Knowledge

Water–gas shift reaction

Source 📝

159:. The benefits of this application are two-fold: not only would the water gas shift reaction effectively reduce the concentration of carbon monoxide, but it would also increase the efficiency of the fuel cells by increasing hydrogen production. Unfortunately, current commercial catalysts that are used in industrial water gas shift processes are not compatible with fuel cell applications. With the high demand for clean fuel and the critical role of the water gas shift reaction in hydrogen fuel cells, the development of water gas shift catalysts for the application in fuel cell technology is an area of current research interest. 471:
accounts for about 90% of the total rate owing to the thermodynamic stability of adsorbed formate on the oxide support. The active site for carboxyl formation consists of a metal atom adjacent to an adsorbed hydroxyl. This ensemble is readily formed at the metal-oxide interface and explains the much higher activity of oxide-supported transition metals relative to extended metal surfaces. The turn-over-frequency for the WGSR is proportional to the equilibrium constant of hydroxyl formation, which rationalizes why reducible oxide supports (e.g. CeO
435:
as kinetically relevant during the high-temperature WGSR (> 350 °C) over the industrial iron-chromia catalyst. Historically, there has been much more controversy surrounding the mechanism at low temperatures. Recent experimental studies confirm that the associative carboxyl mechanism is the predominant low temperature pathway on metal-oxide-supported transition metal catalysts.
427: 209: 479:) and extended metal surfaces (e.g. Pt). In contrast to the active site for carboxyl formation, formate formation occurs on extended metal surfaces. The formate intermediate can be eliminated during the WGSR by using oxide-supported atomically dispersed transition metal catalysts, further confirming the kinetic dominance of the carboxyl pathway. 434:
The WGSR has been extensively studied for over a hundred years. The kinetically relevant mechanism depends on the catalyst composition and the temperature. Two mechanisms have been proposed: an associative Langmuir–Hinshelwood mechanism and a redox mechanism. The redox mechanism is generally regarded
417:
prevents dispersion and pellet shrinkage. The LTS shift reactor operates at a range of 200–250 °C. The upper temperature limit is due to the susceptibility of copper to thermal sintering. These lower temperatures also reduce the occurrence of side reactions that are observed in the case of the
400:
Catalysts for the lower temperature WGS reaction are commonly based on copper or copper oxide loaded ceramic phases, While the most common supports include alumina or alumina with zinc oxide, other supports may include rare earth oxides, spinels or perovskites. A typical composition of a commercial
162:
Catalysts for fuel cell application would need to operate at low temperatures. Since the WGSR is slow at lower temperatures where equilibrium favors hydrogen production, WGS reactors require large amounts of catalysts, which increases their cost and size beyond practical application. The commercial
470:
There has been significant controversy surrounding the kinetically relevant intermediate during the associative mechanism. Experimental studies indicate that both intermediates contribute to the reaction rate over metal oxide supported transition metal catalysts. However, the carboxyl pathway
383:
nature of the reaction. As such, the inlet temperature is maintained at 350 °C to prevent the exit temperature from exceeding 550 °C. Industrial reactors operate at a range from atmospheric pressure to 8375 kPa (82.7 atm). The search for high performance HT WGS catalysts remains an
331:(LTS) with intersystem cooling. The initial HTS takes advantage of the high reaction rates, but results in incomplete conversion of carbon monoxide. A subsequent low temperature shift reactor lowers the carbon monoxide content to <1%. Commercial HTS catalysts are based on 302: 199:
The equilibrium of this reaction shows a significant temperature dependence and the equilibrium constant decreases with an increase in temperature, that is, higher hydrogen formation is observed at lower temperatures.
1017:
Grabow, Lars C.; Gokhale, Amit A.; Evans, Steven T.; Dumesic, James A.; Mavrikakis, Manos (2008-03-01). "Mechanism of the Water Gas Shift Reaction on Pt: First Principles, Experiments, and Microkinetic Modeling".
897:
Coletta, Vitor C.; Gonçalves, Renato V.; Bernardi, Maria I. B.; Hanaor, Dorian A. H.; Assadi, M. Hussein N.; Marcos, Francielle C. F.; Nogueira, Francisco G. E.; Assaf, Elisabete M.; Mastelaro, Valmor R. (2021).
