Knowledge (XXG)

Visual prosthesis

Source đź“ť

504:
resolution in the stimulation signals (more electrodes per unit area). In addition, a wireless telemetry system is being developed to eliminate the need for transcranial wires. Arrays of activated iridium oxide film (AIROF)-coated electrodes will be implanted in the visual cortex, located on the occipital lobe of the brain. External hardware will capture images, process them, and generate instructions which will then be transmitted to implanted circuitry via a telemetry link. The circuitry will decode the instructions and stimulate the electrodes, in turn stimulating the visual cortex. The group is developing a wearable external image capture and processing system to accompany the implanted circuitry. Studies on animals and psychophysical studies on humans are being conducted to test the feasibility of a human volunteer implant.
214:, and is enlarged to reduce the effect the blind spot has on central vision. 2.2x or 2.7x magnification strengths make it possible to see or discern the central vision object of interest while the other eye is used for peripheral vision because the eye that has the implant will have limited peripheral vision as a side effect. Unlike a telescope which would be hand-held, the implant moves with the eye which is the main advantage. Patients using the device may however still need glasses for optimal vision and for close work. Before surgery, patients should first try out a hand-held telescope to see if they would benefit from image enlargement. One of the main drawbacks is that it cannot be used for patients who have had 258:, visible light is not powerful enough to stimulate the MPDA. Therefore, an external power supply is used to enhance the stimulation current. The German team commenced in vivo experiments in 2000, when evoked cortical potentials were measured from Yucatán micropigs and rabbits. At 14 months post implantation, the implant and retina surrounding it were examined and there were no noticeable changes to anatomical integrity. The implants were successful in producing evoked cortical potentials in half of the animals tested. The thresholds identified in this study were similar to those required in epiretinal stimulation. Later reports from this group concern the results of a clinical pilot study on 11 participants with 422:
incorporated a microchip with 98 stimulating electrodes and aimed to provide increased mobility for patients to help them move safely in their environment. This implant would be placed in the suprachoroidal space. Researchers expected the first patient tests to begin with this device in 2013, it is currently unknown whether full trials were conducted, but at least one woman named Dianne Ashworth was implanted with the device, and was able to read letters and numbers using it., she later went on to write a book titled "I Spy with My Bionic Eye", about her life, vision loss, and being the first person to be implanted with the BVA, Bionic Eye device.
303:
stimulator, an array of electrodes, that is placed beneath the retina in the subretinal space and receives image signals beamed from a camera mounted on a pair of glasses. The stimulator chip decodes the picture information beamed from the camera and stimulates retinal ganglion cells accordingly. Their second generation prosthesis collects data and sends it to the implant through radio frequency fields from transmitter coils that are mounted on the glasses. A secondary receiver coil is sutured around the iris.
473: 371: 342:
are projected onto the retina via natural eye optics, and photodiodes in the subretinal implant convert light into pulsed bi-phasic electric current in each pixel. Electric current flowing through the tissue between the active and return electrode in each pixel stimulates the nearby inner retinal neurons, primarily the bipolar cells, which transmit excitatory responses to the retinal ganglion cells. This technology is being commercialized by Pixium Vision (
166:
study which were published in 2012, Argus II was approved for commercial use in Europe, and Second Sight launched the product later that same year. The Argus II was approved by the United States FDA on 14 February 2013. Three US government funding agencies (National Eye Institute, Department of Energy, and National Science Foundation) have supported the work at Second Sight, USC, UCSC, Caltech, and other research labs.
2545: 459:, rather than on the retina. Many subjects have been implanted with a high success rate and limited negative effects. The project first began in 2002 and was still in the developmental phase, upon the death of Dobelle, selling the eye for profit was ruled against in favor of donating it to a publicly funded research team. 437:
On 2 January 2019, BVT released positive results from a set of trials on four Australians using a new version of the device. Older versions of the device were only designed to be used temporarily, but the new design allowed the technology to be used constantly, and for the first time outside the lab,
76:
The ability to give sight to a blind person via a bionic eye depends on the circumstances surrounding the loss of sight. For retinal prostheses, which are the most prevalent visual prosthetic under development (due to ease of access to the retina among other considerations), patients with vision loss
425:
BVA was also concurrently developing the High-Acuity device, which incorporated a number of new technologies to bring together a microchip and an implant with 1024 electrodes. The device aimed to provide functional central vision to assist with tasks such as face recognition and reading large print.
325:
The original Optobionics Corp. stopped operations, but Chow acquired the Optobionics name, the ASR implants and plans to reorganize a new company under the same name. The ASR microchip is a 2mm in diameter silicon chip (same concept as computer chips) containing ~5,000 microscopic solar cells called
302:
Joseph Rizzo and John Wyatt at the Massachusetts Eye and Ear Infirmary and MIT began researching the feasibility of a retinal prosthesis in 1989, and performed a number of proof-of-concept epiretinal stimulation trials on blind volunteers between 1998 and 2000. They have since developed a subretinal
401:
Bionic Vision Technologies (BVT) is a company, that has taken over the research and commercialisation rights of Bionic Vision Australia (BVA). BVA was a consortium of some of Australia's leading universities and research institutes, and funded by the Australian Research Council from 2010, it ceased
178:
in 2002, this is a spiral cuff electrode around the optic nerve at the back of the eye. It is connected to a stimulator implanted in a small depression in the skull. The stimulator receives signals from an externally worn camera, which are translated into electrical signals that stimulate the optic
979:
Humayun, Mark S.; Dorn, Jessy D.; da Cruz, Lyndon; Dagnelie, Gislin; Sahel, José-Alain; Stanga, Paulo E.; Cideciyan, Artur V.; Duncan, Jacque L.; Eliott, Dean; Filley, Eugene; Ho, Allen C.; Santos, Arturo; Safran, Avinoam B.; Arditi, Aries; Del Priore, Lucian V.; Greenberg, Robert J. (April 2012).
