2712: 2706: 2705: 2695: 2685: 2653: 2647: 2644: 2638: 2635: 2629: 2626: 2620: 2617: 2611: 2608: 2602: 2599: 2590: 2587: 2581: 2578: 2572: 2569: 2563: 2560: 2554: 2551: 2545: 2542: 2536: 2533: 2527: 2524: 2518: 2515: 2509: 2508: 2490: 2484: 2481: 2472: 2467: 2457: 2442: 2438: 2432: 2429: 2423: 2418: 2410: 2406: 2404: 2403: 2398: 2396: 2395: 2387: 2364: 2283:ligand-to-metal 2282: 2278: 2277: 2276: 2229: 2191: 2189: 2188: 2183: 2181: 2180: 2171: 2170: 2158: 2157: 2148: 2147: 2114:hydroxyl radical 2051: 2041:increases. When 2040: 2036: 2034: 2033: 2028: 1983: 1972: 1958: 1957: 1956: 1945: 1936: 1935: 1927: 1920: 1919: 1914: 1913: 1905: 1894: 1883: 1872: 1864: 1856: 1846: 1844: 1843: 1838: 1836: 1834: 1830: 1819: 1804: 1803: 1792: 1783: 1760: 1756: 1745: 1741: 1739: 1738: 1733: 1728: 1727: 1726: 1715: 1706: 1705: 1697: 1682: 1671: 1656: 1652: 1650: 1649: 1644: 1628: 1602: 1601: 1589: 1578: 1558: 1547: 1533: 1532: 1531: 1520: 1511: 1510: 1502: 1495: 1494: 1483: 1482: 1474: 1461: 1459: 1458: 1453: 1451: 1447: 1446: 1441: 1440: 1427: 1416: 1402: 1391: 1380: 1366: 1365: 1364: 1353: 1344: 1343: 1335: 1325: 1312: 1301: 1293: 1273: 1262: 1254: 1243: 1242: 1241: 1230: 1221: 1220: 1212: 1201: 1200: 1195: 1194: 1186: 1171: 1158: 1156: 1155: 1150: 1148: 1144: 1143: 1138: 1137: 1124: 1113: 1099: 1088: 1077: 1063: 1062: 1061: 1050: 1041: 1040: 1032: 1022: 1009: 998: 990: 979: 962: 951: 940: 939: 938: 927: 918: 917: 909: 898: 897: 892: 891: 883: 868: 849: 842: 828: 809: 794: 786: 782: 780: 779: 774: 763: 752: 744: 724: 713: 705: 694: 693: 692: 681: 672: 671: 663: 653: 642: 523: 516: 514: 513: 508: 505: 504: 499: 495: 494: 485: 470: 469: 460: 459: 447: 443: 442: 433: 419: 418: 406: 405: 402: 400: 399: 391: 365: 358: 354: 352: 351: 346: 343: 339: 338: 329: 315: 314: 302: 301: 298: 296: 295: 287: 257: 246: 231: 224: 190: 182: 168: 156: 79:stable molecules 73:, on electronic 59:emission spectra 3670: 3669: 3665: 3664: 3663: 3661: 3660: 3659: 3645: 3644: 3643: 3638: 3602: 3580: 3517: 3469: 3431: 3403: 3345: 3295: 3195: 3156:Resonance Raman 3132: 3127: 3091: 3078: 3072: 3059: 3053: 3040: 3034: 3021: 3015: 3002: 2996: 2983: 2977: 2960: 2953: 2932: 2929: 2924: 2894: 2893: 2889: 2853: 2852: 2848: 2838: 2837: 2833: 2829:Hollas, p. 245. 2828: 2824: 2776: 2771: 2770: 2766: 2757: 2753: 2748: 2744: 2714: 2713: 2709: 2655: 2654: 2650: 2646:Gaydon, p. 259. 