388:
is a key criteria for the assessment of catalytic performance in WGS reactions. To date, some of the lowest activation energy values have been found for catalysts consisting of copper nanoparticles on
155:
by increasing hydrogen production. The WGSR is considered a critical component in the reduction of carbon monoxide concentrations in cells that are susceptible to carbon monoxide poisoning such as the
167:
in its inactive state and therefore presents safety concerns for consumer applications. Developing a catalyst that can overcome these limitations is relevant to implementation of a hydrogen economy.
459:
O dissociates onto the catalyst to yield adsorbed OH and H. The dissociated water reacts with CO to form a carboxyl or formate intermediate. The intermediate subsequently dehydrogenates to yield CO
487:
The redox mechanism involves a change in the oxidation state of the catalytic material. In this mechanism, CO is oxidized by an O-atom intrinsically belonging to the catalytic material to form CO
870:
Rodriguez, J.A.; Liu, P.; Wang, X.; Wen, W.; Hanson, J.; Hrbek, J.; Pérez, M.; Evans, J. (15 May 2009). "Water-gas shift activity of Cu surfaces and Cu nanoparticles supported on metal oxides".
1296:
Barakat, Tarek; Rooke, Joanna C.; Genty, Eric; Cousin, Renaud; Siffert, Stéphane; Su, Bao-Lian (1 January 2013). "Gold catalysts in environmental remediation and water-gas shift technologies".
73:
in 1780. It was not until much later that the industrial value of this reaction was realized. Before the early 20th century, hydrogen was obtained by reacting steam under high pressure with
720:
Jansen, Daniel; van Selow, Edward; Cobden, Paul; Manzolini, Giampaolo; Macchi, Ennio; Gazzani, Matteo; Blom, Richard; Heriksen, Partow Pakdel; Beavis, Rich; Wright, Andrew (2013-01-01).
576:
In the conversion of carbon dioxide to useful materials, the water–gas shift reaction is used to produce carbon monoxide from hydrogen and carbon dioxide. This is sometimes called the
132:/CO ratio. It provides a source of hydrogen at the expense of carbon monoxide, which is important for the production of high purity hydrogen for use in ammonia synthesis. 1322:
King, A. D.; King, R. B.; Yang, D. B., "Homogeneous catalysis of the water gas shift reaction using iron pentacarbonyl", J. Am. Chem. Soc. 1980, vol. 102, pp. 1028-1032.
379:. The operation of HTS catalysts occurs within the temperature range of 310 °C to 450 °C. The temperature increases along the length of the reactor due to the 947:
Jain, Rishabh; Maric, Radenka (April 2014). "Synthesis of nano-Pt onto ceria support as catalyst for water–gas shift reaction by Reactive Spray Deposition Technology".
217: 409:. The active catalytic species is CuO. The function of ZnO is to provide structural support as well as prevent the poisoning of copper by sulfur. The Al 1107:
Yao, Siyu; Zhang, Xiao; Zhou, Wu; Gao, Rui; Xu, Wenqian; Ye, Yifan; Lin, Lili; Wen, Xiaodong; Liu, Ping; Chen, Bingbing; Crumlin, Ethan (2017-06-22).
237: 974:
Gokhale, Amit A.; Dumesic, James A.; Mavrikakis, Manos (2008-01-01). "On the Mechanism of Low-Temperature Water Gas Shift Reaction on Copper".
680: 135:
The water–gas shift reaction may be an undesired side reaction in processes involving water and carbon monoxide, e.g. the rhodium-based
156: 627: 184: 1062:"Heterolytic Hydrogen Activation: Understanding Support Effects in Water–Gas Shift, Hydrodeoxygenation, and CO Oxidation Catalysis" 704: 375:, 0.2% MgO (remaining percentage attributed to volatile components). The chromium acts to stabilize the iron oxide and prevents 900:"Cu-Modified SrTiO3 Perovskites Toward Enhanced Water–Gas Shift Catalysis: A Combined Experimental and Computational Study" 1422: 1412: 1178:
Nelson, Nicholas C.; Nguyen, Manh-Thuong; Glezakou, Vassiliki-Alexandra; Rousseau, Roger; Szanyi, János (October 2019).
