Knowledge (XXG)

Vortex

Source 📝

1956: 1734: 1630:; the funnel of a tornado is an example. When a vortex line ends at a boundary surface, the reduced pressure may also draw matter from that surface into the core. For example, a dust devil is a column of dust picked up by the core of an air vortex attached to the ground. A vortex that ends at the free surface of a body of water (like the whirlpool that often forms over a bathtub drain) may draw a column of air down the core. The forward vortex extending from a jet engine of a parked airplane can suck water and small stones into the core and then into the engine. 1332: 1125: 1517: 213: 1485:, a vortex line cannot start or end in the fluid – except momentarily, in non-steady flow, while the vortex is forming or dissipating. In general, vortex lines (in particular, the axis line) are either closed loops or end at the boundary of the fluid. A whirlpool is an example of the latter, namely a vortex in a body of water whose axis ends at the free surface. A vortex tube whose vortex lines are all closed will be a closed 1112: 47: 767: 1722: 67: 59: 1315:
a cylinder at the core). In free space there is no energy input at the core, and thus the compact vorticity held in the core will naturally diffuse outwards, converting the core to a gradually-slowing and gradually-growing rigid-body flow, surrounded by the original irrotational flow. Such a decaying irrotational vortex has an exact solution of the viscous
829: 489: 1507:
When vortices are made visible by smoke or ink trails, they may seem to have spiral pathlines or streamlines. However, this appearance is often an illusion and the fluid particles are moving in closed paths. The spiral streaks that are taken to be streamlines are in fact clouds of the marker fluid
1314:
In a viscous fluid, irrotational flow contains viscous dissipation everywhere, yet there are no net viscous forces, only viscous stresses. Due to the dissipation, this means that sustaining an irrotational viscous vortex requires continuous input of work at the core (for example, by steadily turning
1435:
If the diameter or thickness of the vessel or fluid is less than the boundary layer thickness then the boundary layer will not separate and vortices will not form. However, when the boundary layer does grow beyond this critical boundary layer thickness then separation will occur which will generate
240:
rotary motion at a point in the fluid, as would be perceived by an observer that moves along with it. Conceptually, the vorticity could be observed by placing a tiny rough ball at the point in question, free to move with the fluid, and observing how it rotates about its center. The direction of the
1342:
A rotational vortex – a vortex that rotates in the same way as a rigid body – cannot exist indefinitely in that state except through the application of some extra force, that is not generated by the fluid motion itself. It has non-zero vorticity everywhere outside the core. Rotational vortices are
1262:
The ideal irrotational vortex flow in free space is not physically realizable, since it would imply that the particle speed (and hence the force needed to keep particles in their circular paths) would grow without bound as one approaches the vortex axis. Indeed, in real vortices there is always a
149:
within the fluid tends to organise the flow into a collection of irrotational vortices, possibly superimposed to larger-scale flows, including larger-scale vortices. Once formed, vortices can move, stretch, twist, and interact in complex ways. A moving vortex carries some angular and linear
479:
from the axis – a tiny ball carried by the flow would also rotate about its center as if it were part of that rigid body. In such a flow, the vorticity is the same everywhere: its direction is parallel to the rotation axis, and its magnitude is equal to twice the uniform angular velocity
1646:. A vortex flow might also be combined with a radial or axial flow pattern. In that case the streamlines and pathlines are not closed curves but spirals or helices, respectively. This is the case in tornadoes and in drain whirlpools. A vortex with helical streamlines is said to be 1107:{\displaystyle {\begin{aligned}{\vec {\Omega }}&=\left(0,0,\alpha r^{-2}\right),\quad {\vec {r}}=(x,y,0),\\{\vec {u}}&={\vec {\Omega }}\times {\vec {r}}=\left(-\alpha yr^{-2},\alpha xr^{-2},0\right),\\{\vec {\omega }}&=\nabla \times {\vec {u}}=0.\end{aligned}}} 1653:
As long as the effects of viscosity and diffusion are negligible, the fluid in a moving vortex is carried along with it. In particular, the fluid in the core (and matter trapped by it) tends to remain in the core as the vortex moves about. This is a consequence of
1756:, the acceleration of electric fluid in a particular direction creates a positive vortex of magnetic fluid. This in turn creates around itself a corresponding negative vortex of electric fluid. Exact solutions to classical nonlinear magnetic equations include the 1600:
is the limiting pressure infinitely far from the axis. This formula provides another constraint for the extent of the core, since the pressure cannot be negative. The free surface (if present) dips sharply near the axis line, with depth inversely proportional to
762:{\displaystyle {\begin{aligned}{\vec {\Omega }}&=(0,0,\Omega ),\quad {\vec {r}}=(x,y,0),\\{\vec {u}}&={\vec {\Omega }}\times {\vec {r}}=(-\Omega y,\Omega x,0),\\{\vec {\omega }}&=\nabla \times {\vec {u}}=(0,0,2\Omega )=2{\vec {\Omega }}.\end{aligned}}} 775: 459: 74:
is demonstrated in this photo, as winds from the west blow onto clouds that have formed over the mountains in the desert. This phenomenon observed from ground level is extremely rare, as most cloud-related Kármán vortex street activity is viewed from
187:
For an example, if a water bucket is rotated or spun constantly, it will rotate around an invisible line called the axis line. The rotation moves around in circles. In this example the rotation of the bucket creates extra force.
1712:
and this dissipates energy very slowly from the core of the vortex. It is only through dissipation of a vortex due to viscosity that a vortex line can end in the fluid, rather than at the boundary of the fluid.
198:
When two or more vortices are close together they can merge to make a vortex. Vortices also hold energy in its rotation of the fluid. If the energy is never removed, it would consist of circular motion forever.
