Knowledge (XXG)

Wandering set

Source đź“ť

22: 121:"wanders away" during normal time-evolution of the system, and is never visited again, then the system is dissipative. The language of wandering sets can be used to give a precise, mathematical definition to the concept of a dissipative system. The notion of wandering sets in phase space was introduced by 1494: 630: 761: 1055: 1212: 921: 462: 299: 1313: 816: 1353:
The concept of a wandering set is in a sense dual to the ideas expressed in the Poincaré recurrence theorem. If there exists a wandering set of positive measure, then the action of
1090: 530: 1409: 352: 1345: 1614: 965: 874: 51: 554: 163: 1578: 1517: 1371: 1271: 1247: 1001: 848: 375: 1128: 697: 659: 491: 241: 196: 1554: 395: 1442: 1701: 1669: 573: 73: 705: 1009: 1426: 114: 1156: 882: 1429:
holds cannot have, by definition, a wandering set of positive measure; and is thus an example of a conservative system.
403: 34: 1643: 203: 117:
applies. Intuitively, the connection between wandering sets and dissipation is easily understood: if a portion of the
44: 38: 30: 1729: 767: 560: 253: 55: 1280: 777: 1719: 1063: 496: 823: 122: 1382: 319: 931: 102: 1680: 1321: 1724: 1631: 1586: 1422: 110: 944: 853: 1623: 1412: 533: 106: 1697: 1665: 1557: 1217:
Similar definitions follow for the continuous-time and discrete and continuous group actions.
819: 771: 539: 166: 136: 1563: 1502: 1356: 1256: 1232: 986: 833: 360: 1107: 676: 638: 470: 220: 175: 90: 1532: 380: 105:. When a dynamical system has a wandering set of non-zero measure, then the system is a 1658: 94: 1713: 1634:
can be decomposed into an invariant conservative set and an invariant wandering set.
1627: 557: 313: 827: 305: 244: 118: 86:
In mathematics, a concept that formalizes a certain idea of movement and mixing
1225:
A wandering set is a collection of wandering points. More precisely, a subset
927: 355: 133:
A common, discrete-time definition of wandering sets starts with a map
1685: 1489:{\displaystyle W^{*}=\bigcup _{\gamma \in \Gamma }\;\;\gamma W.} 1696:, De Gruyter Studies in Mathematics, vol. 6, de Gruyter, 1415:. If there is no such wandering set, the action is said to be 625:{\displaystyle \varphi _{t+s}=\varphi _{t}\circ \varphi _{s}.} 304:
A handier definition requires only that the intersection have
15: 1678:
Alexandre I. Danilenko and Cesar E. Silva (8 April 2009).
766:
These simpler definitions may be fully generalized to the
756:{\displaystyle \mu \left(\varphi _{t}(U)\cap U\right)=0.} 1050:{\displaystyle \mu \left(\gamma \cdot U\cap U\right)=0} 493:. Similarly, a continuous-time system will have a map 1589: 1566: 1535: 1505: 1445: 1385: 1359: 1324: 1283: 1259: 1235: 1207:{\displaystyle \mu \left(f^{n}(U)\cap U\right)>0.