Knowledge

Water wall turbine

Source đź“ť

47: 152: 756: 86: 119: 62:
have been used throughout history in a wide variety of configurations. Most designs capture the water's kinetic energy, i.e. energy stored in the water's motion. Between 2004 and 2010, Lodewyk Botha and Marek Sredzki developed an inflow turbine that captures water's potential energy in addition to
106:
energy are harvested, providing higher energy extraction efficiency than a kinetic energy only approach. This is the principal difference between traditional water wheels and the water wall turbine design. It is this difference that allows a water wall turbine to operate effectively in low head
147:
Water wall turbines do not require barrages or catchment ponds and thus have minimal impact on the tidal effect in estuaries, making them suitable for sensitive environments. All of the electrical and mechanical components of a water wall turbine are in closed-containment above the waterline,
265: 70:
system. In this deployment, the water wall turbine features a straight flow-to-drive turbine mounted on a self-floating platform. The vessel is 28-meters long and 17-meters wide and weighs roughly 550 metric tons. The project serves
657: 148:
mitigating the environmental impact to the waterway. The blades are arranged along the horizontal axis and turn slower than the speed of the current which results in a minimal risk to fish, sea mammals, or their habitats.
131:
A water wall turbine may be designed for a wide range of marine and freshwater installations including tidal zones, rivers, and canals, with its own flotation or on pylons. In contrast to other types of turbines such as
246: 720: 144:, it does not need a high water head or penstock. This makes it applicable in low head environments such as coastal passageways, where tidal currents are strongest. 115:
to channel and accelerate the useable current. Studies in laboratory conditions have demonstrated that water wall turbines can achieve an efficiency of up to 90%.
111:
to build up across the turbine, hydraulically propagated over the total vertical submerged blade. The turbine's catamaran-style floats use the
107:
environments. A water wall turbine's large rotating blade structure moves slower than the current, “blocking” the flow. In doing so, it causes
844: 689: 647: 78:
In 2015, a study regarding the modeling and optimization of water wall turbines was conducted by the Canadian Hydraulics Centre of the
66:
The first full-scale water wall turbine project was completed in 2016 by Water Wall Turbine Inc. It features a 1MW power plant and a
745: 31:
operation using radial blades that rotate around a horizontal axis. The water wall turbine is suitable for energy extraction from
834: 304: 79: 329: 725: 280: 82:. Independent studies regarding the efficiency and theory of a water wall turbine's operation have also been published. 364:
MĂĽller, G. (2009). "Recent developments in hydropower with very low head differences". University of Southampton, UK.
46: 27:
designed to utilize hydrostatic pressure differences for low head hydropower generation. It supports bidirectional
503: 542: 682: 504:"Potential for using the floating body structure to increase the efficiency of a free stream energy converter" 63:
its kinetic energy. Principal patents for the technology were registered and published between 2005 and 2011.
839: 582:"Experimental investigation on the effect of channel width on flexible rubber blade water wheel performance" 541:
Batten, W.; Weichbrodt, F.; Müller, G.; Hadler, J.; Semlow, C.; Hochbaum, M.; Dimke, S.; Fröhle, P. (2011).
849: 788: 461: 186: 166: 553: 514: 472: 369: 337: 829: 426: 675: 803: 442: 75:
in BC, Canada. The deployment demonstrates the technology's ability to power remote communities.
28: 658:
Front End Engineering and Design Study (FEED) for the Dent Island Tidal Power Generation Project