1873:, and hurricanes. These vortices are often driven by temperature and humidity variations with altitude. The sense of rotation of hurricanes is influenced by the Earth's rotation. Another example is the 1666:) can transport mass, energy and momentum over considerable distances compared to their size, with surprisingly little dispersion. This effect is demonstrated by smoke rings and exploited in vortex ring 1257: 1207: 1708:
Vortices contain substantial energy in the circular motion of the fluid. In an ideal fluid this energy can never be dissipated and the vortex would persist forever. However, real fluids exhibit
834: 494: 321: 791:
from the axis, then the imaginary test ball would not rotate over itself; it would maintain the same orientation while moving in a circle around the vortex axis. In this case the vorticity
1492:
A newly created vortex will promptly extend and bend so as to eliminate any open-ended vortex lines. For example, when an airplane engine is started, a vortex usually forms ahead of each
1443:(i.e. a pressure that develops downstream). This is present in curved surfaces and general geometry changes like a convex surface. A unique example of severe geometric changes is at the 191:
The reason that the vortices can change shape is the fact that they have open particle paths. This can create a moving vortex. Examples of this fact are the shapes of tornadoes and
158:
In the dynamics of fluid, a vortex is fluid that revolves around the axis line. This fluid might be curved or straight. Vortices form from stirred fluids: they might be observed in
376: 1474:(a line that is everywhere tangent to the vorticity vector) is roughly parallel to the axis. A surface that is everywhere tangent to both flow velocity and vorticity is called a 181:. Vortices can otherwise be known as a circular motion of a liquid. In the cases of the absence of forces, the liquid settles. This makes the water stay still instead of moving. 1294: 818: 437: 408: 280: 410:
must not be confused with the angular velocity vector of that portion of the fluid with respect to the external environment or to any fixed axis. In a vortex, in particular,
142:
are used to characterise vortices. In most vortices, the fluid flow velocity is greatest next to its axis and decreases in inverse proportion to the distance from the axis.
1430: 341: 1478:. In general, vortex tubes are nested around the axis of rotation. The axis itself is one of the vortex lines, a limiting case of a vortex tube with zero diameter. 1638:
Vortices need not be steady-state features; they can move and change shape. In a moving vortex, the particle paths are not closed, but are open, loopy curves like
184:
When they are created, vortices can move, stretch, twist and interact in complicated ways. When a vortex is moving, sometimes, it can affect an angular position.
99:) is a region in a fluid in which the flow revolves around an axis line, which may be straight or curved. Vortices form in stirred fluids, and may be observed in 1470:
In a stationary vortex, the typical streamline (a line that is everywhere tangent to the flow velocity vector) is a closed loop surrounding the axis; and each
1677:
Two or more vortices that are approximately parallel and circulating in the same direction will attract and eventually merge to form a single vortex, whose
1705:
blades. On the other hand, two parallel vortices with opposite circulations (such as the two wingtip vortices of an airplane) tend to remain separate.
2182: 1955: 2493: 2474: 2398: 2245: 1350:
about its vertical axis, the water will eventually rotate in rigid-body fashion. The particles will then move along circles, with velocity
1129: 2559: 1504:. One end of the vortex line is attached to the engine, while the other end usually stretches out and bends until it reaches the ground. 1136:
In the absence of external forces, a vortex usually evolves fairly quickly toward the irrotational flow pattern, where the flow velocity
2455: 2056: 1769: 1508:
that originally spanned several vortex tubes and were stretched into spiral shapes by the non-uniform flow velocity distribution.
1388:
which can occur when a fluid moves over a surface and experiences a rapid acceleration from the fluid velocity to zero due to the
1815:
can be explained in large part by the formation of vortices in the surrounding fluid that carry away energy from the moving body.
1733: 2549: 2282: 1877:, a persistent, large-scale cyclone centered near the Earth's poles, in the middle and upper troposphere and the stratosphere. 1532:
pressure) that is lowest in the core region, closest to the axis, and increases as one moves away from it, in accordance with
1212: 1162: 2505:"The effect of long-lived vortical circulation on the dynamics of dust particles in the mid-plane of a protoplanetary disc" 1655: 2544: 1761: 1678: 1152: 289: 139: 1536:. One can say that it is the gradient of this pressure that forces the fluid to follow a curved path around the axis. 1316: 1726: 1562:
In an irrotational vortex flow with constant fluid density and cylindrical symmetry, the dynamic pressure varies as
1458:
The velocity streamlines are immediately deflected and decelerated so that the boundary layer separates and forms a
2424: 2050: 2027: 1737: 71: 1757: 1385: 241:
vorticity vector is defined to be the direction of the axis of rotation of this imaginary ball (according to the
1809:, and other airfoils can be explained by the creation of a vortex superimposed on the flow of air past the wing. 2137: 1940: 1533: 1454:
Another form of vortex formation on a boundary is when fluid flows perpendicularly into a wall and creates a
1159:, for any contour that does enclose the axis once. The tangential component of the particle velocity is then 224:
visually demonstrates the vortex created in the atmosphere (gas fluid medium) by the passage of the aircraft.
2595: 2021: 1647: 1482: 1263:
core region surrounding the axis where the particle velocity stops increasing and then decreases to zero as
39: 32: 2190: 1369:
in the water, directed inwards, that prevents transition of the rigid-body flow to the irrotational state.
1616: 1331: 350: 1320: 2590: 2074: 2009: – Swirling of a fluid and the reverse current created when the fluid is in a turbulent flow regime 2006: 1753: 1689:
will create a sheet of small vortices at its trailing edge. These small vortices merge to form a single
1858: 1516: 1400:) which is referred to as the wall shear rate. The thickness of this boundary layer is proportional to 1124: 1270: 794: 413: 384: 256: 2516: 2343: 2291: 1985: 2000: 1991: 1909: 1451:
where the fluid flow deceleration, and therefore boundary layer and vortex formation, is located.