} 1159: 1110: 1066: 1012: 989: 947: 916:{\displaystyle \{\gamma \cdot x:\gamma \in \Gamma \}} 885: 856: 836: 780: 708: 679: 641: 576: 542: 499: 473: 406: 383: 363: 322: 256: 223: 178: 139: 1657: 1608: 1572: 1548: 1511: 1488: 1403: 1365: 1339: 1307: 1265: 1241: 1206: 1122: 1084: 1049: 995: 959: 915: 868: 842: 810: 755: 691: 653: 624: 548: 524: 485: 457:{\displaystyle \mu \left(f^{n}(U)\cap U\right)=0,} 456: 389: 369: 346: 293: 235: 190: 157: 536:of the system, with the time-evolution operator 43:but its sources remain unclear because it lacks 308:. To be precise, the definition requires that 850:be a group acting on that set. Given a point 8: 1302: 1296: 910: 886: 294:{\displaystyle f^{n}(U)\cap U=\varnothing .} 1681:Ergodic theory: Nonsingular transformations 699:, the time-evolved map is of measure zero: 1476: 1475: 101:formalizes a certain idea of movement and 1664:. Cambridge: Cambridge University Press. 1600: 1588: 1565: 1540: 1534: 1529:of positive measure, such that the orbit 1504: 1463: 1450: 1444: 1432:Define the trajectory of a wandering set 1384: 1358: 1323: 1282: 1258: 1234: 1172: 1158: 1109: 1065: 1011: 988: 946: 884: 855: 835: 779: 721: 707: 678: 640: 613: 600: 581: 575: 541: 504: 498: 472: 419: 405: 382: 362: 321: 261: 255: 222: 177: 138: 74:Learn how and when to remove this message 1425:. For example, any system for which the 1308:{\displaystyle \gamma \in \Gamma -\{e\}} 1130:is non-wandering if, for every open set 811:{\displaystyle \Omega =(X,\Sigma ,\mu )} 1104:is the opposite. In the discrete case, 285: 1221:Wandering sets and dissipative systems 1660:The Ergodic Theory of Discrete Groups 1253:under the action of a discrete group 7: 1085:{\displaystyle \gamma \in \Gamma -V} 525:{\displaystyle \varphi _{t}:X\to X} 1590: 1567: 1506: 1470: 1395: 1389: 1360: 1290: 1260: 1236: 1073: 990: 954: 907: 863: 837: 796: 781: 635:In such a case, a wandering point 364: 332: 14: 1404:{\displaystyle (\Omega ,\Gamma )} 556:being a one-parameter continuous 1525:if there exists a wandering set 347:{\displaystyle (X,\Sigma ,\mu )} 20: 971:if there exists a neighborhood 818:be a measure space, that is, a 532:defining the time evolution or 1398: 1386: 1340:{\displaystyle \gamma W\cap W} 1277:is measurable and if, for any 1184: 1178: 805: 787: 733: 727: 516: 431: 425: 341: 323: 273: 267: 149: 1: 1609:{\displaystyle \Omega -W^{*}} 960:{\displaystyle x\in \Omega } 869:{\displaystyle x\in \Omega } 109:. This is the opposite of a 1656:Nicholls, Peter J. (1989). 1644:No wandering domain theorem 1632:non-singular transformation 1427:PoincarĂ© recurrence theorem 1379:, and the dynamical system 115:PoincarĂ© recurrence theorem 1746: 1619:is a set of measure zero. 1350:is a set of measure zero. 661:will have a neighbourhood 1692:Krengel, Ulrich (1985), 673:such that for all times 549:{\displaystyle \varphi } 316:, i.e. part of a triple 158:{\displaystyle f:X\to X} 29:This article includes a 1573:{\displaystyle \Omega } 1512:{\displaystyle \Gamma } 1366:{\displaystyle \Gamma } 1266:{\displaystyle \Gamma } 1242:{\displaystyle \Omega } 996:{\displaystyle \Gamma } 843:{\displaystyle \Gamma } 370:{\displaystyle \Sigma } 213:and a positive integer 58:more precise citations. 