607: 232:. Over the temperature range of 600–2000 K, the equilibrium constant for the WGSR has the following relationship: 125: 1417: 805:
Smith R J, Byron; Muruganandam Loganthan; Murthy Shekhar Shantha (2010). "A Review of the Water Gas Shift Reaction".
229: 343:. Sulfur compounds are removed prior to the LTS reactor by a guard bed. An important limitation for the HTS is the H 212:
Temperature dependence of the free molar (Gibbs) enthalpy and equilibrium constant of the water-gas shift reaction.
1181:"Carboxyl intermediate formation via an in situ-generated metastable active site during water-gas shift catalysis" 1427: 535: 447:
O are adsorbed onto the surface of the catalyst, followed by formation of an intermediate and the desorption of H
524: 492: 1339:
Guil-López, R.; Mota, N.; Llorente, J.; Millán, E.; Pawelec, B.; Fierro, J. L. G.; Navarro, R. M. (2019).
612: 508: 1108: 216:
With increasing temperature, the reaction rate increases, but hydrogen production becomes less favorable
1352: 1123: 721: 622: 225: 1109:"Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction" 706:
Kinetics and catalysis of the water-gas-shift reaction: A Microkinetic and Graph Theoretic Approach
443:
In 1920 Armstrong and Hilditch first proposed the associative mechanism. In this mechanism CO and H
221: 89: 392:
support materials, with values as low as Ea = 34 kJ/mol reported relative to hydrogen generation.
1278: 1209: 1157: 1089: 929: 911: 899: 822: 784: 651: 507:
The mechanism entails nucleophilic attack of water or hydroxide on a M-CO center, generating a
495:
at the newly formed O-vacancy to yield two hydroxyls. The hydroxyls disproportionate to yield H
347:
O/CO ratio where low ratios may lead to side reactions such as the formation of metallic iron,
116:. Its most important application is in conjunction with the conversion of carbon monoxide from 81:
and hydrogen. With the development of industrial processes that required hydrogen, such as the
1388: 1370: 1270: 1262: 1254: 1201: 1149: 1141: 1081: 1061: 1035: 999: 991: 746: 676: 385: 320: 316: 104:
The WGSR is a highly valuable industrial reaction that is used in the manufacture of ammonia,
93: 1341:"Methanol Synthesis from CO2: A Review of the Latest Developments in Heterogeneous Catalysis" 1378: 1360: 1323: 1305: 1246: 1193: 1131: 1073: 1027: 983: 956: 921: 879: 852: 814: 776: 736: 136: 339:
and the LTS catalyst is a copper-based. The copper catalyst is susceptible to poisoning by
82: 117: 35: 1227:
Nelson, Nicholas C.; Chen, Linxiao; Meira, Debora; Kovarik, Libor; Szanyi, János (2020).
1356: 1127: 319:
of the reaction, the industrial scale water gas shift reaction is conducted in multiple
1383: 1340: 336: 312: 140: 70: 43: 1406: 1282: 1234:
During Reverse Water–Gas Shift Reaction: Formation of Atomically Dispersed Palladium"
1213: 1161: 1093: 933: 590:). The term 'shift' in water–gas shift means changing the water gas composition (CO:H 418:
HTS. Noble metals such as platinum, supported on ceria, have also been used for LTS.
164: 1180: 826: 788: 767:
Ratnasamy, Chandra; Wagner, Jon P. (September 2009). "Water Gas Shift Catalysis".
586:
is defined as a fuel gas consisting mainly of carbon monoxide (CO) and hydrogen (H
960: 883: 741: 359:
The typical composition of commercial HTS catalyst has been reported as 74.2% Fe
348: 105: 39: 17: 1197: 856: 780: 380: 332: 176: 78: 1374: 1258: 1205: 1145: 1077: 1039: 995: 750: 297:{\displaystyle K_{\mathrm {eq} }=10^{-2.4198+0.0003855T+{\frac {2180.6}{T}}}} 1136: 583: 520: 376: 152: 92:
was needed. As a resolution to this problem, the WGSR was combined with the
1392: 1274: 1250: 1153: 1003: 925: 818: 426: 384:
intensive topic of research in fields of chemistry and materials science.