1365:
In this situation, the rigid rotating enclosure provides an extra force, namely an extra pressure
2430:(NASA contractor report NASA CR-646). Washington: National Aeronautics and Space Administration. 1970: 1905: 1128:
Pathlines of fluid particles around the axis (dashed line) of an ideal irrotational vortex. (See
135: 1403: 439:
may be opposite to the mean angular velocity vector of the fluid relative to the vortex's axis.
1155:
is zero along any closed contour that does not enclose the vortex axis; and has a fixed value,
2585: 2580: 2489: 2470: 2451: 2431: 2394: 2359: 2241: 2131: 1794: 1765: 1663: 1627: 1612: 1440: 1389: 233: 326: 2524: 2443: 2386: 2351: 2032: 1976: 1839: 1812: 1741: 1694: 1690: 1448: 246: 217: 192: 112: 2334:
Sirakov, B. T.; Greitzer, E. M.; Tan, C. S. (2005). "A note on irrotational viscous flow".
2270:. IUTAMim Symposium on Tubes, Sheets and Singularities in Fluid Dynamics. Zakopane, Poland. 1384:
the local rotation rate of fluid particles. They can be formed via the phenomenon known as
212: 2125: 2119: 2083: 1893: 1671: 1667: 283: 242: 2520: 2347: 1209:. The angular momentum per unit mass relative to the vortex axis is therefore constant, 451:
of the particles (and, therefore, the vorticity) in a vortex may vary with the distance
2567:(MIT) – Study of flows found in nature and part of the Department of Ocean Engineering. 2378: 2146: – Pseudovector field describing the local rotation of a continuum near some point 2068: 2062: 1961: 1930: 1885: 1798: 1393: 1297: 344: 250: 178: 108: 80: 2574: 2529: 2504: 2284:
Geostrophic Turbulence: The Macroturbulence of the Atmosphere and Ocean Lecture Notes
2262: 2110: 2101: 2089: 2003: – Method of removing particulates from a fluid stream through vortex separation 1926:) marked by a lower temperature than its surroundings, and intense magnetic activity. 1749: 1682: 1444: 467:
If the fluid rotates like a rigid body – that is, if the angular rotational velocity
1681:
will equal the sum of the circulations of the constituent vortices. For example, an
1267:
goes to zero. Within that region, the flow is no longer irrotational: the vorticity
46: 2295: 2211: 1874: 1686: 1659: 1623: 1552: 774: 2140: – Motions induced on bodies within a fluid flow due to vortices in the fluid 1721: 2390: 2149: 2095: 1923: 1866: 1862: 1787: 1775: 1608: 1529: 1471: 458: 159: 2128: – Oscillating flow effect resulting from fluid passing over a blunt body 2077: – Phenomenon of a shower curtain being sucked inward by a running shower 1951: 1943:
occurs in a fluid between two nested cylinders, one rotating, the other fixed.
1934: 1870: 1783: 1556: 1501: 1359: 249:. Mathematically, the vorticity is defined as the curl (or rotational) of the 171: 163: 127: 120: 100: 66: 2363: 455:
from the axis in many ways. There are two important special cases, however:
2143: 2041: 1847: 1831: 1827: 1802: 1709: 1702: 1493: 1439:
This boundary layer separation can also occur in the presence of combatting
1397: 1378: 229: 146: 131: 104: 58: 1782:-shaped vortices where the axis of rotation is a continuous closed curve. 1296:
becomes non-zero, with direction roughly parallel to the vortex axis. The
2155: 1843: 1525: 1497: 1366: 221: 1697:
downstream of that edge. This phenomenon also occurs with other active
17: 1919: 1897: 1889: 1851: 1835: 1698: 1643: 1548: 1540: 167: 116: 2355: 2113: – Device for separating compressed gas into hot and cold streams 2098: – Device for separating compressed gas into hot and cold streams 1913: 1881: 1819: 1622:
The core of a vortex in air is sometimes visible because water vapor
1543:, the dynamic pressure is proportional to the square of the distance 1335: 2264:
Life, Structure, and Dynamical Role of Vortical Motion in Turbulence
2086: – Dimensionless number describing oscillating flow mechanisms 1994: – Motion of a certain space that preserves at least one point 1901: 1779: 1732: 1720: 1639: 1515: 1486: 1459: 1330: 1123: 820:
is zero at any point not on that axis, and the flow is said to be
773: 457: 211: 65: 57: 45: 1346:
For example, if a water bucket is spun at constant angular speed
2553: 2435: 2012: 1806: 51: 2015: – Any large system of circulating ocean surface currents 1823: 2065: – Quantized flux circulation of some physical quantity 1880:
Vortices are prominent features of the atmospheres of other
1358:. In that case, the free surface of the water will assume a 358: 303: 2564: 1818:
Large whirlpools can be produced by ocean tides in certain
1432:(where v is the free stream fluid velocity and t is time). 1300:
is a model that assumes a rigid-body rotational flow where
1973: – Use of circular rotational force to mimic gravity 1396:
which causes a local rotation of fluid at the wall (i.e.
2425:
An analysis of confined magnetohydrodynamic vortex flows
62:
Vortices formed by milk when poured into a cup of coffee
2115:
Pages displaying short descriptions of redirect targets
2106:
Pages displaying short descriptions of redirect targets
2046:
Pages displaying short descriptions of redirect targets
2035: – system present in the flow of air around a wing 2017:
Pages displaying short descriptions of redirect targets
1996:
Pages displaying short descriptions of redirect targets
2560:
Chapter 3 Rotational Flows: Circulation and Turbulence
1252:{\displaystyle ru_{\theta }={\tfrac {\Gamma }{2\pi }}} 1233: 1202:{\displaystyle u_{\theta }={\tfrac {\Gamma }{2\pi r}}} 1180: 2158: – Hypothetical topological feature of spacetime 1729:
uses high engine power at slow speed on a wet runway.
