Knowledge

Weinreb ketone synthesis

Source 📝

180: 240: 161: 330: 496: 410: 434: 465: 288: 315: 446: 390: 247:
This chelation is in contrast to the mechanism for formation of the over-addition product wherein collapse of the tetrahedral intermediate allows a second addition. The mechanistic conjecture on the part of Weinreb was immediately accepted by the academic community, but it was not until 2006 that it
397:
Nonetheless, the Weinreb–Nahm amide figures prominently into many syntheses, serving as an important coupling partner for various fragments. Shown below are key steps involving Weinreb amides in the synthesis of several natural products, including members of the
960:
Davies, S. G.; Goodwin, C. J.; Hepworth, D.; Roberts, P. M.; Thomson, J. E. (2010), "On the Origins of Diastereoselectivity in the Alkylation of Enolates Derived from N-1-(1'-Naphthyl)ethyl-O-tert-butylhydroxamates: Chiral Weinreb Amide Equivalents",
195:
and can be reliably reacted to form new carbon–carbon bonds or converted into other functional groups. This method has been used in a number of syntheses, including macrosphelides A and B, amphidinolide J, and spirofungins A and B.
441:
Additionally, a one-pot magnesium–halogen exchange with subsequent arylation has been developed, showcasing the stability of the Weinreb–Nahm amide and providing an operationally simple method for the synthesis of aryl ketones.
283:
Cl affords the corresponding Weinreb amide in good yields. Alternatively, non-nucleophilic Grignard reagents such as isopropyl magnesium chloride can be used to activate the amine before addition of the ester.
784:
Martinelli, J. R.; Freckmann, D. M. M.; Buchwald, S. L. (2006), "Convenient Method for the Preparation of Weinreb Amides via Pd-Catalyzed Aminocarbonylation of Aryl Bromides at Atmospheric Pressure",
342:
The standard conditions for the Weinreb–Nahm ketone synthesis are known to tolerate a wide variety of functional groups elsewhere in the molecule, including alpha-halogen substitution, N-protected
168:
The major advantage of this method over addition of organometallic reagents to more typical acyl compounds is that it avoids the common problem of over-addition. For these latter reactions, two
904:
Whipple, W. L.; Reich, H. J. (1991), "Use of N,N'-dimethoxy-N,N'-dimethylurea as a carbonyl dication equivalent in organometallic addition reactions. Synthesis of unsymmetrical ketones",
386:
have been reported. However, with highly basic or sterically hindered nucleophiles, elimination of the methoxide moiety to release formaldehyde can occur as a significant side reaction.
758: 256:
In addition to the original procedure shown above (which may have compatibility issues for sensitive substrates), Weinreb amides can be synthesized from a variety of
426:
has been performed to avoid the sometimes harsh conditions required for addition of hydride reagents or organometallic compounds. This yields an N-methyl-N-methoxy-
1008: 932:
Sibi, M. P.; Sharma, R.; Paulson, K. L. (1992), "N,N′-Dimethoxy-N,N -Dimethylethanediamide: A Useful α-Oxo-N-Methoxy-N-Methylamide and 1,2-Diketone Synthon",
568:
Paek, S.-M.; Seo, S.-Y.; Kim, S.-H.; Jung, J.-W.; Lee, Y.-S.; Jung, J.-K.; Suh, Y.-G. (2005), "Concise Syntheses of (+)-Macrosphelides A and B",
179: 495: 187:
The Weinreb–Nahm amide has since been adopted into regular use by organic chemists as a dependable method for the synthesis of ketones. These
738: 433: 329: 646:
Shimizu, T.; Satoh, T.; Murakoshi, K.; Sodeoka, M. (2005), "Asymmetric Total Synthesis of (−)-Spirofungin A and (+)-Spirofungin B",