2645: 2641: 2636: 2632: 2627: 2623: 2619:Hollas, p. 172. 2618: 2614: 2609: 2605: 2600: 2593: 2588: 2584: 2579: 2575: 2570: 2566: 2561: 2557: 2552: 2548: 2544:Hollas, p. 215. 2543: 2539: 2534: 2530: 2525: 2521: 2516: 2512: 2505: 2492: 2491: 2487: 2483:Hollas, p. 211. 2482: 2475: 2470:community books 2459: 2458: 2454: 2450: 2445: 2439: 2435: 2430: 2426: 2416: 2413:Planck constant 2408: 2368: 2367: 2365: 2361: 2357: 2345: 2305:centrosymmetric 2280: 2275: 2272: 2271: 2270: 2268: 2244: 2240: 2227: 2224: 2202: 2195: 2172: 2162: 2149: 2139: 2134: 2133: 2131: 2105: 2096: 2075: 2067:repulsive state 2058: 2056:Predissociation 2042: 2038: 1976: 1965: 1949: 1938: 1924: 1902: 1897: 1896: 1885: 1877: 1866: 1862: 1854: 1823: 1812: 1805: 1796: 1785: 1784: 1768: 1767: 1758: 1747: 1743: 1719: 1708: 1694: 1689: 1688: 1673: 1658: 1654: 1593: 1582: 1571: 1551: 1540: 1524: 1513: 1499: 1471: 1466: 1465: 1449: 1448: 1433: 1431: 1420: 1409: 1395: 1384: 1373: 1357: 1346: 1332: 1323: 1322: 1305: 1294: 1286: 1266: 1255: 1247: 1234: 1223: 1209: 1202: 1183: 1174: 1173: 1162: 1146: 1145: 1130: 1128: 1117: 1106: 1092: 1081: 1070: 1054: 1043: 1029: 1020: 1019: 1002: 991: 983: 972: 955: 944: 931: 920: 906: 899: 880: 871: 870: 859: 844: 837: 819: 812:bonding orbital 800: 797:quantum numbers 795:are rotational 792: 784: 756: 745: 737: 717: 706: 698: 685: 674: 660: 646: 635: 624: 623: 608: 530:Morse potential 522: 518: 476: 472: 471: 461: 451: 424: 420: 410: 388: 368: 367: 364: 360: 356: 320: 316: 306: 284: 264: 263: 248: 241: 226: 219: 200:Morse potential 185: 177: 158: 146: 121: 111: 92: 17: 12: 11: 5: 3668: 3666: 3658: 3657: 3647: 3646: 3640: 3639: 3637: 3636: 3624: 3611: 3608: 3607: 3604: 3603: 3601: 3600: 3594: 3588: 3586: 3582: 3581: 3579: 3578: 3573: 3568: 3563: 3562: 3561: 3551: 3546: 3541: 3536: 3531: 3525: 3523: 3519: 3518: 3516: 3515: 3510: 3505: 3500: 3495: 3490: 3484: 3482: 3475: 3471: 3470: 3468: 3467: 3462: 3457: 3452: 3451: 3450: 3439: 3437: 3433: 3432: 3430: 3429: 3428: 3427: 3417: 3411: 3409: 3405: 3404: 3402: 3401: 3396: 3391: 3386: 3381: 3380: 3379: 3374: 3372:Angle-resolved 3369: 3364: 3353: 3351: 3347: 3346: 3344: 3343: 3342: 3341: 3331: 3326: 3325: 3324: 3319: 3314: 3303: 3301: 3297: 3296: 3294: 3293: 3288: 3283: 3282: 3281: 3276: 3275: 3274: 3259: 3254: 3249: 3248: 3247: 3237: 3231: 3226: 3221: 3220: 3219: 3209: 3203: 3201: 3197: 3196: 3194: 3193: 3188: 3183: 3178: 3173: 3168: 3163: 3158: 3153: 3148: 3142: 3140: 3134: 3133: 3128: 3126: 3125: 3118: 3111: 3103: 3097: 3096: 3089: 3076: 3070: 3057: 3051: 3038: 3032: 3019: 3013: 3000: 2994: 2981: 2975: 2958: 2951: 2928: 2925: 2923: 2922: 2887: 2846: 2831: 2822: 2764: 2751: 2742: 2707: 2668:(5): 367ā€“372. 