1539:
In a rigid-body vortex flow of a fluid with constant
1406: 1273: 1215: 1165: 832: 797: 492: 416: 387: 353: 329: 292: 259: 2079:
Pages displaying wikidata descriptions as a fallback
2037:
Pages displaying wikidata descriptions as a fallback
1981:
Pages displaying wikidata descriptions as a fallback
1607:. The shape formed by the free surface is called a 1343:
also called rigid-body vortices or forced vortices.
1311:, and irrotational flow outside that core regions. 1424: 1288: 1251: 1201: 1106: 812: 761: 431: 402: 370: 335: 316:{\displaystyle \nabla \times {\vec {\mathit {u}}}} 315: 274: 2509:Monthly Notices of the Royal Astronomical Society 228:A key concept in the dynamics of vortices is the 138:of the flow velocity), as well as the concept of 2134: – Lengthening of vortices in 3D fluid flow 2104: – Device for various rides and attractions 1922:are dark regions on the Sun's visible surface ( 1524:The fluid motion in a vortex creates a dynamic 27:Fluid flow revolving around an axis of rotation 2467:Fluid Mechanics, a short course for physicists 2377:Kheradvar, Arash; Pedrizzetti, Gianni (2012), 2122: – Field experiments that study tornadoes 2071: – Mathematical formula for viscous fluid 2053: – Repeating pattern of swirling vortices 166:, in the wake of a boat or the winds around a 2383:Vortex Formation in the Cardiovascular System 2240:. Lecture notes in physics. Springer-Verlag. 2044: – Type of rapidly rotating storm system 1392:. This rapid negative acceleration creates a 381:The local rotation measured by the vorticity 8: 2024: – 3D motion of fluid near vortex lines 1988: – Important law of classical magnetism 484:of the fluid around the center of rotation. 2503:De La Fuente Marcos, C.; Barge, P. (2001). 2385:, London: Springer London, pp. 17–44, 1725:The visible core of a vortex formed when a 1140:is inversely proportional to the distance 787:is inversely proportional to the distance 2550:Video of two water vortex rings colliding 2528: 2189:. Oxford University Press. Archived from 1405: 1275: 1274: 1272: 1232: 1223: 1214: 1179: 1170: 1164: 1083: 1082: 1058: 1057: 1030: 1008: 976: 975: 961: 960: 942: 941: 899: 898: 880: 838: 837: 833: 831: 799: 798: 796: 741: 740: 696: 695: 671: 670: 619: 618: 604: 603: 585: 584: 542: 541: 498: 497: 493: 491: 475:increases proportionally to the distance 418: 417: 415: 389: 388: 386: 357: 355: 354: 352: 328: 302: 300: 299: 291: 261: 260: 258: 2317: 2315: 1937:and other massive gravitational sources. 1869:on the scale of a few miles, tornadoes, 1555:of the liquid, if present, is a concave 1144:. Irrotational vortices are also called 2450:. Cambridge Univ. Press. Ch. 7 et seq. 2174: 1626:as the low pressure of the core causes 1377:Vortex structures are defined by their 245:) while its length is twice the ball's 111:of a boat, and the winds surrounding a 2321: 2488:. London: Pitman Publishing Limited. 2059: – Phenomenon of fluid mechanics 150:momentum, energy, and mass, with it. 7: 2092: – Alternative to tall chimneys 371:{\displaystyle {\vec {\mathit {u}}}} 50:Vortex created by the passage of an 1752:interpretation of the behaviour of 145:In the absence of external forces, 88: 1235: 1182: 1076: 963: 840: 743: 728: 689: 648: 639: 606: 531: 500: 330: 293: 177:Vortices are an important part of 126:Vortices are a major component of 25: 2448:An Introduction to Fluid Dynamics 2423:Loper, David E. (November 1966). 253:of the fluid, usually denoted by 2530:10.1046/j.1365-8711.2001.04228.x 2187:Oxford Dictionaries Online (ODO) 1954: 1289:{\displaystyle {\vec {\omega }}} 1151:For an irrotational vortex, the 813:{\displaystyle {\vec {\omega }}} 432:{\displaystyle {\vec {\omega }}} 403:{\displaystyle {\vec {\omega }}} 275:{\displaystyle {\vec {\omega }}} 130:. The distribution of velocity, 1979: – fluid dynamics equation 897: 540: 2469:. Cambridge University Press. 