652: 151: 263:, "Water turbine for the extraction of energy from water currents", issued 2006-05-11 764: 706: 624: 593: 434: 176: 773: 755: 566: 527: 485: 399:
Hydrostatic Pressure Converters for the Exploitation of Very Low Head Hydropower Potential
382: 350: 181: 137: 430: 778: 241: 191: 141: 112: 108: 103: 98:
The turbine's bidirectional rotation operates inline with the free current flow. Both
85: 823: 798: 783: 446: 425:(6). University of Southampton, UK; Fachbereich Bauingenieurwesen, Germany: 703–714. 24: 118: 793: 592:. University of Southampton, UK, Darmstadt University of Technology, Germany: 1–7. 196: 133: 59: 43:
installations, the turbine operates in both directions as the tide ebbs and flows.
613:"The Effect of Paddle Number and Immersed Radius Ratio on Water Wheel Performance" 260: 629: 612: 597: 438: 808: 735: 730: 40: 740: 698: 171: 36: 462:"The rotary hydraulic pressure, machine for very low head, hydropower sites" 99: 67: 648:
Canadian Hydraulics Centre of National Research Council Canada in Ottawa
330:"3D Modelling and Optimization of a Hydrokinetic Power Generation Barge" 397: 581: 414: 150: 117: 84: 45: 543:"Design and stability of a floating free stream energy converter" 548:. University of Southampton, UK, University of Rostock, Germany. 402:(phd). University of Southampton, UK: University of Southampton. 217: 32: 671: 305:"New tidal energy technology could power remote BC communities" 715: 72: 667: 653:
Water Wall Turbine Dent Island Tidal Power Generation Project
50:
Water wall turbine hydrostatic pressure converter principle
623:. University of Technology Lanna Tak, Thailand: 359–365. 415:"New hydropower converters for very low-head differences" 662: 580:
Paudel, S.; Linton, N.; Zanke, U.; Saenger, N. (2013).
763: 705: 721:List of conventional hydroelectric power stations 244:, "Water Wall Turbine", issued 2006-08-13 683: 328:Baker, S.; Cornett, A.; Kluijver, M. (2015). 122:Water wall turbine power curve and efficiency 8: 460:Senior, J.; Wiemann, P.; MĂĽller, G. (2008). 413:Senior, J.; Saenger, N.; MĂĽller, G. (2010). 89:Water wall turbine self-floating power plant 690: 676: 668: 628: 497: 495: 281:"Shipyard is rolling along with the tide" 209: 562: 551: 523: 512: 481: 470: 378: 367: 346: 335: 155:Water wall turbine range of operation 7: 611:Tevataa, A.; Inprasita, C. (2011). 332:. National Research Council Canada. 14: 746:Run-of-the-river hydroelectricity 754: 509:. University of Southampton, UK. 467:. University of Southampton, UK. 80:National Research Council Canada 726:Pumped-storage hydroelectricity 502:Batten, W.; MĂĽller, G. (2011). 218:"History - Water Wall Turbine" 1: 419:Journal of Hydraulic Research 279:Wood, Graeme (17 June 2016). 630:10.1016/j.egypro.2011.09.039 598:10.1016/j.renene.2012.10.014 439:10.1080/00221686.2010.529301 845:Renewable energy technology 866: 752: 835:Tidal stream generators 663:Water Wall Turbine Inc. 789:Gorlov helical turbine 561:Cite journal requires 522:Cite journal requires 480:Cite journal requires 377:Cite journal requires 345:Cite journal requires 187:Gorlov helical turbine 167:Tidal stream generator 156: 123: 90: 51: 154: 121: 88: 49: 16:Type of water turbine 431:2010JHydR..48..703S 396:Senior, J. (2009). 94:Theory of operation 804:Cross-flow turbine 157: 124: 91: 52: 21:water wall turbine 817: 816: 73:Dent Island Lodge 857: 765:Hydroelectricity 758: 707:Hydroelectricity 692: 685: 678: 669: 635: 634: 632: 608: 602: 601: 586:Renewable Energy 577: 571: 570: 564: 559: 557: 549: 547: 538: 532: 531: 525: 520: 518: 510: 508: 499: 490: 489: 483: 478: 476: 468: 466: 457: 451: 450: 410: 404: 403: 393: 387: 386: 380: 375: 373: 365: 361: 355: 354: 348: 343: 341: 333: 325: 319: 318: 316: 315: 301: 295: 294: 292: 291: 276: 270: 269: 268: 264: 257: 251: 250: 249: 245: 242:US 20070122279A1 238: 232: 231: 229: 228: 214: 177:Hydroelectricity 865: 864: 860: 859: 858: 856: 855: 854: 