433:
were to be the first to participate in the studies, followed by age-related macular degeneration. Each prototype consisted of a camera, attached to a pair of glasses which sent the signal to the implanted microchip, where it was converted into electrical impulses to stimulate the remaining healthy
341:
retinal prosthesis in 2012, that includes a subretinal photodiode array and an infrared image projection system mounted on video goggles. Images captured by video camera are processed in a pocket PC and displayed on video goggles using pulsed near-infrared (IR, 880–915 nm) light. These images
421:
While the BVA consortium was still together, the team was led by Professor Anthony Burkitt, and they were developing two retinal prostheses. One known as The Wide-View device, that combined novel technologies with materials that had been successfully used in other clinical implants. This approach
165:
between 2002 and 2004. In 2007, the company began a trial of its second-generation, 60-electrode implant, dubbed the Argus II, in the US and in Europe. In total 30 subjects participated in the studies spanning 10 sites in four countries. In the spring of 2011, based on the results of the clinical
503:
The Laboratory of Neural Prosthetics at Illinois Institute of Technology (IIT), Chicago, started developing a visual prosthetic using intracortical electrode arrays in 2009. While similar in principle to the Dobelle system, the use of intracortical electrodes allow for greatly increased spatial
266:
similar to those of healthy control participants, and the properties of the eye movements depended on the stimuli that the patients were viewing—suggesting that eye movements might be useful measures for evaluating vision restored by implants. Multicenter study started in 2010, using a fully
117:
Inc., was the first device to have received marketing approval (CE Mark in Europe in 2011). Most other efforts remain investigational; the Retina Implant AG's Alpha IMS won a CE Mark July 2013 and is a significant improvement in resolution. It is not, however, FDA-approved in the US.
233:
seeking to evaluate the effectiveness and safety of the implantable miniature telescope for patients with late or advanced age-related macular degeneration found only one ongoing study evaluating the OriLens intraocular telescope, with results expected in 2020.
267:
implantable device with 1500 Electrodes Alpha IMS (produced by Retina Implant AG, Reutlingen, Germany), with 10 patients included; preliminary results were presented at ARVO 2011. The first UK implantations took place in March 2012 and were led by
93:) are the best candidate for treatment. Candidates for visual prosthetic implants find the procedure most successful if the optic nerve was developed prior to the onset of blindness. Persons born with blindness may lack a fully developed 426:
This high-acuity implant would be inserted epiretinally. Patient tests were planned for this device in 2014 once preclinical testing had been completed, it is unknown whether these trials ever took place.
1125:
Lane SS; Kuppermann BD; Fine IH; Hamill MB; et al. (2004). "A prospective multicenter clinical trial to evaluate the safety and effectiveness of the implantable miniature telescope".
113:. Only three visual prosthetic devices have received marketing approval in the EU. Argus II, co-developed at the University of Southern California (USC) Eye Institute and manufactured by 2205: 681:
Provis, Jan M.; Van Driel, Diana; Billson, Frank A.; Russell, Peter (1 August 1985). "Human fetal optic nerve: Overproduction and elimination of retinal axons during development".
294:
On 19 March 2019 Retina Implant AG discontinued business activities quoting innovation-hostile climate of Europe's rigid regulatory systems and unsatisfactory results in patients.
318:
The brothers Alan and Vincent Chow developed a microchip in 2002 containing 3500 photodiodes, which detect light and convert it into electrical impulses, which stimulate healthy
206:
Created by VisionCare Ophthalmic Technologies in conjunction with the CentraSight Treatment Program in 2011, the telescope is about the size of a pea and is implanted behind the
242:
A Southern German team led by the University Eye Hospital in TĂĽbingen, was formed in 1995 by Eberhart Zrenner to develop a subretinal prosthesis. The chip is located behind the
418:. There were many more partners as well. The Australian Federal Government awarded a $ 42 million ARC grant to Bionic Vision Australia to develop bionic vision technology. 752: 1278: 187:
Although not truly an active prosthesis, an implantable miniature telescope is one type of visual implant that has met with some success in the treatment of end-stage
1992:
Macknik; Alexander; Caballero; Chanovas; Nielsen; Nishimura; Schaffer; Slovin; Babayoff; Barak; Tang; Ju; Yazdan-Shahmorad; Alonso; Malinskiy; Martinez Conde (2019).
2078: 724: 382:. The reason given is: Preclinical testing and patient tests should now have completed or have been cancelled (existing text says they were scheduled for 2014). 357:
is focusing now on developing pixels smaller than 50ÎĽm using 3-D electrodes and utilizing the effect of retinal migration into voids in the subretinal implant.
901: 346: 932: 262:. Some blind patients were able to read letters, recognize unknown objects, localize a plate, a cup and cutlery. Two of the patients were found to make 2103: 2047: 2173: 2131: 1967: 518:
are also developing an intracortical visual prosthetic, called OBServe. The planned system will use an LED array, a video camera, optogenetics,
2399: 142: 933:"Press Release: Ending the Journey through Darkness: Innovative Technology Offers New Hope for Treating Blindness due to Retinitis Pigmentosa" 2292: 146: 2488: 2151: 2071: 199:
and works by increasing (by about three times) the size of the image projected onto the retina in order to overcome a centrally located
175: 609: 162: 1632:
K. Mathieson; J. Loudin; G. Goetz; P. Huie; L. Wang; T. Kamins; L. Galambos; R. Smith; J.S. Harris; A. Sher; D. Palanker (2012).
597: 246:
and utilizes microphotodiode arrays (MPDA) which collect incident light and transform it into electrical current stimulating the
188: 762: 441:
According to fact sheets dated March, 2019, on BVT's website, they expect the device to obtain market approval in 3 to 5 years.
2213: 1843:"Detection, eye-hand coordination and virtual mobility performance in simulated vision for a cortical visual prosthesis device" 338: 157:
in the early 1990s. In the late 1990s the company Second Sight was formed by Greenberg along with medical device entrepreneur,
149:; and Robert Greenberg, now of Second Sight, were the original inventors of the active epi-retinal prosthesis and demonstrated 434:
neurons in the retina. This information was then passed on to the optic nerve and the vision processing centres of the brain.
2275: 2253: 2064: 138: 1541: 2549: 2515: 561:
Dobelle, Wm. H. (January 2000). "Artificial Vision for the Blind by Connecting a Television Camera to the Visual Cortex".