2648: 2639: 2630: 2621: 2612: 2603: 2591: 2582: 2573: 2564: 2555: 2553:McHale, p.259 2546: 2537: 2535:Hollas, p. 214 2528: 2519: 2510: 2503: 2485: 2473: 2451: 2449: 2446: 2444: 2443: 2433: 2424: 2393: 2390: 2384: 2381: 2378: 2375: 2358: 2356: 2353: 2343: 2303:in atoms in a 2273: 2242: 2238: 2222: 2201: 2198: 2193: 2179: 2175: 2169: 2165: 2161: 2156: 2152: 2146: 2142: 2129: 2094: 2074: 2071: 2057: 2054: 2026: 2023: 2020: 2017: 2014: 2011: 2008: 2004: 2001: 1998: 1995: 1992: 1989: 1986: 1982: 1979: 1975: 1971: 1968: 1964: 1961: 1955: 1952: 1948: 1944: 1941: 1933: 1930: 1923: 1918: 1911: 1908: 1833: 1829: 1826: 1822: 1818: 1815: 1811: 1808: 1802: 1799: 1795: 1791: 1788: 1781: 1778: 1775: 1742:increase with 1731: 1725: 1722: 1718: 1714: 1711: 1703: 1700: 1653:Here positive 1642: 1639: 1636: 1633: 1627: 1624: 1621: 1618: 1615: 1612: 1609: 1605: 1600: 1596: 1592: 1588: 1585: 1581: 1577: 1574: 1570: 1567: 1564: 1561: 1557: 1554: 1550: 1546: 1543: 1539: 1536: 1530: 1527: 1523: 1519: 1516: 1508: 1505: 1498: 1493: 1490: 1487: 1480: 1477: 1445: 1439: 1436: 1430: 1426: 1423: 1419: 1415: 1412: 1408: 1405: 1401: 1398: 1394: 1390: 1387: 1383: 1379: 1376: 1372: 1369: 1363: 1360: 1356: 1352: 1349: 1341: 1338: 1331: 1328: 1326: 1324: 1321: 1318: 1315: 1311: 1308: 1304: 1300: 1297: 1292: 1289: 1285: 1282: 1279: 1276: 1272: 1269: 1265: 1261: 1258: 1253: 1250: 1246: 1240: 1237: 1233: 1229: 1226: 1218: 1215: 1208: 1205: 1203: 1199: 1192: 1189: 1182: 1181: 1142: 1136: 1133: 1127: 1123: 1120: 1116: 1112: 1109: 1105: 1102: 1098: 1095: 1091: 1087: 1084: 1080: 1076: 1073: 1069: 1066: 1060: 1057: 1053: 1049: 1046: 1038: 1035: 1028: 1025: 1023: 1021: 1018: 1015: 1012: 1008: 1005: 1001: 997: 994: 989: 986: 982: 978: 975: 971: 968: 965: 961: 958: 954: 950: 947: 943: 937: 934: 930: 926: 923: 915: 912: 905: 902: 900: 896: 889: 886: 879: 878: 772: 769: 766: 762: 759: 755: 751: 748: 743: 740: 736: 733: 730: 727: 723: 720: 716: 712: 709: 704: 701: 697: 691: 688: 684: 680: 677: 669: 666: 659: 656: 652: 649: 645: 641: 638: 634: 631: 607: 604: 520: 503: 498: 491: 488: 482: 479: 475: 468: 