545: 430:
Proposed associative and redox mechanisms of the water gas shift reaction
113: 109: 47: 1327: 1365: 1309: 555: 128:, the WGSR is one of the most important reactions used to balance the H 121: 85: 1266: 1229: 1085: 1031: 987: 208: 632: 340: 188: 916: 401:
LTS catalyst has been reported as 32-33% CuO, 34-53% ZnO, 15-33% Al
671:
Vielstich, Wolf; Lamm, Arnold; Gasteiger, Hubert A., eds. (2003).
425: 389: 207: 499:
and return the catalytic surface back to its pre-reaction state.
187:(SEWGS) in order to produce a high pressure hydrogen stream from 69:
The water gas shift reaction was discovered by Italian physicist
617: 74: 673:
Handbook of fuel cells: fundamentals, technology, applications
124:
or other hydrocarbons in the production of hydrogen. In the
163:
LTS catalyst used in large scale industrial plants is also
843:
Newsome, David S. (1980). "The Water-Gas Shift Reaction".
88:
synthesis, a less expensive and more efficient method of
463:
and adsorbed H. Two adsorbed H atoms recombine to form H
351:, carbon deposition, and the Fischer–Tropsch reaction. 175:
The WGS reaction is used in combination with the solid
807:
International Journal of Chemical Reactor Engineering
568:
In aqueous solution, the reaction is less exergonic.
475:) are more active than irreducible supports (e.g. SiO 324: 240: 328: 1228: 1179: 296: 1060:Nelson, Nicholas C.; Szanyi, János (2020-05-15). 220:since the water gas shift reaction is moderately 143:uses less water, which suppresses this reaction. 666: 664: 662: 660: 594:) ratio. The ratio can be increased by adding CO 654:a combined experimental and computational study 838: 836: 722:"SEWGS Technology is Now Ready for Scale-up!" 8: 698: 696: 694: 692: 598:or reduced by adding steam to the reactor. 27:Reaction of carbon monoxide and water vapor 845:Catalysis Reviews: Science and Engineering 1382: 1364: 1135: 915: 740: 282: 263: 246: 245: 239: 976:Journal of the American Chemical Society 531: 157:proton-exchange membrane (PEM) fuel cell 1239:Angewandte Chemie International Edition 1230:"In Situ Dispersion of Palladium on TiO 800: 798: 709:(PhD). Worcester Polytechnic Institute. 644: 311:In order to take advantage of both the 151:The WGSR can aid in the efficiency of 1173: 1171: 1055: 1053: 1051: 1049: 7: 762: 760: 1020:The Journal of Physical Chemistry C 1298:Energy & Environmental Science 250: 247: 25: 628:Sorption enhanced water gas shift 185:sorption enhanced water gas shift 171:Sorption enhanced water gas shift 34:(WGSR) describes the reaction of 578:reverse water–gas shift reaction 355:High temperature shift catalysis 396:Low temperature shift catalysis 228:can be explained according to 1: 527:at room temperature (298 K): 491:. A water molecule undergoes 234: 226:shift in chemical equilibrium 961:10.1016/j.apcata.2014.01.053 949:Applied Catalysis A: General 904:ACS Applied Energy Materials 884:10.1016/j.cattod.2008.08.022 742:10.1016/j.egypro.2013.06.107 608:In situ resource utilization 703:Callaghan, Caitlin (2006). 