515: 407: 114: 2352: 2315: 2586: 2576: 1798:
Rush, Alexander; PR Troyk (November 2012). "A Power and Data Link for a Wireless-Implanted Neural Recording System".
888: 753:"USC Eye Institute ophthalmologists implant first FDA-approved Argus II retinal prosthesis in western United States" 2571: 2520: 2456: 784:
Chuang, Alice T; Margo, Curtis E; Greenberg, Paul B (July 2014). "Retinal implants: a systematic review: Table 1".
280: 1900:"Electrical stimulation of the brain and the development of cortical visual prostheses: An historical perspective" 2591: 2503: 2463: 909: 2601: 2198: 1511: 1486:"HKU performed the first subretinal microchip implantation in Asia Patient regained eyesight after the surgery" 1079:
Chun DW; Heier JS; Raizman MB (2005). "Visual prosthetic device for bilateral end-stage macular degeneration".
343: 154: 132: 1736: 939: 276: 2468: 2441: 2193: 2126: 1030: 415: 284: 230: 24: 2478: 2473: 2446: 2320: 2287: 519: 1231:"Implantable miniature telescope (IMT) for vision loss due to end-stage age-related macular degeneration" 2404: 2087: 2044: 1272: 511: 456: 319: 247: 40:, is an experimental visual device intended to restore functional vision in those with partial or total 729: 2596: 2451: 2414: 2394: 2233: 2114: 1854: 1645: 430: 272: 259: 82: 52:
in use since the mid-1980s. The idea of using electrical current (e.g., electrically stimulating the
2508: 2483: 2243: 2218: 2136: 536: 263: 210:
of one eye. Images are projected onto healthy areas of the central retina, outside the degenerated
161:, Their first-generation implant had 16 electrodes and was implanted in six subjects by Humayun at 2525: 2161: 2146: 2119: 1823: 1188: 1104: 809: 706: 541: 450: 251: 150: 109:
Visual prosthetics are being developed as a potentially valuable aid for individuals with visual
90: 78: 522:
transfection, and eye tracking. Components are currently being developed and tested in animals.
1163:
Lane SS; Kuppermann BD (2006). "The Implantable Miniature Telescope for macular degeneration".
2270: 2223: 2023: 1921: 1880: 1815: 1671: 1415: 1374: 1323: 1260: 1180: 1142: 1096: 1011: 801: 698: 663: 605: 578: 403: 196: 61: 20: 1573:. Research Laboratory of Electronics (RLE) at the Massachusetts Institute of Technology (MIT) 2493: 2409: 2342: 2335: 2310: 2248: 2228: 2183: 2178: 2013: 2005: 1911: 1870: 1862: 1807: 1661: 1653: 1405: 1364: 1354: 1313: 1305: 1294:"Subretinal electronic chips allow blind patients to read letters and combine them to words" 1250: 1242: 1172: 1134: 1088: 1001: 993: 793: 690: 653: 645: 570: 219: 215: 65: 49: 45: 2369: 2357: 2051: 507: 350: 334: 268: 98: 1618: 1858: 1649: 634:"High-resolution electrical stimulation of primate retina for epiretinal implant design" 486:
Please help update this article to reflect recent events or newly available information.
384:
Please help update this article to reflect recent events or newly available information.
2498: 2325: 2141: 2018: 1993: 1875: 1866: 1842: 1666: 1633: 1369: 1342: 1318: 1293: 1255: 1230: 1176: 1006: 981: 658: 633: 353:), and is being evaluated in a clinical trial (2018). Following this proof of concept, 312: 207: 158: 110: 455:
Similar in function to the Harvard/MIT device, except the stimulator chip sits in the
2565: 2530: 2347: 2330: 2280: 827: 797: 574: 94: 86: 57: 1207: 1192: 1108: 813: 710: 354: 222:
would obstruct insertion of the telescope. It also requires a large incision in the
2581: 2434: 2302: 2188: 2156: 2009: 1916: 1899: 1827: 1246: 649: 982:"Interim Results from the International Trial of Second Sight's Visual Prosthesis" 965: 1410: 1393: 997: 849: 2429: 2424: 2168: 1485: 1061: 1968:"Sidestepping failing retinas by linking cameras straight to the visual cortex" 1394:"Oculomotor behavior of blind patients seeing with a subretinal visual implant" 2389: 1811: 1714: 1138: 255: 1940: 1657: 1359: 1092: 438:
even to be taken home. More implants are to be administered throughout 2019.
2419: 1567: 531: 484:. The reason given is: Is this still in development? This work was in 2012.. 288: 192: 41: 2027: 1925: 1884: 1819: 1675: 1460: 1433: 1419: 1378: 1327: 1309: 1264: 1184: 1146: 1100: 1015: 805: 667: 582: 402:
operations on 31 December 2016. The members of the consortium consisted of
145:; engineer Howard D. Phillips; bio-electronics engineer Wentai Liu, now at 101:
makes it possible for the nerve, and sight, to develop after implantation.
702: 694: 2263: 2238: 1595: 2056: 1512:"Retina Implant - Your Expert for retinitis pigmentosa - Retina Implant" 757: 200: 1392:
Hafed, Z; Stingl, K; Bartz-Schmidt, K; Gekeler, F; Zrenner, E (2016).
600:. In Sakas, Damianos E.; Krames, Elliot S.; Simpson, Brian A. (eds.). 1343:"Microsaccade Characteristics in Neurological and Ophthalmic Disease" 243: 223: 211: 53: 1994:"Advanced Circuit and Cellular Imaging Methods in Nonhuman Primates" 1758: 1519: 1341:
Alexander, Robert; Macknik, Stephen; Martinez-Conde, Susana (2018).
902:"Clinical Update: Retina. Retinal Prostheses: Progress and Problems" 326:"microphotodiodes" that each have their own stimulating electrode. 2258: 411: 632:
Sekirnjak C; Hottowy P; Sher A; Dabrowski W; et al. (2008).