464: 458: 454: 450: 446: 439: 436: 430: 427: 423: 417: 413: 409: 397: 394: 387: 384: 381: 378: 375: 362: 342: 335: 332: 326: 323: 319: 313: 309: 305: 293: 290: 283: 280: 277: 274: 271: 134:wave functions 110: 107: 90: 75:excited states 50:energy also. 15: 13: 10: 9: 6: 4: 3: 2: 3667: 3656: 3653: 3652: 3650: 3635: 3634: 3625: 3623: 3622: 3613: 3612: 3609: 3598: 3595: 3593: 3590: 3589: 3587: 3583: 3577: 3574: 3572: 3569: 3567: 3564: 3560: 3557: 3556: 3555: 3552: 3550: 3547: 3545: 3542: 3540: 3537: 3535: 3532: 3530: 3527: 3526: 3524: 3520: 3514: 3511: 3509: 3506: 3504: 3501: 3499: 3496: 3494: 3491: 3489: 3486: 3485: 3483: 3479: 3476: 3472: 3466: 3463: 3461: 3458: 3456: 3453: 3449: 3446: 3445: 3444: 3441: 3440: 3438: 3434: 3426: 3423: 3422: 3421: 3418: 3416: 3413: 3412: 3410: 3406: 3400: 3397: 3395: 3392: 3390: 3387: 3385: 3382: 3378: 3375: 3373: 3370: 3368: 3365: 3363: 3360: 3359: 3358: 3355: 3354: 3352: 3348: 3340: 3337: 3336: 3335: 3332: 3330: 3327: 3323: 3320: 3318: 3315: 3313: 3310: 3309: 3308: 3305: 3304: 3302: 3298: 3292: 3289: 3287: 3284: 3280: 3277: 3273: 3270: 3269: 3268: 3265: 3264: 3263: 3260: 3258: 3255: 3253: 3250: 3246: 3243: 3242: 3241: 3238: 3235: 3232: 3230: 3229:Near-infrared 3227: 3225: 3222: 3218: 3215: 3214: 3213: 3210: 3208: 3205: 3204: 3202: 3198: 3192: 3189: 3187: 3184: 3182: 3179: 3177: 3174: 3172: 3169: 3167: 3164: 3162: 3159: 3157: 3154: 3152: 3149: 3147: 3144: 3143: 3141: 3139: 3135: 3131: 3124: 3119: 3117: 3112: 3110: 3105: 3104: 3101: 3092: 3086: 3082: 3077: 3073: 3067: 3063: 3058: 3054: 3048: 3044: 3039: 3035: 3033:0-412-13390-3 3029: 3025: 3020: 3016: 3010: 3006: 3001: 2997: 2995:0-470-29433-7 2991: 2987: 2982: 2978: 2976:0-07-707976-0 2972: 2967: 2966: 2959: 2954: 2948: 2944: 2939: 2938: 2931: 2930: 2926: 2918: 2914: 2910: 2906: 2903:(1): 98ā€“108. 2902: 2898: 2897:J. Chem. Phys 2891: 2888: 2882: 2877: 2873: 2869: 2865: 2861: 2860:J. Chem. Phys 2857: 2850: 2847: 2842: 2835: 2832: 2826: 2823: 2818: 2814: 2810: 2806: 2802: 2798: 2794: 2790: 2786: 2782: 2781:J. Phys. Chem 2775: 2768: 2765: 2761: 2755: 2752: 2746: 2743: 2738: 2734: 2730: 2726: 2722: 2718: 2711: 2708: 2703: 2699: 2694: 2689: 2684: 2679: 2675: 2671: 2667: 2663: 2659: 2652: 2649: 2643: 2640: 2634: 2631: 2625: 2622: 2616: 2613: 2607: 2604: 2598: 2596: 2592: 2586: 2583: 2577: 2574: 2568: 2565: 2559: 2556: 2550: 2547: 2541: 2538: 2532: 2529: 2523: 2520: 