Knowledge

Voronoi formula

Source 📝

633:. These two bounds are related, as we shall see, and come from fairly elementary considerations. In the series of papers Voronoy developed geometric and analytic methods to improve both Dirichlet’s and Gauss’ bound. Most importantly in retrospect, he generalized the formula by allowing weighted sums, at the expense of introducing more general integral operations on f than the 59:
To Voronoy and his contemporaries, the formula appeared tailor-made to evaluate certain finite sums. That seemed significant because several important questions in number theory involve finite sums of arithmetic quantities. In this connection, let us mention two classical examples,
846: 362: 219: 486: 631: 550: 939:(1904). Sur une fonction transcendente et ses applications à la sommation de quelques séries. In Annales Scientifiques de l'École Normale Supérieure (Vol. 21, pp. 207–267). 878: 579: 242: 702: 254: 933:
Miller, S. D., & Schmid, W. (2006). Automorphic distributions, L-functions, and Voronoi summation for GL(3). Annals of mathematics, 423–488.
90: 377: 43:. The Voronoi (summation) formula for GL(2) has long been a standard tool for studying analytic properties of automorphic forms and their 957: 61: 47:-functions. There have been numerous results coming out the Voronoi formula on GL(2). The concept is named after 952: 36: 584: 502: 881: 32: 65: 245: 854: 555: 634: 40: 227: 923: 893: 28: 650: 841:{\displaystyle \sum _{n}a(n)e(an/c)\omega (n)=\sum _{n}a(n)e(-{\bar {a}}n/c)\Omega (n),} 936: 48: 24: 946: 654: 81: 357:{\displaystyle r_{2}(n)=\#\{(x,y)\in \mathbb {Z} ^{2}\mid x^{2}+y^{2}=n\},} 214:{\displaystyle D(X)=\sum _{n=1}^{X}d(n)-X\log X-(2\gamma -1)X=O(X^{1/2})} 927: 914:
Good, Anton (1984), "Cusp forms and eigenfunctions of the Laplacian",
248:≈ 0.57721566. Gauss’ circle problem concerns the average size of 481:{\displaystyle \Delta (X)=\sum _{n=1}^{X}r_{2}(n)-\pi X=O(X^{1/2}).} 368: 692:
be a well-behaved test function. The Voronoi formula for
76:), the number of positive divisors of an integer  857: 705: 587: 558: 505: 380: 257: 230: 93: 872: 840: 625: 573: 544: 491:Each problem has a geometric interpretation, with 480: 356: 236: 213: 8: 620: 588: 539: 506: 348: 283: 859: 858: 856: 812: 798: 797: 770: 740: 710: 704: 608: 595: 586: 557: 504: 462: 458: 421: 411: 400: 379: 336: 323: 310: 306: 305: 262: 256: 229: 198: 194: 124: 113: 92: 16:Mathematical formula in harmonic analysis 499:) counting lattice points in the region 35:on either side. It can be regarded as a 626:{\displaystyle \{x^{2}+y^{2}\leq X\}} 545:{\displaystyle \{x,y>0,xy\leq X\}} 7: 901: 68:. The former estimates the size of 31:, with the coefficients twisted by 823: 559: 381: 280: 14: 672:) its Fourier coefficients. Let 864: 832: 826: 820: 803: 791: 785: 779: 760: 754: 748: 731: 725: 719: 568: 562: 472: 451: 433: 427: 390: 384: 298: 286: 274: 268: 208: 187: 175: 160: 139: 133: 103: 97: 1: 892:and Ω is a certain integral 581:lattice points in the disc 62:Dirichlet's divisor problem 974: 873:{\displaystyle {\bar {a}}} 574:{\displaystyle \Delta (X)} 37:Poisson summation formula 23:is an equality involving 237:{\displaystyle \gamma } 958:Analytic number theory 882:multiplicative inverse 874: 842: 627: 575: 546: 482: 416: 358: 238: 215: 129: 916:Mathematische Annalen 875: 843: 628: 576: 547: 483: 396: 359: 239: 216: 109: 55:Classical application 855: 703: 585: 556: 503: 378: 255: 228: 91: 66:Gauss circle problem 25:Fourier coefficients 33:additive characters 928:10.1007/bf01451932 870: 838: 775: 715: 680:be integers with ( 641:Modern formulation 623: 571: 542: 478: 371:gave the estimate 354: 234: 211: 41:non-abelian groups 19:In mathematics, a 953:Automorphic forms 867: 806: 766: 706: 635:Fourier transform 29:automorphic forms 965: 930: 894:Hankel transform 879: 877: 876: 871: 869: 868: 860: 847: 845: 844: 839: 816: 808: 807: 799: 774: 744: 714: 632: 630: 629: 624: 613: 612: 600: 599: 580: 578: 577: 572: 551: 549: 548: 543: 487: 485: 484: 479: 471: 470: 466: 426: 425: 415: 410: 363: 361: 360: 355: 341: 340: 328: 327: 315: 314: 309: 267: 266: 246:Euler's constant 243: 241: 240: 235: 220: 218: 