889:
Second Sight Amendment No. 3 to Form S-1: Registration Statement
60:) to provide sight dates back to the 18th century, discussed by 2060: 1689: 141:
Department of Ophthalmology in 2001; Eugene Dejuan, now at the
466: 364: 1229:
Gupta A, Lam J, Custis P, Munz S, Fong D, Koster M (2018).
44:. Many devices have been developed, usually modeled on the 1634:"Photovoltaic retinal prosthesis with high pixel density" 863: 1898:
Lewis, Philip M.; Rosenfeld, Jeffrey V. (January 2016).
1783:
Simon Ings (2007). "Chapter 10(3): Making eyes to see".
1492:(Press release). The University of Hong Kong. 3 May 2012 725:"IRIS®II becomes third bionic retina approved in Europe" 598:"Electricity in the treatment of nervous system disease" 1841:
Srivastava, Nishant; PR Troyk; G Dagnelie (June 2009).
1461:"Two blind British men have electronic retinas fitted" 1542:"Retina Implant AG discontinues business activities" 2382: 2301: 2101: 2094: 287:also implanted the TĂĽbingen device in a patient in 97:, which typically develops prior to birth, though 19:For non-functional prostheses or glass eyes, see 16:Device intended to restore vision to blind people 414:, Center for Eye Research Australia (CERA), and 322:. The ASR requires no externally worn devices. 1987: 1985: 1941:"The Amazing Brain: Making Up for Lost Vision" 1590: 1588: 2072: 848:U.S. Department of Energy Office of Science. 8: 1277:: CS1 maint: multiple names: authors list ( 137:Mark Humayun, who joined the faculty of the 1800:IEEE Transactions on Biomedical Engineering 850:"Overview of the Artificial Retina Project" 2544: 2098: 2079: 2065: 2057: 1759:"Fact Sheets | Bionic Vision Technologies" 191:. This type of device is implanted in the 170:Microsystem-based visual prosthesis (MIVP) 2017: 1915: 1874: 1665: 1409: 1368: 1358: 1317: 1254: 1210:. VisionCare Ophthalmic Technologies, Inc 1158: 1156: 1120: 1118: 1029:Sifferlin, Alexandra (19 February 2013). 1005: 657: 2045:Research Fact Sheet ~ Retinal Prostheses 1546:BioRegio STERN | Wirtschaft weiterdenken 1056: 1054: 1052: 2174:Carbon nanotube field-effect transistor 2132:Applications of artificial intelligence 1434:"Blind man 'excited' at retina implant" 553: 330:Photovoltaic retinal prosthesis (PRIMA) 91:geographic atrophy macular degeneration 2400:Differential technological development 1787:. London: Bloomsbury. pp. 276–83. 1292:Eberhart Zrenner; et al. (2010). 1270: 143:University of California San Francisco 883: 881: 7: 2293:Three-dimensional integrated circuit 964:Jonathan Fildes (16 February 2007). 683:The Journal of Comparative Neurology 147:University of California Los Angeles 2489:Future-oriented technology analysis 2152:Progress in artificial intelligence 1939:Collins, Francis (27 August 2019). 337:at Stanford University developed a 153:in acute patient investigations at 1716:Dianne Ashworth 12 months on, 2013 1298:Proceedings of the Royal Society B 1208:"Implantable Telescope Technology" 1177:10.1097/01.icu.0000193067.86627.a1 828:"Humayun faculty page at USC Keck" 174:Designed by Claude Veraart at the 14: 1619:"Photovoltaic Retinal Prosthesis" 163:University of Southern California 48:or bionic ear devices, a type of 2543: 1165:Current Opinion in Ophthalmology 966:"Trials for bionic eye implants" 798:10.1136/bjophthalmol-2013-303708 786:British Journal of Ophthalmology 761:. 27 August 2014. Archived from 575:10.1097/00002480-200001000-00002 471: 369: 361:Bionic Vision Technologies (BVT) 189:age-related macular degeneration 2189:Fourth-generation optical discs 1947:. National Institutes of Health 1031:"FDA approves first bionic eye" 931:Second Sight (9 January 2007). 887:Second Sight. 14 November 2014 864:"Second Sight official website" 596:Fodstad, H.; Hariz, M. (2007). 463:Intracortical visual prosthesis 307:Artificial silicon retina (ASR) 238:TĂĽbingen MPDA Project Alpha IMS 183:Implantable miniature telescope 2010:10.1523/JNEUROSCI.1168-19.2019 1917:10.1016/j.brainres.2015.08.038 1247:10.1002/14651858.CD011140.pub2 650:10.1523/jneurosci.5138-07.2008 139:Keck School of Medicine of USC 1: 2516:Technology in science fiction 1847:Journal of Neural Engineering 1568:"The Retinal Implant Project" 516:SUNY Downstate Medical Center 335:Daniel Palanker and his group 115:Second Sight Medical Products 1867:10.1088/1741-2560/6/3/035008 1411:10.1016/j.visres.2015.04.006 998:10.1016/j.ophtha.2011.09.028 900:Miriam Karmel (March 2012). 