1770:nonlinear Schrödinger equation 1419: 1410: 1407: 1373:Vortex formation on boundaries 1304:is less than a fixed distance 1280: 1088: 1063: 981: 966: 947: 931: 913: 904: 843: 804: 746: 731: 710: 701: 676: 660: 633: 624: 609: 590: 574: 556: 547: 534: 516: 503: 423: 394: 362: 307: 266: 1: 1884:. They include the permanent 1547:from the axis. In a constant 2057:Kelvin–Helmholtz instability 1861:are important phenomena for 1790:are two well-known examples. 378:is the local flow velocity. 2391:10.1007/978-1-4471-2288-3_2 2294:. p. 1. Archived from 54:, revealed by colored smoke 2612: 2565:Vortical Flow Research Lab 2152: – Whirling aerophone 2028:History of fluid mechanics 1656:Helmholtz's second theorem 1425:{\displaystyle \surd (vt)} 29: 2281:Vallis, Geoffrey (1999). 1740:formed off the island of 1386:boundary layer separation 2138:Vortex-induced vibration 1900:, the polar vortices of 1758:Landau–Lifshitz equation 1658:. Thus vortices (unlike 31:Not to be confused with 2342:(10): 108102–108102–3. 1317:Navier–Stokes equations 336:{\displaystyle \nabla } 40:Vortex (disambiguation) 2465:Falkovich, G. (2011). 2238:Viscous Vortical Flows 2218:. Merriam-Webster, Inc 2216:Merriam-Webster Online 1754:electromagnetic fields 1744: 1730: 1617:Evangelista Torricelli 1521: 1426: 1339: 1290: 1253: 1203: 1133: 1108: 814: 783:If the particle speed 779: 778:An irrotational vortex 763: 463: 433: 404: 372: 337: 317: 276: 225: 76: 63: 55: 2484:Clancy, L.J. (1975). 2261:Kida, Shigeo (2001). 2075:Shower-curtain effect 1738:Kármán vortex streets 1736: 1724: 1534:Bernoulli's principle 1519: 1427: 1334: 1291: 1254: 1204: 1127: 1120:Irrotational vortices 1109: 815: 777: 764: 461: 447:In theory, the speed 434: 405: 373: 338: 318: 282:and expressed by the 277: 220:of a jet aeroplane's 215: 69: 61: 49: 2292:Princeton University 2051:Kármán vortex street 2022:Helmholtz's theorems 1528:(in addition to any 1512:Pressure in a vortex 1483:Helmholtz's theorems 1404: 1271: 1213: 1163: 830: 795: 490: 471:is uniform, so that 414: 385: 351: 327: 290: 257: 72:Kármán vortex street 38:For other uses, see 2521:2001MNRAS.323..601D 2348:2005PhFl...17j8102S 2193:on February 3, 2013 2001:Cyclonic separation 1992:Coordinate rotation 1941:Taylor–Couette flow 1910:North Polar Hexagon 1906:Martian dust devils 1892:, the intermittent 1685:that is developing 1327:Rotational vortices 462:A rigid-body vortex 236:that describes the 1971:Artificial gravity 1859:Earth's atmosphere 1834:in the Straits of 1745: 1731: 1522: 1441:pressure gradients 1422: 1340: 1338:north polar vortex 1286: 1249: 1247: 1199: 1197: 1134: 1104: 1102: 810: 780: 759: 757: 464: 429: 400: 368: 333: 313: 272: 226: 77: 64: 56: 2495:978-0-273-01120-0 2476:978-1-107-00575-4 2400:978-1-4471-2287-6 2379:"Vortex Dynamics" 2356:10.1063/1.2104550 2336:Physics of Fluids 2324:, sub-section 7.5 2247:978-3-540-53713-7 2236:Ting, L. (1991). 2132:Vortex stretching 1846:, Japan; and the 1840:Naruto whirlpools 1766:Ishimori equation 1628:adiabatic cooling 1520:A plughole vortex 1390:no-slip condition 1321:Lamb–Oseen vortex 1283: 1246: 1196: 1091: 1066: 984: 969: 950: 907: 846: 807: 749: 704: 679: 627: 612: 593: 550: 506: 426: 397: 365: 310: 269: 16:(Redirected from 2603: 2545:Optical Vortices 2534: 2532: 2499: 2480: 2461: 2439: 2429: 2410: 2409: 2408: 2407: 2374: 2368: 2367: 2331: 2325: 2319: 2310: 2309: 2307: 2306: 2300: 2289: 2278: 2272: 2271: 2269: 2258: 2252: 2251: 2233: 2227: 2226: 2224: 2223: 2208: 2202: 2201: 2199: 2198: 2179: 2116: 2107: 2080: 2047: 2038: 2033:Horseshoe vortex 2018: 1997: 1982: 1977:Batchelor vortex 1964: 1959: 1958: 1857:Vortices in the 1813:Aerodynamic drag 1762:Heisenberg model 1760:, the continuum 1742:Tristan da Cunha 1717:Further examples 1693:, less than one 1606: 1599: 1590: 1589: 1587: 1586: 1581: 1578: 1546: 1431: 1429: 1428: 1423: 1357: 1353: 1349: 1307: 1303: 1295: 1293: 1292: 1287: 1285: 1284: 1276: 1266: 1258: 1256: 1255: 1250: 1248: 1245: 1234: 1228: 1227: 1208: 1206: 1205: 1200: 1198: 1195: 1181: 1175: 1174: 1158: 1143: 1139: 1113: 1111: 1110: 1105: 1103: 1093: 1092: 1084: 1068: 1067: 1059: 1049: 