1610: 1574: 1550: 1522:completely dissipative 1513: 1490: 1421:, and the system is a 1405: 1367: 1341: 1309: 1267: 1243: 1208: 1142:> 0, there is some 1124: 1123:{\displaystyle x\in X} 1086: 1051: 997: 961: 917: 870: 844: 812: 757: 693: 692:{\displaystyle t>T} 655: 654:{\displaystyle x\in X} 626: 550: 526: 487: 486:{\displaystyle n>N} 458: 391: 371: 348: 295: 237: 236:{\displaystyle n>N} 192: 191:{\displaystyle x\in X} 159: 1686:Arxiv arXiv:0803.2424 1611: 1575: 1551: 1549:{\displaystyle W^{*}} 1514: 1491: 1406: 1368: 1342: 1310: 1268: 1244: 1209: 1125: 1087: 1052: 998: 962: 918: 871: 845: 813: 758: 694: 656: 627: 551: 527: 488: 459: 392: 372: 349: 296: 247:is non-intersecting: 238: 193: 160: 1587: 1564: 1533: 1503: 1443: 1383: 1357: 1322: 1281: 1257: 1233: 1157: 1108: 1096:Non-wandering points 1064: 1010: 987: 945: 883: 854: 834: 778: 706: 677: 639: 574: 540: 497: 471: 404: 390:{\displaystyle \mu } 381: 361: 320: 254: 221: 176: 137: 1423:conservative system 1102:non-wandering point 983:of the identity in 979:and a neighborhood 111:conservative system 97:, the concept of a 1626:states that every 1624:Hopf decomposition 1606: 1570: 1546: 1509: 1486: 1474: 1413:dissipative system 1401: 1363: 1337: 1305: 1263: 1239: 1204: 1120: 1082: 1047: 993: 957: 913: 866: 840: 808: 753: 689: 651: 622: 546: 522: 483: 454: 387: 367: 344: 291: 233: 217:such that for all 188: 155: 107:dissipative system 31:list of references 1730:Dynamical systems 1558:almost-everywhere 1459: 1315:the intersection 772:topological group 167:topological space 91:dynamical systems 84: 83: 76: 1737: 1706: 1694:Ergodic theorems 1675: 1663: 1615: 1613: 1612: 1607: 1605: 1604: 1579: 1577: 1576: 1571: 1555: 1553: 1552: 1547: 1545: 1544: 1518: 1516: 1515: 1510: 1495: 1493: 1492: 1487: 1473: 1455: 1454: 1411:is said to be a 1410: 1408: 1407: 1402: 1372: 1370: 1369: 1364: 1346: 1344: 1343: 1338: 1314: 1312: 1311: 1306: 1272: 1270: 1269: 1264: 1248: 1246: 1245: 1240: 1213: 1211: 1210: 1205: 1197: 1193: 1177: 1176: 1129: 1127: 1126: 1121: 1091: 1089: 1088: 1083: 1056: 1054: 1053: 1048: 1040: 1036: 1002: 1000: 999: 994: 966: 964: 963: 958: 922: 920: 919: 914: 875: 873: 872: 867: 849: 847: 846: 841: 817: 815: 814: 809: 762: 760: 759: 754: 746: 742: 726: 725: 698: 696: 695: 690: 660: 658: 657: 652: 631: 629: 628: 623: 618: 617: 605: 604: 592: 591: 555: 553: 552: 547: 531: 529: 528: 523: 509: 508: 492: 490: 489: 484: 463: 461: 460: 455: 444: 440: 424: 423: 396: 394: 393: 388: 376: 374: 373: 368: 353: 351: 350: 345: 300: 298: 297: 292: 266: 265: 242: 240: 239: 234: 198:is said to be a 197: 195: 194: 189: 164: 162: 161: 156: 129:Wandering points 79: 72: 68: 65: 59: 54:this article by 45:inline citations 24: 23: 16: 1745: 1744: 1740: 1739: 1738: 1736: 1735: 1734: 1710: 1709: 1704: 1691: 1672: 1655: 1652: 1640: 1596: 1585: 1584: 1562: 1561: 1536: 1531: 1530: 1523: 1501: 1500: 1446: 1441: 1440: 1419: 1381: 1380: 1377: 1355: 1354: 1320: 1319: 1279: 1278: 1255: 1254: 1231: 1230: 1223: 1168: 1167: 1163: 1155: 1154: 1106: 1105: 1098: 1062: 1061: 1020: 1016: 1008: 1007: 985: 984: 969:wandering point 943: 942: 881: 880: 852: 851: 832: 831: 826:defined on its 776: 775: 717: 716: 712: 704: 703: 675: 674: 637: 636: 609: 596: 577: 572: 571: 538: 537: 500: 495: 494: 469: 468: 415: 414: 410: 402: 401: 379: 378: 359: 358: 318: 317: 