217: 212: 207: 206: 202: 128: 123: 973: 972: 968: 967: 966: 964: 963: 962: 943: 942: 913: 910: 853: 852: 701: 700: 651:Maass cusp form 643: 604: 591: 583: 582: 554: 553: 501: 500: 454: 417: 376: 375: 332: 319: 304: 258: 253: 252: 226: 225: 190: 89: 88: 57: 21:Voronoi formula 17: 12: 11: 5: 971: 969: 961: 960: 955: 945: 944: 941: 940: 934: 931: 922:(4): 523–548, 909: 906: 866: 863: 849: 848: 837: 834: 831: 828: 825: 822: 819: 815: 811: 805: 802: 796: 793: 790: 787: 784: 781: 778: 773: 769: 765: 762: 759: 756: 753: 750: 747: 743: 739: 736: 733: 730: 727: 724: 721: 718: 713: 709: 642: 639: 622: 619: 616: 611: 607: 603: 598: 594: 590: 570: 567: 564: 561: 541: 538: 535: 532: 529: 526: 523: 520: 517: 514: 511: 508: 489: 488: 477: 474: 469: 465: 461: 457: 453: 450: 447: 444: 441: 438: 435: 432: 429: 424: 420: 414: 409: 406: 403: 399: 395: 392: 389: 386: 383: 365: 364: 353: 350: 347: 344: 339: 335: 331: 326: 322: 318: 313: 308: 303: 300: 297: 294: 291: 288: 285: 282: 279: 276: 273: 270: 265: 261: 233: 222: 221: 210: 205: 201: 197: 193: 189: 186: 183: 180: 177: 174: 171: 168: 165: 162: 159: 156: 153: 150: 147: 144: 141: 138: 135: 132: 127: 122: 119: 116: 112: 108: 105: 102: 99: 96: 56: 53: 49:Georgy Voronoy 15: 13: 10: 9: 6: 4: 3: 2: 970: 959: 956: 954: 951: 950: 948: 938: 935: 932: 929: 925: 921: 917: 912: 911: 907: 905: 903: 899: 895: 891: 887: 883: 861: 835: 829: 817: 813: 809: 800: 794: 788: 782: 776: 771: 767: 763: 757: 751: 745: 741: 737: 734: 728: 722: 716: 711: 707: 699: 698: 697: 695: 691: 687: 683: 679: 675: 671: 667: 663: 659: 656: 655:modular group 652: 648: 640: 638: 636: 617: 614: 609: 605: 601: 596: 592: 565: 536: 533: 530: 527: 524: 521: 518: 515: 512: 509: 498: 494: 475: 467: 463: 459: 455: 448: 445: 442: 439: 436: 430: 422: 418: 412: 407: 404: 401: 397: 393: 387: 374: 373: 372: 370: 351: 345: 342: 337: 333: 329: 324: 320: 316: 311: 301: 295: 292: 289: 277: 271: 263: 259: 251: 250: 249: 247: 231: 203: 199: 195: 191: 184: 181: 178: 172: 169: 166: 163: 157: 154: 151: 148: 145: 142: 136: 130: 125: 120: 117: 114: 110: 106: 100: 94: 87: 86: 85: 83: 79: 75: 71: 67: 63: 54: 52: 50: 46: 42: 38: 34: 30: 26: 22: 919: 915: 897: 889: 888:modulo  885: 850: 693: 689: 685: 681: 677: 673: 669: 665: 661: 657: 646: 644: 496: 492: 490: 366: 223: 77: 73: 69: 58: 44: 20: 18: 937:Voronoï, G. 902:Good (1984) 688:) = 1. Let 947:Categories 908:References 367:for which 865:¯ 824:Ω 804:¯ 795:− 768:∑ 752:ω 708:∑ 615:≤ 560:Δ 534:≤ 440:π 437:− 398:∑ 382:Δ 317:∣ 302:∈ 281:# 232:γ 170:− 167:γ 158:− 152:⁡ 143:− 111:∑ 82:Dirichlet 896:of  653:for the 64:and the 900:. (see 696:states 84:proved 851:where 664:) and 552:, and 224:where 880:is a 649:be a 369:Gauss 645:Let 519:> 39:for 924:doi 920:255 884:of 660:(2, 658:PSL 244:is 149:log 27:of 949:: 918:, 904:) 637:. 80:. 51:. 926:: 898:ω 890:c 886:a 862:a 836:, 833:) 830:n 827:( 821:) 818:c 814:/ 810:n 801:a 792:( 789:e 786:) 783:n 780:( 777:a 772:n 764:= 761:) 758:n 755:( 749:) 746:c 742:/ 738:n 735:a 732:( 729:e 726:) 723:n 720:( 717:a 712:n 694:ƒ 690:ω 686:c 684:, 682:a 678:c 676:, 674:a 670:n 668:( 666:a 662:Z 647:ƒ 621:} 618:X 610:2 606:y 602:+ 597:2 593:x 589:{ 569:) 566:X 563:( 540:} 537:X 531:y 528:x 525:, 522:0 516:y 513:, 510:x 507:{ 497:X 495:( 493:D 476:. 473:) 468:2 464:/ 460:1 456:X 452:( 449:O 446:= 443:X 434:) 431:n 428:( 423:2 419:r 413:X 408:1 405:= 402:n 394:= 391:) 388:X 385:( 352:, 349:} 346:n 343:= 338:2 334:y 330:+ 325:2 321:x 312:2 307:Z 299:) 296:y 293:, 290:x 287:( 284:{ 278:= 275:) 272:n 269:( 264:2 260:r 209:) 204:2 200:/ 196:1 192:X 188:( 185:O 182:= 179:X 176:) 173:1 164:2 161:( 155:X 146:X 140:) 137:n 134:( 131:d 126:X 121:1 118:= 115:n 107:= 104:) 101:X 98:( 95:D 78:n 74:n 72:( 70:d 45:L

Index

Fourier coefficients
automorphic forms
additive characters
Poisson summation formula
non-abelian groups
Georgy Voronoy
Dirichlet's divisor problem
Gauss circle problem
Dirichlet
Euler's constant
Gauss
Fourier transform
Maass cusp form
modular group
multiplicative inverse
Hankel transform
Good (1984)
doi
10.1007/bf01451932
Voronoï, G.
Categories
Automorphic forms
Analytic number theory

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.