1045: 1038: 1037: 1016: 1015: 986: 985: 977: 971: 970: 962: 952: 951: 943: 909: 908: 900: 893: 889: 888: 887: 848: 847: 839: 819: 817: 816: 811: 809: 808: 800: 790: 786: 768: 766: 765: 760: 758: 751: 750: 742: 706: 705: 697: 681: 680: 672: 629: 628: 620: 614: 613: 605: 595: 594: 586: 552: 551: 543: 508: 507: 499: 483: 478: 474: 470: 454: 450: 438: 436: 435: 430: 428: 427: 419: 409: 407: 406: 401: 399: 398: 390: 377: 375: 374: 369: 367: 366: 361: 356: 342: 340: 339: 334: 322: 320: 319: 314: 312: 311: 306: 301: 281: 279: 278: 273: 271: 270: 262: 247:angular velocity 218:Crow instability 193:drain whirlpools 147:viscous friction 113:tropical cyclone 90: 43: 36: 21: 2611: 2610: 2606: 2605: 2604: 2602: 2601: 2600: 2571: 2570: 2541: 2502: 2496: 2483: 2477: 2464: 2458: 2444:Batchelor, G.K. 2442: 2427: 2422: 2419: 2414: 2413: 2405: 2403: 2401: 2376: 2375: 2371: 2333: 2332: 2328: 2320: 2313: 2304: 2302: 2298: 2287: 2280: 2279: 2275: 2267: 2260: 2259: 2255: 2248: 2235: 2234: 2230: 2221: 2219: 2210: 2209: 2205: 2196: 2194: 2181: 2180: 2176: 2171: 2166: 2161: 2126:Vortex shedding 2120:VORTEX projects 2114: 2105: 2084:Strouhal number 2078: 2045: 2036: 2016: 1995: 1986:Biot–Savart law 1980: 1960: 1953: 1950: 1931:accretion disks 1894:Great Dark Spot 1865:. They include 1826:. Examples are 1719: 1636: 1602: 1598: 1592: 1582: 1579: 1574: 1573: 1571: 1569: 1563: 1544: 1514: 1489:-like surface. 1468: 1466:Vortex geometry 1402: 1401: 1375: 1355: 1351: 1347: 1329: 1310: 1305: 1301: 1269: 1268: 1264: 1238: 1219: 1211: 1210: 1185: 1166: 1161: 1160: 1156: 1141: 1137: 1122: 1101: 1100: 1069: 1054: 1053: 1026: 1004: 994: 990: 953: 938: 937: 876: 860: 856: 849: 828: 827: 793: 792: 788: 784: 756: 755: 682: 667: 666: 596: 581: 580: 509: 488: 487: 481: 476: 472: 468: 452: 448: 445: 412: 411: 383: 382: 349: 348: 325: 324: 288: 287: 284:vector analysis 255: 254: 243:right-hand rule 210: 205: 156: 44: 37: 30: 28: 23: 22: 15: 12: 11: 5: 2609: 2607: 2599: 2598: 2596:Fluid dynamics 2593: 2588: 2583: 2573: 2572: 2569: 2568: 2562: 2557: 2547: 2540: 2539:External links 2537: 2536: 2535: 2515:(3): 601–614. 2500: 2494: 2481: 2475: 2462: 2456: 2440: 2418: 2415: 2412: 2411: 2399: 2369: 2326: 2311: 2273: 2253: 2246: 2228: 2203: 2173: 2172: 2170: 2167: 2165: 2162: 2160: 2159: 2153: 2147: 2141: 2135: 2129: 2123: 2117: 2108: 2099: 2093: 2087: 2081: 2072: 2069:Rankine vortex 2066: 2063:Quantum vortex 2060: 2054: 2048: 2039: 2030: 2025: 2019: 2010: 2004: 1998: 1989: 1983: 1974: 1967: 1966: 1965: 1962:Physics portal 1949: 1946: 1945: 1944: 1938: 1927: 1917: 1886:Great Red Spot 1878: 1855: 1816: 1810: 1799:aircraft wings 1791: 1773: 1718: 1715: 1691:wingtip vortex 1664:pressure waves 1635: 1632: 1613:Gabriel's Horn 1596: 1567: 1513: 1510: 1467: 1464: 1456:splash effect. 1421: 1418: 1415: 1412: 1409: 1394:boundary layer 1374: 1371: 1328: 1325: 1308: 1298:Rankine vortex 1282: 1279: 1244: 1241: 1237: 1231: 1226: 1222: 1218: 1194: 1191: 1188: 1184: 1178: 1173: 1169: 1121: 1118: 1117: 1116: 1115: 1114: 1099: 1096: 1090: 1087: 1081: 1078: 1075: 1072: 1070: 1065: 1062: 1056: 1055: 1052: 1048: 1044: 1041: 1036: 1033: 1029: 1025: 1022: 1019: 1014: 1011: 1007: 1003: 1000: 997: 993: 989: 983: 980: 974: 968: 965: 959: 956: 954: 949: 946: 940: 939: 936: 933: 930: 927: 924: 921: 918: 915: 912: 906: 903: 896: 892: 886: 883: 879: 875: 872: 869: 866: 863: 859: 855: 852: 850: 845: 842: 836: 835: 806: 803: 772: 771: 770: 769: 754: 748: 745: 739: 736: 733: 730: 727: 724: 721: 718: 715: 712: 709: 703: 700: 694: 691: 688: 685: 683: 678: 675: 669: 668: 665: 662: 659: 656: 653: 650: 647: 644: 641: 638: 635: 632: 626: 623: 617: 611: 608: 602: 599: 597: 592: 589: 583: 582: 579: 576: 573: 570: 567: 564: 561: 558: 555: 549: 546: 539: 536: 533: 530: 527: 524: 521: 518: 515: 512: 510: 505: 502: 496: 495: 444: 441: 425: 422: 396: 393: 364: 360: 345:nabla operator 332: 309: 305: 298: 295: 268: 265: 251:velocity field 209: 206: 204: 201: 179:turbulent flow 155: 152: 128:turbulent flow 81:fluid