257: 252: 251: 219: 218: 200:wandering point 174: 173: 135: 134: 131: 113:, to which the 87: 80: 69: 63: 60: 49: 35:related reading 25: 21: 12: 11: 5: 1743: 1741: 1733: 1732: 1727: 1722: 1720:Ergodic theory 1712: 1711: 1708: 1707: 1702: 1689: 1676: 1670: 1651: 1648: 1647: 1646: 1639: 1636: 1617: 1616: 1603: 1599: 1595: 1592: 1580:, that is, if 1569: 1543: 1539: 1521: 1519:is said to be 1508: 1499:The action of 1497: 1496: 1485: 1482: 1479: 1472: 1469: 1466: 1462: 1458: 1453: 1449: 1417: 1400: 1397: 1394: 1391: 1388: 1375: 1373:is said to be 1362: 1348: 1347: 1336: 1333: 1330: 1327: 1304: 1301: 1298: 1295: 1292: 1289: 1286: 1262: 1238: 1222: 1219: 1215: 1214: 1203: 1200: 1196: 1192: 1189: 1186: 1183: 1180: 1175: 1171: 1166: 1162: 1119: 1116: 1113: 1097: 1094: 1081: 1078: 1075: 1072: 1069: 1058: 1057: 1046: 1043: 1039: 1035: 1032: 1029: 1026: 1023: 1019: 1015: 992: 956: 953: 950: 926:is called the 924: 923: 912: 909: 906: 903: 900: 897: 894: 891: 888: 865: 862: 859: 839: 807: 804: 801: 798: 795: 792: 789: 786: 783: 764: 763: 752: 749: 745: 741: 738: 735: 732: 729: 724: 720: 715: 711: 688: 685: 682: 650: 647: 644: 633: 632: 621: 616: 612: 608: 603: 599: 595: 590: 587: 584: 580: 545: 521: 518: 515: 512: 507: 503: 482: 479: 476: 465: 464: 453: 450: 447: 443: 439: 436: 433: 430: 427: 422: 418: 413: 409: 386: 377:and a measure 366: 343: 340: 337: 334: 331: 328: 325: 302: 301: 290: 287: 284: 281: 278: 275: 272: 269: 264: 260: 232: 229: 226: 202:if there is a 187: 184: 181: 154: 151: 148: 145: 142: 130: 127: 95:ergodic theory 85: 82: 81: 39:external links 28: 26: 19: 13: 10: 9: 6: 4: 3: 2: 1742: 1731: 1728: 1726: 1723: 1721: 1718: 1717: 1715: 1705: 1703:3-11-008478-3 1699: 1695: 1690: 1687: 1683: 1682: 1677: 1673: 1671:0-521-37674-2 1667: 1662: 1661: 1654: 1653: 1649: 1645: 1642: 1641: 1637: 1635: 1633: 1629: 1628:measure space 1625: 1620: 1601: 1597: 1593: 1583: 1582: 1581: 1559: 1541: 1537: 1528: 1524: 1483: 1480: 1477: 1467: 1464: 1460: 1456: 1451: 1447: 1439: 1438: 1437: 1435: 1430: 1428: 1424: 1420: 1414: 1392: 1378: 1351: 1334: 1331: 1328: 1325: 1318: 1317: 1316: 1299: 1293: 1287: 1284: 1276: 1252: 1251:wandering set 1228: 1220: 1218: 1201: 1198: 1194: 1190: 1187: 1181: 1173: 1169: 1164: 1160: 1153: 1152: 1151: 1149: 1145: 1141: 1137: 1133: 1117: 1114: 1111: 1103: 1095: 1093: 1079: 1076: 1070: 1067: 1044: 1041: 1037: 1033: 1030: 1027: 1024: 1021: 1017: 1013: 1006: 1005: 1004: 982: 978: 974: 970: 951: 948: 939: 937: 934:of the point 933: 929: 904: 901: 898: 895: 892: 889: 879: 878: 877: 860: 857: 829: 828:Borel subsets 825: 821: 802: 799: 793: 790: 784: 773: 769: 750: 747: 743: 739: 736: 730: 722: 718: 713: 709: 702: 701: 700: 686: 683: 680: 672: 668: 664: 648: 645: 642: 619: 614: 610: 606: 601: 597: 593: 588: 585: 582: 578: 570: 569: 568: 566: 562: 559: 558:abelian group 543: 535: 519: 513: 510: 505: 501: 480: 477: 474: 451: 448: 445: 441: 437: 434: 428: 420: 416: 411: 407: 400: 399: 398: 384: 357: 338: 335: 329: 326: 315: 314:measure space 311: 307: 288: 282: 279: 276: 270: 262: 258: 250: 249: 248: 246: 230: 227: 224: 216: 212: 208: 205: 