2514: 2511: 2506: 2504:9780306651564 2500: 2496: 2489: 2486: 2480: 2478: 2474: 2471: 2465: 2464: 2456: 2453: 2447: 2437: 2434: 2428: 2425: 2422: 2414: 2388: 2382: 2379: 2376: 2373: 2363: 2360: 2354: 2352: 2350: 2341: 2337: 2333: 2329: 2325: 2321: 2317: 2314: 2310: 2306: 2302: 2300: 2296: 2291: 2288: 2286: 2266: 2262: 2255: 2250: 2246: 2236: 2231: 2221:(methanal), H 2220: 2216: 2206: 2199: 2197: 2177: 2167: 2163: 2154: 2144: 2140: 2127: 2123: 2119: 2118:cyano radical 2115: 2111: 2104: 2092: 2088: 2084: 2079: 2072: 2070: 2068: 2064: 2055: 2053: 2049: 2045: 2024: 2021: 2018: 2015: 2012: 2009: 2006: 1999: 1996: 1993: 1987: 1980: 1977: 1973: 1969: 1966: 1959: 1953: 1950: 1946: 1942: 1939: 1928: 1921: 1916: 1906: 1892: 1888: 1881: 1874: 1870: 1860: 1852: 1847: 1827: 1824: 1820: 1816: 1813: 1806: 1800: 1797: 1793: 1789: 1786: 1779: 1776: 1773: 1765: 1754: 1750: 1729: 1723: 1720: 1716: 1712: 1709: 1698: 1686: 1680: 1676: 1669: 1665: 1661: 1640: 1637: 1634: 1631: 1625: 1622: 1619: 1616: 1613: 1610: 1607: 1603: 1598: 1594: 1586: 1583: 1579: 1575: 1572: 1565: 1562: 1555: 1552: 1548: 1544: 1541: 1534: 1528: 1525: 1521: 1517: 1514: 1503: 1496: 1491: 1488: 1485: 1475: 1462: 1443: 1437: 1434: 1424: 1421: 1417: 1413: 1410: 1403: 1399: 1396: 1388: 1385: 1381: 1377: 1374: 1367: 1361: 1358: 1354: 1350: 1347: 1336: 1329: 1327: 1316: 1313: 1309: 1306: 1298: 1295: 1290: 1287: 1283: 1277: 1274: 1270: 1267: 1259: 1256: 1251: 1248: 1244: 1238: 1235: 1231: 1227: 1224: 1213: 1206: 1204: 1197: 1187: 1169: 1165: 1159: 1140: 1134: 1131: 1121: 1118: 1114: 1110: 1107: 1100: 1096: 1093: 1085: 1082: 1078: 1074: 1071: 1064: 1058: 1055: 1051: 1047: 1044: 1033: 1026: 1024: 1013: 1010: 1006: 1003: 995: 992: 987: 984: 980: 976: 973: 966: 963: 959: 956: 948: 945: 941: 935: 932: 928: 924: 921: 910: 903: 901: 894: 884: 866: 862: 857: 847: 840: 834: 830: 826: 822: 817: 813: 807: 803: 798: 790: 767: 764: 760: 757: 749: 746: 741: 738: 734: 728: 725: 721: 718: 710: 707: 702: 699: 695: 689: 686: 682: 678: 675: 664: 657: 650: 647: 643: 639: 636: 629: 621: 617: 613: 605: 603: 601: 597: 593: 589: 583: 581: 577: 568: 564: 562: 558: 557:spontaneously 553: 549: 547: 542: 539: 535: 531: 527: 526:anharmonicity 501: 496: 489: 486: 480: 477: 473: 466: 462: 456: 452: 448: 444: 437: 434: 428: 425: 421: 415: 411: 407: 392: 385: 379: 373: 340: 333: 330: 324: 321: 317: 311: 307: 303: 288: 281: 