820: 819: 818: 813: 774:Francis turbine 759: 750: 701: 696: 644: 639: 638: 617:Energy Procedia 610: 609: 605: 579: 578: 574: 560: 550: 545: 540: 539: 535: 521: 511: 506: 501: 500: 493: 479: 469: 464: 459: 458: 454: 412: 411: 407: 395: 394: 390: 376: 366: 363: 362: 358: 344: 334: 327: 326: 322: 313: 311: 303: 302: 298: 289: 287: 278: 277: 273: 266: 259: 258: 254: 247: 240: 239: 235: 226: 224: 216: 215: 211: 206: 201: 182:Francis turbine 162: 129: 96: 57: 17: 12: 11: 5: 863: 861: 853: 852: 847: 842: 840:Water turbines 837: 832: 822: 821: 815: 814: 812: 811: 806: 801: 796: 791: 786: 781: 779:Kaplan turbine 776: 770: 768: 761: 760: 753: 751: 749: 748: 743: 738: 733: 728: 723: 718: 712: 710: 703: 702: 697: 695: 694: 687: 680: 672: 666: 665: 660: 655: 650: 643: 642:External links 640: 637: 636: 603: 572: 563:|journal= 533: 524:|journal= 491: 482:|journal= 452: 405: 388: 379:|journal= 356: 347:|journal= 320: 296: 271: 252: 233: 208: 207: 205: 202: 200: 199: 194: 192:Kaplan turbine 189: 184: 179: 174: 169: 163: 161: 158: 128: 125: 113:Venturi effect 95: 92: 56: 53: 39:currents. For 15: 13: 10: 9: 6: 4: 3: 2: 862: 851: 850:Marine energy 848: 846: 843: 841: 838: 836: 833: 831: 828: 827: 825: 810: 807: 805: 802: 800: 799:Turgo turbine 797: 795: 792: 790: 787: 785: 784:Tyson turbine 782: 780: 777: 775: 772: 771: 769: 766: 762: 757: 747: 744: 742: 739: 737: 734: 732: 729: 727: 724: 722: 719: 717: 714: 713: 711: 708: 704: 700: 693: 688: 686: 681: 679: 674: 673: 670: 664: 661: 659: 656: 654: 651: 649: 646: 645: 641: 631: 626: 622: 618: 614: 607: 604: 599: 595: 591: 587: 583: 576: 573: 568: 555: 544: 537: 534: 529: 516: 505: 498: 496: 492: 487: 474: 463: 456: 453: 448: 444: 440: 436: 432: 428: 424: 420: 416: 409: 406: 401: 400: 392: 389: 384: 371: 360: 357: 352: 339: 331: 324: 321: 310: 306: 300: 297: 286: 285:Richmond News 282: 275: 272: 262: 256: 253: 243: 237: 234: 223: 222:wwturbine.com 219: 213: 210: 203: 198: 195: 193: 190: 188: 185: 183: 180: 178: 175: 173: 170: 168: 165: 164: 159: 153: 149: 145: 143: 139: 135: 126: 120: 116: 114: 110: 109:head pressure 105: 101: 93: 87: 83: 81: 76: 74: 69: 64: 61: 54: 48: 44: 42: 38: 34: 30: 26: 25:water turbine 22: 794:Pelton wheel 620: 616: 606: 589: 585: 575: 554:cite journal 536: 515:cite journal 473:cite journal 455: 422: 418: 408: 398: 391: 370:cite journal 359: 338:cite journal 323: 312:. Retrieved 308: 299: 288:. Retrieved 284: 274: 255: 236: 225:. Retrieved 221: 212: 197:Pelton wheel 146: 130: 127:Applications 97: 77: 65: 60:Water wheels 58: 20: 18: 830:Tidal power 809:Water wheel 736:Micro hydro 731:Small hydro 309:Global News 261:CA 2546897C 55:Development 41:tidal power 824:Categories 741:Pico hydro 709:generation 699:Hydropower 314:2019-11-16 290:2019-11-17 227:2019-11-17 204:References 172:Hydropower 37:freshwater 767:equipment 447:119552113 100:potential 68:microgrid 160:See also 427:Bibcode 138:Francis 104:kinetic 445:  267:  248:  142:Kaplan 140:, and 134:Pelton 29:inflow 546:(PDF) 507:(PDF) 465:(PDF) 443:S2CID 33:tidal 23:is a 567:help 528:help 486:help 383:help 351:help 102:and 35:and 19:The 716:Dam 625:doi 594:doi 435:doi 826:: 619:. 615:. 590:52 588:. 584:. 558:: 556:}} 552:{{ 519:: 517:}} 513:{{ 494:^ 477:: 475:}} 471:{{ 441:. 433:. 423:48 421:. 417:. 374:: 372:}} 368:{{ 342:: 340:}} 336:{{ 307:. 283:. 220:. 136:, 691:e 684:t 677:v 633:. 627:: 621:9 600:. 596:: 569:) 565:( 530:) 526:( 488:) 484:( 449:. 437:: 429:: 385:) 381:( 353:) 349:( 317:. 293:. 230:.

Index

water turbine
inflow
tidal
freshwater
tidal power

Water wheels
microgrid
Dent Island Lodge
National Research Council Canada

potential
kinetic
head pressure
Venturi effect

Pelton
Francis
Kaplan

Tidal stream generator
Hydropower
Hydroelectricity
Francis turbine
Gorlov helical turbine
Kaplan turbine
Pelton wheel
"History - Water Wall Turbine"
US 20070122279A1
CA 2546897C

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