204:neighbourhood 201: 185: 182: 179: 171: 168: 152: 146: 143: 140: 128: 126: 124: 120: 116: 112: 108: 104: 100: 99:wandering set 96: 92: 78: 75: 67: 57: 53: 47: 46: 40: 36: 32: 27: 18: 17: 1693: 1679: 1659: 1621: 1618: 1526: 1520: 1498: 1433: 1431: 1418:conservative 1416: 1374: 1352: 1349: 1274: 1250: 1226: 1224: 1216: 1147: 1143: 1139: 1135: 1131: 1101: 1099: 1059: 980: 976: 972: 968: 967:is called a 940: 935: 925: 768:group action 765: 670: 666: 662: 634: 564: 466: 309: 306:measure zero 303: 245:iterated map 214: 210: 206: 199: 169: 132: 98: 88: 70: 61: 50:Please help 42: 1376:dissipative 1134:containing 1003:such that 941:An element 669:and a time 119:phase space 56:introducing 1725:Limit sets 1714:Categories 1650:References 1150:such that 1138:and every 928:trajectory 876:, the set 397:such that 356:Borel sets 172:. A point 1602:∗ 1594:− 1591:Ω 1568:Ω 1560:equal to 1542:∗ 1507:Γ 1478:γ 1471:Γ 1468:∈ 1465:γ 1461:⋃ 1452:∗ 1396:Γ 1390:Ω 1361:Γ 1332:∩ 1326:γ 1294:− 1291:Γ 1288:∈ 1285:γ 1261:Γ 1237:Ω 1188:∩ 1161:μ 1115:∈ 1077:− 1074:Γ 1071:∈ 1068:γ 1031:∩ 1025:⋅ 1022:γ 1014:μ 991:Γ 955:Ω 952:∈ 908:Γ 905:∈ 902:γ 893:⋅ 890:γ 864:Ω 861:∈ 838:Γ 803:μ 797:Σ 782:Ω 737:∩ 719:φ 710:μ 646:∈ 611:φ 607:∘ 598:φ 579:φ 544:φ 517:→ 502:φ 435:∩ 408:μ 385:μ 365:Σ 339:μ 333:Σ 286:∅ 277:∩ 183:∈ 150:→ 125:in 1927. 64:June 2023 1638:See also 1060:for all 467:for all 123:Birkhoff 1630:with a 830:. Let 824:measure 822:with a 52:improve 1700:  1684:; See 1668:  774:. Let 561:action 243:, the 103:mixing 1249:is a 1146:> 932:orbit 770:of a 312:be a 165:of a 37:, or 1698:ISBN 1666:ISBN 1622:The 1199:> 684:> 534:flow 478:> 228:> 93:and 1556:is 1436:as 1273:if 1229:of 975:of 930:or 820:set 665:of 563:on 354:of 209:of 89:In 1716:: 1202:0. 1100:A 1092:. 938:. 751:0. 567:: 41:, 33:, 1688:. 1674:. 1598:W 1538:W 1527:W 1484:. 1481:W 1457:= 1448:W 1434:W 1399:) 1393:, 1387:( 1335:W 1329:W 1303:} 1300:e 1297:{ 1275:W 1227:W 1195:) 1191:U 1185:) 1182:U 1179:( 1174:n 1170:f 1165:( 1148:N 1144:n 1140:N 1136:x 1132:U 1118:X 1112:x 1080:V 1045:0 1042:= 1038:) 1034:U 1028:U 1018:( 981:V 977:x 973:U 949:x 936:x 911:} 899:: 896:x 887:{ 858:x 806:) 800:, 794:, 791:X 788:( 785:= 748:= 744:) 740:U 734:) 731:U 728:( 723:t 714:( 687:T 681:t 671:T 667:x 663:U 649:X 643:x 620:. 615:s 602:t 594:= 589:s 586:+ 583:t 565:X 520:X 514:X 511:: 506:t 481:N 475:n 452:, 449:0 446:= 442:) 438:U 432:) 429:U 426:( 421:n 417:f 412:( 342:) 336:, 330:, 327:X 324:( 310:X 289:. 283:= 280:U 274:) 271:U 268:( 263:n 259:f 231:N 225:n 215:N 211:x 207:U 186:X 180:x 170:X 153:X 147:X 144:: 141:f 77:) 71:( 66:) 62:( 48:.

Index

list of references
related reading
external links
inline citations
improve
introducing
Learn how and when to remove this message
dynamical systems
ergodic theory
mixing
dissipative system
conservative system
Poincaré recurrence theorem
phase space
Birkhoff
topological space
neighbourhood
iterated map
measure zero
measure space
Borel sets
flow
abelian group
action
group action
topological group
set
measure
Borel subsets
trajectory

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