254:are far more efficient than 105:Technological considerations 1459:Fergus Walsh (3 May 2012). 416:The University of Melbourne 298:Harvard/MIT Retinal Implant 2618: 2521:Technology readiness level 2457:Technological unemployment 1785:The Eye: a natural history 1235:Cochrane Database Syst Rev 866:. 2-sight.com. 21 May 2015 448: 310: 231:Cochrane systematic review 130: 18: 2539: 2504:Technological singularity 2464:Technological convergence 1812:10.1109/tbme.2012.2214385 1139:10.1016/j.ajo.2004.01.030 602:Operative Neuromodulation 480:This section needs to be 378:This section needs to be 72:Biological considerations 36:, often referred to as a 2316:Brain–computer interface 2199:Holographic data storage 2050:19 February 2013 at the 1658:10.1038/nphoton.2012.104 1360:10.3389/fneur.2018.00144 1093:10.1586/17434440.2.6.657 604:. Springer. p. 11. 155:Johns Hopkins University 133:Argus retinal prosthesis 127:Argus retinal prosthesis 2469:Technological evolution 2442:Exploratory engineering 2194:3D optical data storage 2127:Artificial intelligence 1998:Journal of Neuroscience 349:23 October 2018 at the 311:For vision sensor, see 281:King's College Hospital 77:due to degeneration of 25:Craniofacial prosthesis 2479:Technology forecasting 2474:Technological paradigm 2447:Proactionary principle 2321:Electroencephalography 2288:Software-defined radio 1347:Frontiers in Neurology 1310:10.1098/rspb.2010.1747 1081:Expert Rev Med Devices 520:adeno-associated virus 320:retinal ganglion cells 248:retinal ganglion cells 2405:Disruptive innovation 2088:Emerging technologies 1516:www.retina-implant.de 695:10.1002/cne.902380108 512:Susana Martinez-Conde 457:primary visual cortex 176:University of Louvain 68:, and Charles LeRoy. 2452:Technological change 2395:Collingridge dilemma 2115:Ambient intelligence 431:retinitis pigmentosa 273:University of Oxford 260:retinitis pigmentosa 83:retinitis pigmentosa 2587:Implants (medicine) 2577:Blindness equipment 2509:Technology scouting 2484:Accelerating change 2137:Machine translation 1945:NIH Director's Blog 1859:2009JNEng...6c5008S 1650:2012NaPho...6..391M 912:on 15 February 2015 537:Bionic contact lens 2526:Technology roadmap 2162:Speech recognition 2147:Mobile translation 2120:Internet of things 542:Human echolocation 451:William H. Dobelle 151:proof of principle 2572:Artificial organs 2559: 2558: 2378: 2377: 2363:Visual prosthesis 2271:Optical computing 2004:(42): 8267–8274. 1304:(1711): 1489–97. 1206:Lipshitz, Isaac. 1066:The Body Electric 765:on 5 January 2015 730:fightingblindness 501: 500: 404:Bionics Institute 399: 398: 197:posterior chamber 62:Benjamin Franklin 50:neural prosthesis 34:visual prosthesis 21:Ocular prosthesis 2609: 2592:Neuroprosthetics 2547: 2546: 2494:Horizon scanning 2410:Ephemeralization 2343:Neuroprosthetics 2336:Neuroinformatics 2311:Artificial brain 2249:Racetrack memory 2184:Extended reality 2179:Cybermethodology 2099: 2081: 2074: 2067: 2058: 2032: 2031: 2021: 1989: 1980: 1979: 1977: 1975: 1963: 1957: 1956: 1954: 1952: 1936: 1930: 1929: 1919: 1895: 1889: 1888: 1878: 1838: 1832: 1831: 1795: 1789: 1788: 1780: 1774: 1773: 1771: 1769: 1755: 1749: 1748: 1747: 1745: 1733: 1727: 1726: 1725: 1723: 1711: 1705: 1704: 1702: 1700: 1686: 1680: 1679: 1669: 1638:Nature Photonics 1629: 1623: 1622: 1617:Palanker Group. 1614: 1608: 1607: 1605: 1603: 1592: 1583: 1582: 1580: 1578: 1572: 1566:Wyatt, J.L. Jr. 1563: 1557: 1556: 1554: 1552: 1538: 1532: 1531: 1529: 1527: 1522:on 5 August 2020 1518:. Archived from 1508: 1502: 1501: 1499: 1497: 1482: 1476: 1475: 1473: 1471: 1456: 1450: 1449: 1447: 1445: 1430: 1424: 1423: 1413: 1389: 1383: 1382: 1372: 1362: 1338: 1332: 1331: 1321: 1289: 1283: 1282: 1276: 1268: 1258: 1226: 1220: 1219: 1217: 1215: 1203: 1197: 1196: 1160: 1151: 1150: 1122: 1113: 1112: 1076: 1070: 1069: 1058: 1047: 1046: 1044: 1042: 1026: 1020: 1019: 1009: 976: 970: 969: 961: 955: 954: 952: 950: 944: 938:. Archived from 937: 928: 922: 921: 919: 917: 908:. Archived from 897: 891: 885: 876: 875: 873: 871: 860: 854: 853: 845: 839: 838: 836: 834: 824: 818: 817: 781: 775: 774: 772: 770: 749: 743: 742: 740: 738: 721: 715: 714: 678: 672: 671: 661: 629: 623: 622: 620: 618: 593: 587: 586: 558: 496: 493: 487: 475: 474: 467: 394: 391: 385: 373: 372: 365: 220:intraocular lens 216:cataract surgery 179:nerve directly. 