275: 269: 262:are given by 261: 255: 251: 244: 239: 229: 222: 217: 212: 205: 201: 196: 192: 188: 180: 174: 170: 166: 162: 154: 150: 143: 139: 135: 131: 126: 120: 116: 108: 106: 104: 100: 96: 88: 84: 80: 76: 72: 68: 64: 60: 56: 51: 49: 45: 41: 37: 33: 29: 25: 21: 3655:Spectroscopy 3631: 3619: 3599:(a misnomer) 3585:Applications 3503:Time-stretch 3394:paramagnetic 3223: 3212:Fluorescence 3130:Spectroscopy 3080: 3061: 3042: 3024:Spectroscopy 3023: 3004: 2985: 2964: 2936: 2927:Bibliography 2900: 2896: 2890: 2863: 2859: 2849: 2840: 2834: 2825: 2784: 2780: 2767: 2759: 2754: 2745: 2720: 2716: 2710: 2665: 2661: 2651: 2642: 2633: 2624: 2615: 2606: 2585: 2576: 2567: 2558: 2549: 2540: 2531: 2522: 2513: 2497:. Springer. 2494: 2488: 2462: 2455: 2436: 2427: 2362: 2327: 2323: 2309:Laporte rule 2298: 2294: 2292: 2289: 2265:permanganate 2258: 2219:formaldehyde 2211: 2208:Formaldehyde 2109: 2106: 2073:Applications 2059: 2047: 2043: 1890: 1886: 1879: 1875: 1868: 1859:integer part 1850: 1848: 1752: 1748: 1684: 1678: 1674: 1667: 1663: 1659: 1463: 1167: 1163: 1160: 864: 860: 853: 845: 838: 824: 820: 805: 801: 609: 600:fluorescence 596:luminescence 584: 580:Stokes shift 573: 554: 550: 543: 253: 249: 242: 237: 235: 232:are favored. 227: 220: 203: 199: 186: 178: 175: 171: 164: 160: 152: 148: 122: 52: 24:spectroscopy 19: 18: 3171:Vibrational 2580:McHale, p. 2571:Wolf, p. 75 2332:lanthanides 1685:band origin 616:rigid rotor 238:progression 71:bond length 32:vibrational 3377:Two-photon 3279:absorption 3161:Rotational 3090:0124077617 3071:0935702997 3052:1466586583 3014:0471965227 2952:0198700725 2448:References 2313:octahedral 2230:transition 2128:radical, C 2122:Swan bands 2120:, CN. The 2116:, OH, and 2101:See also: 2091:Swan bands 869:, so that 403:electronic 299:electronic 113:See also: 109:Principles 95:discharges 48:rotational 28:electronic 3455:Terahertz 3436:Radiowave 3334:Mƶssbauer 2723:: 31ā€“58. 2392:¯ 2389:ν 2342:(IV), UCl 2336:actinides 2174:Π 2160:⇔ 2151:Π 2025:… 1974:− 1932:¯ 1929:ν 1910:¯ 1907:ν 1851:band head 1821:− 1780:− 1702:¯ 1699:ν 1623:± 1614:± 1580:− 1507:¯ 1504:ν 1479:¯ 1476:ν 1418:− 1355:− 1340:¯ 1337:ν 1314:− 1284:− 1232:− 1217:¯ 1214:ν 1191:¯ 1188:ν 1115:− 1065:− 1052:− 1037:¯ 1034:ν 981:− 964:− 929:− 914:¯ 911:ν 888:¯ 885:ν 735:− 683:− 668:¯ 665:ν 463:χ 453:ω 449:− 412:ω 396:¯ 393:ν 308:ω 292:¯ 289:ν 44:gas phase 3649:Category 3621:Category 