dynamics 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2608: 2597: 2594: 2592: 2589: 2587: 2584: 2582: 2579: 2578: 2576: 2566: 2563: 2561: 2558: 2555: 2551: 2548: 2546: 2543: 2542: 2538: 2531: 2526: 2522: 2518: 2514: 2510: 2506: 2501: 2497: 2491: 2487: 2482: 2478: 2472: 2468: 2463: 2459: 2457:9780521098175 2453: 2449: 2445: 2441: 2437: 2433: 2426: 2421: 2420: 2416: 2402: 2396: 2392: 2388: 2384: 2380: 2373: 2370: 2365: 2361: 2357: 2353: 2349: 2345: 2341: 2337: 2330: 2327: 2323: 2318: 2316: 2312: 2301:on 2013-12-28 2297: 2293: 2286: 2285: 2277: 2274: 2266: 2265: 2257: 2254: 2249: 2243: 2239: 2232: 2229: 2217: 2213: 2207: 2204: 2192: 2188: 2184: 2178: 2175: 2168: 2163: 2157: 2154: 2151: 2148: 2145: 2142: 2139: 2136: 2133: 2130: 2127: 2124: 2121: 2118: 2112: 2111:Vortex cooler 2109: 2103: 2102:Vortex tunnel 2100: 2097: 2094: 2091: 2090:Vortex engine 2088: 2085: 2082: 2076: 2073: 2070: 2067: 2064: 2061: 2058: 2055: 2052: 2049: 2043: 2040: 2034: 2031: 2029: 2026: 2023: 2020: 2014: 2011: 2008: 2005: 2002: 1999: 1993: 1990: 1987: 1984: 1978: 1975: 1972: 1969: 1968: 1963: 1957: 1952: 1947: 1942: 1939: 1936: 1932: 1928: 1925: 1921: 1918: 1915: 1911: 1907: 1903: 1899: 1895: 1891: 1887: 1883: 1879: 1876: 1872: 1868: 1864: 1860: 1856: 1853: 1849: 1845: 1841: 1838:, Italy; the 1837: 1833: 1830:of classical 1829: 1825: 1821: 1817: 1814: 1811: 1808: 1804: 1800: 1796: 1795:lifting force 1792: 1789: 1785: 1781: 1777: 1774: 1771: 1767: 1763: 1759: 1755: 1751: 1747: 1746: 1743: 1739: 1735: 1728: 1723: 1716: 1714: 1711: 1706: 1704: 1700: 1696: 1692: 1688: 1684: 1683:airplane wing 1680: 1675: 1673: 1669: 1665: 1661: 1660:surface waves 1657: 1651: 1649: 1645: 1641: 1633: 1631: 1629: 1625: 1620: 1618: 1614: 1610: 1605: 1595: 1585: 1577: 1566: 1560: 1558: 1554: 1550: 1542: 1537: 1535: 1531: 1527: 1518: 1511: 1509: 1505: 1503: 1499: 1495: 1490: 1488: 1484: 1481:According to 1479: 1477: 1473: 1465: 1463: 1462:vortex ring. 1461: 1457: 1452: 1450: 1446: 1445:trailing edge 1442: 1437: 1433: 1416: 1413: 1399: 1395: 1391: 1387: 1383: 1380: 1372: 1370: 1368: 1363: 1361: 1344: 1337: 1333: 1326: 1324: 1322: 1319:, known as a 1318: 1312: 1299: 1277: 1260: 1242: 1239: 1229: 1224: 1220: 1216: 1192: 1189: 1186: 1176: 1171: 1167: 1154: 1149: 1147: 1146:free vortices 1131: 1126: 1119: 1097: 1094: 1085: 1079: 1073: 1071: 1060: 1050: 1046: 1042: 1039: 1034: 1031: 1027: 1023: 1020: 1017: 1012: 1009: 1005: 1001: 998: 995: 991: 987: 978: 972: 957: 955: 944: 934: 928: 925: 922: 919: 916: 910: 901: 894: 890: 884: 881: 877: 873: 870: 867: 864: 861: 857: 853: 851: 826: 825: 823: 801: 782: 781: 776: 752: 737: 734: 725: 722: 719: 716: 713: 707: 698: 692: 686: 684: 673: 663: 657: 654: 651: 645: 642: 636: 630: 621: 615: 600: 598: 587: 577: 571: 568: 565: 562: 559: 553: 544: 537: 528: 525: 522: 519: 513: 511: 486: 485: 466: 465: 460: 456: 442: 440: 420: 391: 379: 346: 296: 285: 263: 252: 248: 244: 239: 235: 231: 223: 219: 214: 207: 202: 200: 196: 194: 189: 185: 182: 180: 175: 173: 169: 165: 161: 153: 151: 148: 143: 141: 137: 133: 129: 124: 122: 118: 114: 110: 106: 102: 98: 94: 86: 82: 73: 68: 60: 53: 52:aircraft wing 48: 41: 34: 19: 2591:Aerodynamics 2512: 2508: 2486:Aerodynamics 2485: 2466: 2447: 2404:, retrieved 2382: 2372: 2339: 2335: 2329: 2303:. Retrieved 2296:the original 2283: 2276: 2263: 2256: 2237: 2231: 2220:. Retrieved 2215: 2206: 2195:. Retrieved 2191:the original 2186: 2177: 1875:Polar vortex 1867:mesocyclones 1788:bubble rings 1776:Vortex rings 1750:hydrodynamic 1707: 1676: 1652: 1637: 1621: 1603: 1593: 1583: 1575: 1564: 1561: 1553:free surface 1538: 1523: 1506: 1491: 1480: 1475: 1469: 1455: 1453: 1438: 1434: 1381: 1376: 1364: 1345: 1341: 1313: 1261: 1150: 1145: 1135: 822:irrotational 821: 446: 443:Vortex types 380: 237: 227: 197: 190: 186: 183: 176: 157: 144: 125: 96: 92: 84: 78: 2322:Clancy 1975 2150:Whirly tube 2096:Vortex tube 1935:black holes 1924:photosphere 1871:waterspouts 1863:meteorology 1784:Smoke rings 1679:circulation 1609:hyperboloid 1551:field, the 1530:hydrostatic 1476:vortex tube 1472:vortex line 1436:vortices. 