122:Ongoing projects 66:Tiberius Cavallo 46:cochlear implant 2617: 2616: 2612: 2611: 2610: 2608: 2607: 2606: 2602:Medical devices 2562: 2561: 2560: 2555: 2535: 2374: 2370:Neurotechnology 2358:Retinal implant 2297: 2108: 2105: 2104:Information and 2090: 2085: 2052:Wayback Machine 2041: 2036: 2035: 1991: 1990: 1983: 1973: 1971: 1970:. FierceBiotech 1965: 1964: 1960: 1950: 1948: 1938: 1937: 1933: 1897: 1896: 1892: 1840: 1839: 1835: 1806:(11): 3255–62. 1797: 1796: 1792: 1782: 1781: 1777: 1767: 1765: 1757: 1756: 1752: 1743: 1741: 1735: 1734: 1730: 1721: 1719: 1713: 1712: 1708: 1698: 1696: 1688: 1687: 1683: 1631: 1630: 1626: 1616: 1615: 1611: 1601: 1599: 1594: 1593: 1586: 1576: 1574: 1570: 1565: 1564: 1560: 1550: 1548: 1540: 1539: 1535: 1525: 1523: 1510: 1509: 1505: 1495: 1493: 1484: 1483: 1479: 1469: 1467: 1458: 1457: 1453: 1443: 1441: 1432: 1431: 1427: 1398:Vision Research 1391: 1390: 1386: 1340: 1339: 1335: 1291: 1290: 1286: 1269: 1241:(5): CD011140. 1228: 1227: 1223: 1213: 1211: 1205: 1204: 1200: 1162: 1161: 1154: 1133:(6): 993–1001. 1127:Am J Ophthalmol 1124: 1123: 1116: 1078: 1077: 1073: 1060: 1059: 1050: 1040: 1038: 1028: 1027: 1023: 978: 977: 973: 963: 962: 958: 948: 946: 945:on 5 March 2023 942: 935: 930: 929: 925: 915: 913: 906:Eyenet Magazine 899: 898: 894: 886: 879: 869: 867: 862: 861: 857: 847: 846: 842: 832: 830: 826: 825: 821: 783: 782: 778: 768: 766: 751: 750: 746: 736: 734: 723: 722: 718: 680: 679: 675: 644:(17): 4446–56. 631: 630: 626: 616: 614: 612: 595: 594: 590: 560: 559: 555: 550: 528: 508:Stephen Macknik 497: 491: 488: 485: 476: 472: 465: 453: 447: 395: 389: 386: 383: 374: 370: 363: 351:Wayback Machine 332: 316: 309: 300: 269:Robert MacLaren 240: 203:or blind spot. 185: 172: 135: 129: 124: 107: 99:neuroplasticity 74: 28: 17: 12: 11: 5: 2615: 2613: 2605: 2604: 2599: 2594: 2589: 2584: 2579: 2574: 2564: 2563: 2557: 2556: 2554: 2553: 2540: 2537: 2536: 2534: 2533: 2528: 2523: 2518: 2513: 2512: 2511: 2506: 2501: 2496: 2491: 2486: 2476: 2471: 2466: 2461: 2460: 2459: 2449: 2444: 2439: 2438: 2437: 2432: 2427: 2422: 2412: 2407: 2402: 2397: 2392: 2386: 2384: 2380: 2379: 2376: 2375: 2373: 2372: 2367: 2366: 2365: 2360: 2355: 2350: 2340: 2339: 2338: 2333: 2326:Mind uploading 2323: 2318: 2313: 2307: 2305: 2299: 2298: 2296: 2295: 2290: 2285: 2284: 2283: 2273: 2268: 2267: 2266: 2261: 2256: 2251: 2246: 2241: 2236: 2231: 2226: 2221: 2216: 2208: 2203: 2202: 2201: 2196: 2186: 2181: 2176: 2171: 2166: 2165: 2164: 2159: 2154: 2149: 2144: 2142:Machine vision 2139: 2134: 2124: 2123: 2122: 2111: 2109: 2106:communications 2102: 2096: 2092: 2091: 2086: 2084: 2083: 2076: 2069: 2061: 2055: 2054: 2040: 2039:External links 2037: 2034: 2033: 1981: 1958: 1931: 1904:Brain Research 1890: 1833: 1790: 1775: 1750: 1728: 1706: 1681: 1624: 1609: 1584: 1558: 1533: 1503: 1477: 1451: 1425: 1384: 1333: 1284: 1221: 1198: 1152: 1114: 1071: 1048: 1021: 992:(4): 779–788. 971: 956: 923: 892: 877: 855: 840: 819: 792:(7): 852–856. 776: 744: 716: 673: 624: 610: 588: 552: 551: 549: 546: 545: 544: 539: 534: 527: 524: 499: 498: 479: 477: 470: 464: 461: 449:Main article: 446: 443: 429:Patients with 397: 396: 377: 375: 368: 362: 359: 355:Palanker group 331: 328: 313:Silicon retina 308: 305: 299: 296: 252:photoreceptors 239: 236: 184: 181: 171: 168: 159:Alfred E. Mann 131:Main article: 128: 125: 123: 120: 106: 103: 79:photoreceptors 73: 70: 15: 13: 10: 9: 6: 4: 3: 2: 2614: 2603: 2600: 2598: 2595: 2593: 2590: 2588: 2585: 2583: 2580: 2578: 2575: 2573: 2570: 2569: 2567: 2552: 2551: 2542: 2541: 2538: 2532: 2531:Transhumanism 2529: 2527: 2524: 2522: 2519: 2517: 2514: 2510: 2507: 2505: 2502: 2500: 2497: 2495: 2492: 2490: 2487: 2485: 2482: 2481: 2480: 2477: 2475: 2472: 2470: 2467: 2465: 2462: 2458: 2455: 2454: 2453: 2450: 2448: 2445: 2443: 2440: 2436: 2433: 2431: 2428: 2426: 2423: 2421: 2418: 2417: 2416: 2413: 2411: 2408: 2406: 2403: 2401: 2398: 2396: 2393: 2391: 2388: 2387: 2385: 2381: 2371: 2368: 2364: 2361: 2359: 2356: 2354: 2351: 2349: 2348:Brain implant 2346: 2345: 2344: 2341: 2337: 2334: 2332: 2331:Brain-reading 2329: 2328: 2327: 2324: 2322: 2319: 2317: 2314: 2312: 2309: 2308: 2306: 2304: 2300: 2294: 2291: 2289: 2286: 2282: 2281:Chipless RFID 2279: 2278: 2277: 2274: 2272: 2269: 2265: 2262: 2260: 2257: 2255: 2252: 2250: 2247: 2245: 2242: 2240: 2237: 2235: 2232: 2230: 2227: 2225: 2222: 2220: 2217: 2215: 2212: 2211: 2209: 2207: 2204: 2200: 2197: 2195: 2192: 2191: 2190: 2187: 2185: 2182: 2180: 2177: 2175: 2172: 2170: 2167: 2163: 2160: 2158: 2155: 2153: 2150: 2148: 2145: 2143: 2140: 2138: 2135: 2133: 2130: 2129: 2128: 2125: 2121: 2118: 2117: 2116: 2113: 2112: 2110: 2107: 2100: 2097: 2093: 2089: 2082: 2077: 2075: 2070: 2068: 2063: 2062: 2059: 2053: 2049: 2046: 2043: 2042: 2038: 2029: 2025: 2020: 2015: 2011: 2007: 2003: 1999: 1995: 1988: 1986: 1982: 1969: 1966:Hale, Conor. 