1444: 1198:10.1038/s41929-019-0343-2 857:10.1080/03602458008067535 781:10.1080/01614940903048661 652:Water Gas Shift Catalysis 1078:10.1021/acscatal.0c01059 525:thermodynamic parameters 230:Le Chatelier's principle 32:water–gas shift reaction 1137:10.1126/science.aah4321 572:Reverse water–gas shift 493:dissociative adsorption 126:Fischer–Tropsch process 1251:10.1002/anie.202007576 926:10.1021/acsaem.0c02371 819:10.2202/1542-6580.2238 613:Lane hydrogen producer 509:metallacarboxylic acid 431: 325:high temperature shift 298: 213: 204:Temperature dependence 523:, with the following 439:Associative mechanism 429: 329:low temperature shift 299: 211: 96:to produce hydrogen. 623:Industrial catalysts 327:(HTS) followed by a 238: 139:. The iridium-based 94:gasification of coal 1423:Hydrogen production 1413:Inorganic reactions 1357:2019Mate...12.3902G 1328:10.1021/ja00523a020 1245:(40): 17657–17663. 1128:2017Sci...357..389Y 675:. New York: Wiley. 560:ΔS = –10.1 cal/deg 195:Reaction conditions 90:hydrogen production 1418:Chemical processes 1366:10.3390/ma12233902 1310:10.1039/c2ee22859a 503:Homogeneous models 432: 307:Practical concerns 294: 214: 1122:(6349): 389–393. 1072:(10): 5663–5671. 1032:10.1021/jp7099702 1026:(12): 4608–4617. 988:10.1021/ja0768237 769:Catalysis Reviews 682:978-0-471-49926-8 564: 563: 386:Activation energy 290: 218:thermodynamically 16:(Redirected from 1435: 1428:Industrial gases 1397: 1396: 1386: 1368: 1336: 1330: 1320: 1314: 1313: 1293: 1287: 1286: 1236: 1224: 1218: 1217: 1186:Nature Catalysis 1183: 1175: 1166: 1165: 1139: 1113: 1104: 1098: 1097: 1057: 1044: 1043: 1014: 1008: 1007: 982:(4): 1402–1414. 971: 965: 964: 944: 938: 937: 919: 894: 888: 887: 867: 861: 860: 840: 831: 830: 802: 793: 792: 764: 755: 754: 744: 726: 717: 711: 710: 700: 687: 686: 668: 655: 649: 550:ΔH = –9.84 kcal 540:ΔG = –6.82 kcal 532: 323:consisting of a 321:adiabatic stages 303: 301: 300: 295: 293: 292: 291: 283: 255: 254: 253: 137:Monsanto process 21: 1443: 1442: 1438: 1437: 1436: 1434: 1433: 1432: 1403: 1402: 1401: 1400: 1338: 1337: 1333: 1321: 1317: 1295: 1294: 1290: 1233: 1226: 1225: 1221: 1192:(10): 916–924. 1177: 1176: 1169: 1111: 1106: 1105: 1101: 1059: 1058: 1047: 1016: 1015: 1011: 973: 972: 968: 946: 945: 941: 896: 895: 891: 872:Catalysis Today 869: 868: 864: 842: 841: 834: 804: 803: 796: 766: 765: 758: 729:Energy Procedia 724: 719: 718: 714: 702: 701: 690: 683: 670: 669: 658: 650: 646: 641: 604: 597: 593: 589: 574: 517: 505: 498: 490: 485: 483:Redox mechanism 478: 474: 466: 462: 458: 455:. In general, H 454: 450: 446: 441: 424: 416: 412: 408: 404: 398: 374: 370: 366: 362: 357: 346: 309: 304: 259: 241: 236: 235: 206: 197: 182: 173: 149: 131: 118:steam reforming 102: 65: 61: 57: 36:carbon monoxide 28: 23: 22: 18:Water gas shift 15: 12: 11: 5: 1441: 1439: 1431: 1430: 1425: 1420: 1415: 1405: 1404: 1399: 1398: 1331: 1315: 1288: 1231: 1219: 1167: 1099: 1045: 1009: 966: 939: 889: 878:(1–2): 45–50. 