1153:circulation 160:smoke rings 140:circulation 101:smoke rings 2575:Categories 2406:2021-03-16 2305:2012-09-26 2222:2015-08-29 2197:2015-08-29 2164:References 1768:, and the 1701:, such as 1695:wing chord 1648:solenoidal 1557:paraboloid 1502:jet engine 1449:bluff body 203:Properties 172:dust devil 164:whirlpools 121:dust devil 105:whirlpools 2364:1070-6631 2144:Vorticity 2042:Hurricane 1854:, Norway. 1848:Maelstrom 1832:mythology 1828:Charybdis 1803:propeller 1710:viscosity 1703:propeller 1634:Evolution 1624:condenses 1496:, or the 1494:propeller 1408:√ 1398:vorticity 1379:vorticity 1360:parabolic 1354:equal to 1281:→ 1278:ω 1243:π 1236:Γ 1225:θ 1190:π 1183:Γ 1172:θ 1130:animation 1089:→ 1080:× 1077:∇ 1064:→ 1061:ω 1032:− 1021:α 1010:− 999:α 996:− 982:→ 973:× 967:→ 964:Ω 948:→ 905:→ 882:− 874:α 844:→ 841:Ω 805:→ 802:ω 747:→ 744:Ω 729:Ω 702:→ 693:× 690:∇ 677:→ 674:ω 649:Ω 640:Ω 637:− 625:→ 616:× 610:→ 607:Ω 591:→ 548:→ 532:Ω 504:→ 501:Ω 424:→ 421:ω 395:→ 392:ω 363:→ 331:∇ 308:→ 297:× 294:∇ 267:→ 264:ω 230:vorticity 208:Vorticity 132:vorticity 2586:Rotation 2581:Vortices 2446:(1967). 2436:67060315 2212:"vortex" 2183:"vortex" 2156:Wormhole 1948:See also 1920:Sunspots 1908:and the 1844:Nankaido 1805:blades, 1699:airfoils 1644:cycloids 1591:, where 1526:pressure 1500:of each 1498:turbofan 1460:toroidal 1367:gradient 1336:Saturn's 323:, where 286:formula 222:contrail 154:Overview 97:vortexes 93:vortices 18:Vortices 2517:Bibcode 2344:Bibcode 1898:Neptune 1890:Jupiter 1882:planets 1852:Lofoten 1836:Messina 1820:straits 1748:In the 1640:helices 1588:⁠ 1572:⁠ 1549:gravity 1541:density 1362:shape. 343:is the 168:tornado 117:tornado 107:in the 2492:  2473:  2454:  2434:  2397:  2362:  2244:  1914:Saturn 1904:, the 1764:, the 1615:" (by 1611:, or " 234:vector 85:vortex 33:vertex 2428:(PDF) 2417:Other 2299:(PDF) 2288:(PDF) 2268:(PDF) 2169:Notes 1902:Venus 1807:sails 1780:torus 1487:torus 1447:of a 238:local 134:(the 75:space 2554:MPEG 2490:ISBN 2471:ISBN 2452:ISBN 2432:LCCN 2395:ISBN 2360:ISSN 2242:ISBN 2013:Gyre 2007:Eddy 1929:The 1824:bays 1793:The 1786:and 1778:are 1727:C-17 1687:lift 1672:guns 1670:and 1668:toys 1662:and 1642:and 347:and 232:, a 216:The 136:curl 109:wake 83:, a 2525:doi 2513:323 2387:doi 2352:doi 1933:of 1912:of 1896:on 1888:on 1850:at 1842:of 1822:or 1797:of 1619:). 170:or 123:. 119:or 95:or 89:pl. 79:In 2577:: 2523:. 2511:. 2507:. 2393:, 2381:, 2358:. 2350:. 2340:17 2338:. 2314:^ 2290:. 2214:. 2185:. 1801:, 1674:. 1650:. 1570:− 1559:. 1356:wr 1323:. 1259:. 1148:. 1132:.) 1098:0. 824:. 195:. 174:. 162:, 115:, 103:, 91:: 70:A 2556:) 2552:( 2533:. 2527:: 2519:: 2498:. 2479:. 2460:. 2438:. 2389:: 2366:. 2354:: 2346:: 2308:. 2250:. 2225:. 2200:. 1916:. 1772:. 1604:r 1597:∞ 1594:P 1584:r 1580:/ 1576:K 1568:∞ 1565:P 1545:r 1420:) 1417:t 1414:v 1411:( 1382:, 1352:u 1348:w 1309:0 1306:r 1302:r 1265:r 1240:2 1230:= 1221:u 1217:r 1193:r 1187:2 1177:= 1168:u 1157:Γ 1142:r 1138:u 1095:= 1086:u 1074:= 1051:, 1047:) 1043:0 1040:, 1035:2 1028:r 1024:x 1018:, 1013:2 1006:r 1002:y 992:( 988:= 979:r 958:= 945:u 935:, 932:) 929:0 926:, 923:y 920:, 917:x 914:( 911:= 902:r 895:, 891:) 885:2 878:r 871:, 868:0 865:, 862:0 858:( 854:= 789:r 785:u 753:. 738:2 735:= 732:) 726:2 723:, 720:0 717:, 714:0 711:( 708:= 699:u 687:= 664:, 661:) 658:0 655:, 652:x 646:, 643:y 634:( 631:= 622:r 601:= 588:u 578:, 575:) 572:0 569:, 566:y 563:, 560:x 557:( 554:= 545:r 538:, 535:) 529:, 526:0 523:, 520:0 517:( 514:= 482:Ω 477:r 473:u 469:Ω 453:r 449:u 359:u 304:u 87:( 42:. 35:. 20:)

Index

Vortices
vertex
Vortex (disambiguation)

aircraft wing


Kármán vortex street
fluid dynamics
smoke rings
whirlpools
wake
tropical cyclone
tornado
dust devil
turbulent flow
vorticity
curl
circulation
viscous friction
smoke rings
whirlpools
tornado
dust devil
turbulent flow
drain whirlpools

Crow instability
contrail
vorticity

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.