1962: 1959: 1946: 1942: 1935: 1932: 1927: 1923: 1918: 1913: 1909: 1905: 1901: 1894: 1891: 1886: 1882: 1877: 1872: 1868: 1864: 1860: 1856: 1853:(3): 035008. 1852: 1848: 1844: 1837: 1834: 1829: 1825: 1821: 1817: 1813: 1809: 1805: 1801: 1794: 1791: 1786: 1779: 1776: 1764: 1763:bionicvis.com 1760: 1754: 1751: 1740: 1739: 1738:Channel 9 BVT 1732: 1729: 1718: 1717: 1710: 1707: 1695: 1691: 1685: 1682: 1677: 1673: 1668: 1663: 1659: 1655: 1651: 1647: 1644:(6): 391–97. 1643: 1639: 1635: 1628: 1625: 1620: 1613: 1610: 1598:. Optobionics 1597: 1596:"ASR® Device" 1591: 1589: 1585: 1569: 1562: 1559: 1547: 1543: 1537: 1534: 1521: 1517: 1513: 1507: 1504: 1491: 1487: 1481: 1478: 1466: 1462: 1455: 1452: 1439: 1435: 1429: 1426: 1421: 1417: 1412: 1407: 1403: 1399: 1395: 1388: 1385: 1380: 1376: 1371: 1366: 1361: 1356: 1352: 1348: 1344: 1337: 1334: 1329: 1325: 1320: 1315: 1311: 1307: 1303: 1299: 1295: 1288: 1285: 1280: 1274: 1266: 1262: 1257: 1252: 1248: 1244: 1240: 1236: 1232: 1225: 1222: 1209: 1202: 1199: 1194: 1190: 1186: 1182: 1178: 1174: 1170: 1166: 1159: 1157: 1153: 1148: 1144: 1140: 1136: 1132: 1128: 1121: 1119: 1115: 1110: 1106: 1102: 1098: 1094: 1090: 1087:(6): 657–65. 1086: 1082: 1075: 1072: 1067: 1063: 1057: 1055: 1053: 1049: 1036: 1032: 1025: 1022: 1017: 1013: 1008: 1003: 999: 995: 991: 987: 986:Ophthalmology 983: 975: 972: 967: 960: 957: 941: 934: 927: 924: 911: 907: 903: 896: 893: 890: 884: 882: 878: 865: 859: 856: 851: 844: 841: 829: 823: 820: 815: 811: 807: 803: 799: 795: 791: 787: 780: 777: 764: 760: 759: 754: 748: 745: 733:. August 2016 732: 731: 726: 720: 717: 712: 708: 704: 700: 696: 692: 689:(1): 92–100. 688: 684: 677: 674: 669: 665: 660: 655: 651: 647: 643: 639: 635: 628: 625: 613: 611:9783211330791 607: 603: 599: 592: 589: 584: 580: 576: 572: 568: 564: 563:ASAIO Journal 557: 554: 547: 543: 540: 538: 535: 533: 530: 529: 525: 523: 521: 517: 513: 509: 505: 495: 483: 478: 469: 468: 462: 460: 458: 452: 444: 442: 439: 435: 432: 427: 423: 419: 417: 413: 409: 405: 393: 381: 376: 367: 366: 360: 358: 356: 352: 348: 345: 340: 336: 329: 327: 323: 321: 314: 306: 304: 297: 295: 292: 290: 286: 282: 278: 274: 270: 265: 264:microsaccades 261: 257: 253: 250:. As natural 249: 245: 237: 235: 232: 227: 225: 221: 217: 213: 209: 204: 202: 198: 194: 190: 182: 180: 177: 169: 167: 164: 160: 156: 152: 148: 144: 140: 134: 126: 121: 119: 116: 112: 104: 102: 100: 96: 95:optical nerve 92: 88: 87:choroideremia 84: 80: 71: 69: 67: 63: 59: 58:visual cortex 55: 51: 47: 43: 39: 35: 30: 26: 22: 2548: 2435:Robot ethics 2362: 2303:Neuroscience 2157:Semantic Web 2001: 1997: 1972:. Retrieved 1961: 1949:. Retrieved 1944: 1934: 1907: 1903: 1893: 1850: 1846: 1836: 1803: 1799: 1793: 1784: 1778: 1766:. Retrieved 1762: 1753: 1742:, retrieved 1737: 1731: 1720:, retrieved 1715: 1709: 1697:. Retrieved 1694:Bionicvision 1693: 1684: 1641: 1637: 1627: 1612: 1600:. Retrieved 1575:. Retrieved 1561: 1549:. Retrieved 1545: 1536: 1524:. Retrieved 1520:the original 1515: 1506: 1494:. Retrieved 1489: 1480: 1468:. Retrieved 1464: 1454: 1442:. Retrieved 1440:. 3 May 2012 1437: 1428: 1401: 1397: 1387: 1353:(144): 144. 1350: 1346: 1336: 1301: 1297: 1287: 1273:cite journal 1238: 1234: 1224: 1212:. Retrieved 1201: 1171:(1): 94–98. 1168: 1164: 1130: 1126: 1084: 1080: 1074: 1065: 1039:. Retrieved 1034: 1024: 989: 985: 974: 959: 947:. Retrieved 940:the original 926: 914:. Retrieved 910:the original 905: 895: 868:. Retrieved 858: 843: 831:. Retrieved 822: 789: 785: 779: 767:. Retrieved 763:the original 756: 747: 735:. Retrieved 728: 719: 686: 682: 676: 641: 637: 627: 615:. Retrieved 601: 591: 566: 562: 556: 506: 502: 492:January 2019 489: 481: 454: 440: 436: 428: 424: 420: 400: 390:January 2019 387: 379: 339:photovoltaic 333: 324: 317: 301: 293: 241: 228: 205: 186: 173: 136: 108: 75: 37: 33: 31: 29: 2597:Prosthetics 2499:Moore's law 2430:Neuroethics 2425:Cyberethics 2169:Atomtronics 1974:11 November 1951:10 November 1910:: 208–224. 