862: 851:(2): 275–318. 832: 794: 775:(3): 325–440. 756: 712: 688: 681: 656: 643: 642: 640: 637: 636: 635: 630: 625: 620: 615: 610: 603: 600: 595: 591: 587: 573: 570: 566: 565: 562: 561: 558: 552: 551: 548: 542: 541: 538: 516: 515:Thermodynamics 513: 504: 501: 496: 488: 484: 481: 476: 472: 464: 460: 456: 452: 448: 444: 440: 437: 423: 420: 414: 410: 406: 402: 397: 394: 372: 368: 364: 360: 356: 353: 344: 337:chromium oxide 313:thermodynamics 308: 305: 289: 286: 281: 278: 275: 272: 269: 266: 262: 258: 252: 249: 244: 205: 202: 196: 193: 180: 172: 169: 148: 145: 141:Cativa process 129: 101: 98: 71:Felice Fontana 67: 66: 63: 59: 55: 44:carbon dioxide 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1440: 1429: 1426: 1424: 1421: 1419: 1416: 1414: 1411: 1410: 1408: 1394: 1390: 1385: 1380: 1376: 1372: 1367: 1362: 1358: 1354: 1350: 1346: 1342: 1335: 1332: 1329: 1325: 1319: 1316: 1311: 1307: 1303: 1299: 1292: 1289: 1284: 1280: 1276: 1272: 1268: 1264: 1260: 1256: 1252: 1248: 1244: 1240: 1235: 1223: 1220: 1215: 1211: 1207: 1203: 1199: 1195: 1191: 1187: 1182: 1174: 1172: 1168: 1163: 1159: 1155: 1151: 1147: 1143: 1138: 1133: 1129: 1125: 1121: 1117: 1110: 1103: 1100: 1095: 1091: 1087: 1083: 1079: 1075: 1071: 1067: 1066:ACS Catalysis 1063: 1056: 1054: 1052: 1050: 1046: 1041: 1037: 1033: 1029: 1025: 1021: 1013: 1010: 1005: 1001: 997: 993: 989: 985: 981: 977: 970: 967: 962: 958: 954: 950: 943: 940: 935: 931: 927: 923: 918: 913: 909: 905: 901: 893: 890: 885: 881: 877: 873: 866: 863: 858: 854: 850: 846: 839: 837: 833: 828: 824: 820: 816: 812: 808: 801: 799: 795: 790: 786: 782: 778: 774: 770: 763: 761: 757: 752: 748: 743: 738: 735:: 2265–2273. 734: 730: 723: 716: 713: 708: 707: 699: 697: 695: 693: 689: 684: 678: 674: 667: 665: 663: 661: 657: 653: 648: 645: 638: 634: 631: 629: 626: 624: 621: 619: 616: 614: 611: 609: 606: 605: 601: 599: 585: 581: 579: 571: 569: 559: 557: 554: 553: 549: 547: 544: 543: 539: 537: 534: 533: 530: 529: 528: 526: 522: 514: 512: 510: 502: 500: 494: 482: 480: 468: 438: 436: 428: 421: 419: 395: 393: 391: 387: 382: 378: 354: 352: 350: 342: 338: 334: 330: 326: 322: 318: 314: 306: 287: 284: 279: 276: 273: 270: 267: 264: 260: 256: 242: 233: 231: 227: 223: 219: 210: 203: 201: 194: 192: 190: 186: 178: 170: 168: 166: 160: 158: 154: 146: 144: 142: 138: 133: 127: 123: 119: 115: 111: 107: 99: 97: 95: 91: 87: 84: 80: 76: 72: 53: 52: 51: 49: 45: 41: 37: 33: 19: 1351:(23): 3902. 1348: 1344: 1334: 1318: 1301: 1297: 1291: 1242: 1238: 1222: 1189: 1185: 1119: 1115: 1102: 1069: 1065: 1023: 1019: 1012: 979: 975: 969: 952: 948: 942: 907: 903: 892: 875: 871: 865: 848: 844: 810: 806: 772: 768: 732: 728: 715: 705: 672: 647: 582: 577: 575: 567: 519:The WGSR is 518: 506: 486: 469: 442: 433: 399: 358: 310: 215: 198: 174: 161: 150: 134: 106:hydrocarbons 103: 100:Applications 68: 31: 29: 955:: 461–468. 910:: 452–461. 536:Free energy 349:methanation 83:Haber–Bosch 77:to produce 40:water vapor 1407:Categories 1304:(2): 371. 