3350:Electron 3317:Emission 3267:emission 3224:Vibronic 2809:16833427 2702:16587697 2407:, where 2225:CO, the 2132:for the 2126:dicarbon 2093:due to C 1981:″ 1970:′ 1954:″ 1943:′ 1865:, or of 1828:″ 1817:′ 1801:″ 1790:′ 1764:parabola 1724:″ 1713:′ 1587:″ 1576:′ 1556:″ 1545:′ 1529:″ 1518:′ 1438:′ 1425:″ 1414:′ 1400:′ 1389:″ 1378:′ 1362:″ 1351:′ 1310:′ 1299:′ 1291:″ 1271:′ 1260:′ 1252:′ 1239:″ 1228:′ 1135:″ 1122:″ 1111:′ 1097:″ 1086:″ 1075:′ 1059:″ 1048:′ 1007:″ 996:″ 988:″ 977:″ 960:″ 949:′ 936:″ 925:′ 761:″ 750:″ 742:″ 722:′ 711:′ 703:′ 690:″ 679:′ 651:″ 640:′ 87:dicarbon 83:unstable 36:emission 3633:Commons 3460:ESR/EPR 3408:Nucleon 3236:(REMPI) 2905:Bibcode 2868:Bibcode 2817:1612829 2789:Bibcode 2725:Bibcode 2693:1076232 2670:Bibcode 2419:is the 2411:is the 2340:uranium 2318:of the 2235:benzene 2087:radical 2046:ā€² < 1751:ā€² < 841:ā€² = 0.8 823:ā€² > 804:ā€² < 3474:Others 3262:Atomic 3087:  3068:  3049:  3030:  3011:  2992:  2973:  2949:  2945:ā€“469. 2815:  2807:  2700:  2690:  2501:  2441:state. 2281:O ā†’ Mn 2228:n ā†’ Ļ€* 2083:butane 1629:  1172:, and 814:to an 598:, and 524:is an 517:where 355:where 258:for a 138:energy 99:flames 40:photon 3415:Alpha 3384:Auger 3362:X-ray 3329:Gamma 3307:X-ray 3240:Raman 3151:Raman 3146:FT-IR 2813:S2CID 2777:(PDF) 2355:Notes 2267:ion, 1757:, as 1670:ā€³ + 1 1170:ā€² ā€“ 1 867:ā€³ ā€“ 1 848:ā€³ = 1 783:Here 622:, by 245:ā€³ = 0 230:ā€² = 2 223:ā€³ = 0 204:upper 181:ā€³ = 0 93:, in 38:of a 3085:ISBN 3066:ISBN 3047:ISBN 3028:ISBN 3009:ISBN 2990:ISBN 2971:ISBN 2947:ISBN 2805:PMID 2698:PMID 2499:ISBN 2415:and 2334:and 2263:the 1889:ā€² = 1871:+ 1) 1666:ā€² = 1166:ā€³ = 863:ā€² = 791:and 787:are 225:and 198:The 117:and 101:and 30:and 3443:NMR 2943:431 2913:doi 2876:doi 2797:doi 2785:109 2733:doi 2688:PMC 2678:doi 2269:MnO 2237:, C 1882:= 0 1861:of 1687:at 1677:= ā€“ 1662:= + 187:v' 163:ā€², 151:ā€³, 89:, C 77:of 3651:: 3448:2D 3367:UV 2911:. 2901:38 2899:. 2874:. 2864:33 2862:. 2858:. 2811:. 2803:. 2795:. 2783:. 2779:. 2731:. 2721:34 2719:. 2696:. 2686:. 2676:. 2666:18 2664:. 2660:. 2594:^ 2476:^ 2351:. 1884:, 1873:. 843:, 829:. 594:, 590:, 167:ā€²) 155:ā€³) 105:. 97:, 3122:e 3115:t 3108:v 3093:. 3074:. 3055:. 3036:. 3017:. 2998:. 2979:. 2955:. 2919:. 2915:: 2907:: 2884:. 2878:: 2870:: 2819:. 2799:: 2791:: 2739:. 2735:: 2727:: 2704:. 2680:: 2672:: 2507:. 