1690:"About BVA" 1526:10 February 1404:: 119–131. 1062:James Geary 1041:22 February 949:15 February 916:15 February 833:15 February 445:Dobelle Eye 408:UNSW Sydney 283:in London. 277:Tim Jackson 256:photodiodes 226:to insert. 111:degradation 2566:Categories 2390:Automation 1068:. Phoenix. 638:J Neurosci 569:(1): 3–9. 548:References 410:, Data 61 285:David Wong 38:bionic eye 2420:Bioethics 2353:Exocortex 2229:Millipede 769:5 January 532:Brainport 289:Hong Kong 42:blindness 2264:UltraRAM 2048:Archived 2028:31619496 1926:26348986 1885:19458397 1820:22922687 1768:9 August 1744:9 August 1722:9 August 1699:9 August 1676:23049619 1602:20 March 1577:20 March 1465:BBC News 1438:BBC News 1420:25906684 1379:29593642 1328:21047851 1265:29847689 1214:20 March 1193:28740344 1185:16436930 1147:15183782 1109:40168891 1101:16293092 1064:(2002). 1016:22244176 814:25193594 806:24403565 737:5 August 711:42902826 668:18434523 583:10667705 526:See also 347:Archived 2210:Memory 2019:6794937 1876:3902177 1855:Bibcode 1828:5412047 1667:3462820 1646:Bibcode 1551:30 June 1370:5859063 1319:3081743 1256:6022289 1007:3319859 870:12 June 758:Reuters 703:4044906 659:2681084 617:21 July 482:updated 380:updated 271:at the 218:as the 201:scotoma 56:or the 2415:Ethics 2383:Topics 2095:Fields 2026:  2016:  1924:  1883:  1873:  1826:  1818:  1674:  1664:  1496:23 May 1490:HKU.hk 1470:23 May 1444:23 May 1418:  1377:  1367:  1326:  1316:  1263:  1253:  1191:  1183:  1145:  1107:  1099:  1037:. TIME 1014:  1004:  968:. BBC. 812:  804:  709:  701:  666:  656:  608:  581:  244:retina 224:cornea 212:macula 54:retina 2259:SONOS 2219:ECRAM 2214:CBRAM 2206:GPGPU 1824:S2CID 1571:(PDF) 1189:S2CID 1105:S2CID 943:(PDF) 936:(PDF) 810:S2CID 707:S2CID 412:CSRIO 344:PRIMA 2550:List 2276:RFID 2254:RRAM 2244:PRAM 2239:NRAM 2234:MRAM 2224:FRAM 2024:PMID 1976:2019 1953:2019 1922:PMID 1908:1630 1881:PMID 1816:PMID 1770:2019 1746:2019 1724:2019 1701:2019 1672:PMID 1604:2011 1579:2011 1553:2024 1528:2020 1498:2016 1472:2016 1446:2016 1416:PMID 1375:PMID 1324:PMID 1279:link 1261:PMID 1239:2018 1216:2011 1181:PMID 1143:PMID 1097:PMID 1043:2013 1012:PMID 951:2015 918:2015 872:2018 835:2015 802:PMID 771:2015 739:2021 699:PMID 664:PMID 619:2013 606:ISBN 579:PMID 510:and 275:and 208:iris 23:and 2582:Eye 2014:PMC 2006:doi 1912:doi 1871:PMC 1863:doi 1808:doi 1662:PMC 1654:doi 1406:doi 1402:118 1365:PMC 1355:doi 1314:PMC 1306:doi 1302:278 1251:PMC 1243:doi 1173:doi 1135:doi 1131:137 1089:doi 1035:CNN 1002:PMC 994:doi 990:119 794:doi 691:doi 687:238 654:PMC 646:doi 571:doi 514:at 279:at 195:'s 193:eye 2568:: 2022:. 2012:. 2002:16 2000:. 1996:. 1984:^ 1943:. 1920:. 1906:. 1902:. 1879:. 1869:. 1861:. 1849:. 1845:. 1822:. 1814:. 1804:59 1802:. 1761:. 1692:. 1670:. 1660:. 1652:. 1640:. 1636:. 1587:^ 1544:. 1514:. 1488:. 1463:. 1436:. 1414:. 1400:. 1396:. 1373:. 1363:. 1349:. 1345:. 1322:. 1312:. 1300:. 1296:. 1275:}} 1271:{{ 1259:. 1249:. 1237:. 1233:. 1187:. 1179:. 1169:17 1167:. 1155:^ 1141:. 1129:. 1117:^ 1103:. 1095:. 1083:. 1051:^ 1033:. 1010:. 1000:. 988:. 984:. 904:. 880:^ 808:. 800:. 790:98 788:. 755:. 727:. 705:. 697:. 685:. 662:. 652:. 642:28 640:. 636:. 577:. 567:46 565:. 406:, 291:. 229:A 89:, 85:, 64:, 32:A 2080:e 2073:t 2066:v 2030:. 2008:: 1978:. 1955:. 1928:. 1914:: 1887:. 1865:: 1857:: 1851:6 1830:. 1810:: 1772:. 1703:. 1678:. 1656:: 1648:: 1642:6 1621:. 1606:. 1581:. 1555:. 1530:. 1500:. 1474:. 1448:. 1422:. 1408:: 1381:. 1357:: 1351:9 1330:. 1308:: 1281:) 1267:. 1245:: 1218:. 1195:. 1175:: 1149:. 1137:: 1111:. 1091:: 1085:2 1045:. 1018:. 996:: 953:. 920:. 874:. 852:. 837:. 816:. 796:: 773:. 741:. 713:. 693:: 670:. 648:: 621:. 585:. 573:: 494:) 490:( 392:) 388:( 315:. 81:( 27:.

Index

Ocular prosthesis
Craniofacial prosthesis
blindness
cochlear implant
neural prosthesis
retina
visual cortex
Benjamin Franklin
Tiberius Cavallo
photoreceptors
retinitis pigmentosa
choroideremia
geographic atrophy macular degeneration
optical nerve
neuroplasticity
degradation
Second Sight Medical Products
Argus retinal prosthesis
Keck School of Medicine of USC
University of California San Francisco
University of California Los Angeles
proof of principle
Johns Hopkins University
Alfred E. Mann
University of Southern California
University of Louvain
age-related macular degeneration
eye
posterior chamber
scotoma

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