917:2104.06739 639:References 381:exothermic 367:, 10.0% Cr 333:iron oxide 222:exothermic 177:adsorption 165:pyrophoric 153:fuel cells 147:Fuel cells 79:iron oxide 1375:1996-1944 1345:Materials 1283:220118889 1259:1521-3773 1214:202729116 1206:2520-1158 1162:206651887 1146:0036-8075 1094:218798723 1040:1932-7447 996:0002-7863 934:233231670 751:1876-6102 584:Water gas 521:exergonic 422:Mechanism 377:sintering 274:0.0003855 265:− 1393:31779127 1275:32589820 1154:28642235 1004:18181624 827:96769998 813:: 1–32. 789:98530242 602:See also 546:Enthalpy 317:kinetics 114:hydrogen 110:methanol 48:hydrogen 42:to form 1384:6926878 1353:Bibcode 1267:1661896 1124:Bibcode 1116:Science 1086:1656557 556:Entropy 224:; this 183:in the 122:methane 86:ammonia 1391:  1381:  1373:  1281:  1273:  1265:  1257:  1212:  1204:  1160:  1152:  1144:  1092:  1084:  1038:  1002:  994:  932:  825:  787:  749:  679:  633:Syngas 451:and CO 341:sulfur 285:2180.6 268:2.4198 189:syngas 112:, and 58:O ⇌ CO 54:CO + H 1279:S2CID 1210:S2CID 1158:S2CID 1112:(PDF) 1090:S2CID 930:S2CID 912:arXiv 823:S2CID 785:S2CID 725:(PDF) 390:ceria 179:of CO 1389:PMID 1371:ISSN 1271:PMID 1263:OSTI 1255:ISSN 1202:ISSN 1150:PMID 1142:ISSN 1082:OSTI 1036:ISSN 1000:PMID 992:ISSN 747:ISSN 677:ISBN 618:PROX 315:and 75:iron 46:and 38:and 30:The 1379:PMC 1361:doi 1324:doi 1306:doi 1247:doi 1194:doi 1132:doi 1120:357 1074:doi 1028:doi 1024:112 984:doi 980:130 957:doi 953:475 922:doi 880:doi 876:143 853:doi 815:doi 777:doi 737:doi 120:of 62:+ H 1409:: 1387:. 1377:. 1369:. 1359:. 1349:12 1347:. 1343:. 1300:. 1277:. 1269:. 1261:. 1253:. 1243:59 1241:. 1237:. 1208:. 1200:. 1188:. 1184:. 1170:^ 1156:. 1148:. 1140:. 1130:. 1118:. 1114:. 1088:. 1080:. 1070:10 1068:. 1064:. 1048:^ 1034:. 1022:. 998:. 990:. 978:. 951:. 928:. 920:. 906:. 902:. 874:. 849:21 847:. 835:^ 821:. 809:. 797:^ 783:. 773:51 771:. 759:^ 745:. 733:37 731:. 727:. 691:^ 659:^ 580:. 511:. 467:. 261:10 191:. 108:, 50:: 1395:. 1363:: 1355:: 1326:: 1312:. 1308:: 1302:6 1285:. 1249:: 1232:2 1216:. 1196:: 1190:2 1164:. 1134:: 1126:: 1096:. 1076:: 1042:. 1030:: 1006:. 986:: 963:. 959:: 936:. 924:: 914:: 908:4 886:. 882:: 859:. 855:: 829:. 817:: 811:8 791:. 779:: 753:. 739:: 685:. 596:2 592:2 588:2 497:2 489:2 477:2 473:2 465:2 461:2 457:2 453:2 449:2 445:2 415:3 413:O 411:2 407:3 405:O 403:2 373:3 371:O 369:2 365:3 363:O 361:2 345:2 335:– 288:T 280:+ 277:T 271:+ 257:= 251:q 248:e 243:K 181:2 130:2 64:2 60:2 56:2 20:)

Index

Water gas shift
carbon monoxide
water vapor
carbon dioxide
hydrogen
Felice Fontana
iron
iron oxide
Haber–Bosch
ammonia
hydrogen production
gasification of coal
hydrocarbons
methanol
hydrogen
steam reforming
methane
Fischer–Tropsch process
Monsanto process
Cativa process
fuel cells
proton-exchange membrane (PEM) fuel cell
pyrophoric
adsorption
sorption enhanced water gas shift
syngas

thermodynamically
exothermic
shift in chemical equilibrium

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.