2417:c 2409:h 2383:c 2380:h 2377:= 2374:E 2344:6 2328:f 2326:ā€“ 2324:f 2299:d 2297:ā€“ 2295:d 2274:4 2243:6 2241:H 2239:6 2223:2 2194:2 2178:g 2168:3 2164:a 2155:u 2145:3 2141:d 2130:2 2110:B 2097:. 2095:2 2050:ā€³ 2048:B 2044:B 2039:J 2022:, 2019:2 2016:, 2013:1 2010:= 2007:J 2003:) 2000:1 1997:+ 1994:J 1991:( 1988:J 1985:) 1978:B 1967:B 1963:( 1960:+ 1951:v 1947:, 1940:v 1922:= 1917:Q 1893:ā€³ 1891:J 1887:J 1880:J 1878:āˆ† 1869:x 1867:( 1863:x 1855:m 1832:) 1825:B 1814:B 1810:( 1807:2 1798:B 1794:+ 1787:B 1777:= 1774:x 1759:J 1755:ā€³ 1753:B 1749:B 1744:m 1730:, 1721:v 1717:, 1710:v 1681:ā€³ 1679:J 1675:m 1668:J 1664:J 1660:m 1655:m 1641:. 1638:c 1635:t 1632:e 1626:2 1620:, 1617:1 1611:= 1608:m 1604:, 1599:2 1595:m 1591:) 1584:B 1573:B 1569:( 1566:+ 1563:m 1560:) 1553:B 1549:+ 1542:B 1538:( 1535:+ 1526:v 1522:, 1515:v 1497:= 1492:R 1489:, 1486:P 1444:2 1435:J 1429:) 1422:B 1411:B 1407:( 1404:+ 1397:J 1393:) 1386:B 1382:+ 1375:B 1371:( 1368:+ 1359:v 1348:v 1330:= 1320:) 1317:1 1307:J 1303:( 1296:J 1288:B 1281:) 1278:1 1275:+ 1268:J 1264:( 1257:J 1249:B 1245:+ 1236:v 1225:v 1207:= 1198:R 1168:J 1164:J 1141:2 1132:J 1126:) 1119:B 1108:B 1104:( 1101:+ 1094:J 1090:) 1083:B 1079:+ 1072:B 1068:( 1056:v 1045:v 1027:= 1017:) 1014:1 1011:+ 1004:J 1000:( 993:J 985:B 974:J 970:) 967:1 957:J 953:( 946:B 942:+ 933:v 922:v 904:= 895:P 865:J 861:J 846:B 839:B 827:ā€³ 825:B 821:B 808:ā€³ 806:B 802:B 793:J 785:B 771:) 768:1 765:+ 758:J 754:( 747:J 739:B 732:) 729:1 726:+ 719:J 715:( 708:J 700:B 696:+ 687:v 676:v 658:= 655:) 648:J 644:, 637:J 633:( 630:G 521:e 519:Ļ‡ 502:2 497:) 490:2 487:1 481:+ 478:v 474:( 467:e 457:e 445:) 438:2 435:1 429:+ 426:v 422:( 416:e 408:+ 386:= 383:) 380:v 377:( 374:G 363:e 361:Ļ‰ 357:v 341:) 334:2 331:1 325:+ 322:v 318:( 312:e 304:+ 282:= 279:) 276:v 273:( 270:G 256:) 254:v 252:( 250:G 243:v 228:v 221:v 179:v 165:J 161:v 159:( 153:J 149:v 147:( 91:2

Index

spectroscopy
electronic
vibrational
emission
photon
gas phase
rotational
diatomic molecules
emission spectra
absorption spectra
Franckā€“Condon principle
bond length
excited states
stable molecules
unstable
dicarbon
discharges
flames
astronomical objects
Rotational-vibrational spectroscopy
Rotational spectroscopy
visible and ultraviolet
vibronic coupling
wave functions
energy
Bornā€“Oppenheimer approximation


Franckā€“Condon principle
harmonic oscillator

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

ā†‘