160: 239: 963: 906: 725: 684: 287: 1013: 464: 314: 848:
Hisler, K.; Tripoli, R.; Murphy, J. A. (2006), "Reactions of Weinreb amides: formation of aldehydes by Wittig reactions",
820:
Graham, S. L.; Scholz, T. H. (1990), "A new mode of reactivity of N-methoxy-N-methylamides with strongly basic reagents",
409: 1003: 756:
Mentzel, M.; Hoffmann, H. M. R. (1997), "N-methoxy-N-methylamides (Weinreb amides) in modern organic synthesis",
509: 261: 150: 111: 69: 358:, sulfinates, and phosphonate esters. A wide variety of nucleophiles can be used in conjunction with the amide. 209: 445: 453:
More unusual reagents with multiple Weinreb–Nahm amide functional groups have been synthesized, serving as CO
176:
rather than a ketone or aldehyde. This occurs even if the equivalents of nucleophile are closely controlled.
1018: 876:
Conrad, K.; Hsiao, Y.; Miller, R. (2005), "A practical one-pot process for α-amino aryl ketone synthesis",
95: 169: 682:
Qu, B.; Collum, D. B. (2006), "Mechanism of Acylation of Lithium Phenylacetylide with a Weinreb Amide",
217: 134: 208:
to explain the selectivity shown in reactions of the Weinreb–Nahm amide. Their suggestion was that the
723:
Singh, J.; Satyamurthi, N.; Aidhen, I. S. (2000), "The Growing Synthetic Utility of Weinreb's Amide",
304: 934: 878: 850: 822: 539: 233: 173: 232:
group as shown. This intermediate is stable only at low temperatures, requiring a low-temperature
308: 205: 492:
alkylation followed by facile cleavage to the corresponding enantioenriched aldehyde or ketone.
980: 803: 701: 665: 626: 587: 473: 399: 389: 296: 130: 99: 91: 53: 43: 972: 943: 915: 887: 859: 831: 795: 767: 734: 693: 657: 618: 579: 548: 481: 363: 188: 537:
Nahm, S.; Weinreb, S. M. (1981), "N-methoxy-n-methylamides as effective acylating agents",
786: 648: 609: 570: 485: 423: 322:
Finally, an aminocarbonylation reaction reported by Stephen Buchwald allows conversion of
192: 154: 260:
compounds. The vast majority of these procedures utilize the commercially available salt
299:
reagents can also be used to prepare Weinreb–Nahm amides from carboxylic acids. Various
221: 126: 835: 552: 997: 947: 359: 107: 106:. The original reaction involved two subsequent substitutions: the conversion of an 607:
Barbazanges, M.; Meyer, C.; Cossy, J. (2008), "Total Synthesis of Amphidinolide J",
300: 891: 863: 383: 347: 430:
that converts to the corresponding ketone or aldehyde upon hydrolytic workup.
403: 355: 343: 771: 484:
that combines the functionality of the Weinreb amide with that of the Myers'
17: 739:
10.1002/(sici)1521-3897(200004)342:4<340::aid-prac340>3.0.co;2-1
367: 225: 984: 807: 705: 669: 630: 591: 138: 919: 489: 458: 427: 351: 272: 229: 103: 976: 799: 697: 661: 622: 583: 514: 477: 379: 371: 311:-based couplings have been reported specifically for this purpose. 268: 146: 142: 375: 323: 257: 494: 463: 444: 432: 408: 388: 328: 313: 286: 238: 178: 159: 264:, which is typically easier to handle than the free amine. 499:
Davies' Auxiliary with Weinreb–Nahm-like functionality
248:
was confirmed by spectroscopic and kinetic analyses.
437:
Reaction of Weinreb–Nahm amides with Wittig reagents
204:Weinreb and Nahm originally proposed the following 125:, and subsequent treatment of this species with an 137:. Nahm and Weinreb also reported the synthesis of 326:halides directly into aryl Weinreb–Nahm amides. 366:are most commonly employed; examples involving 759:Journal für Praktische Chemie/Chemiker-Zeitung 333:Aminocarbonylation to form Weinreb–Nahm amides 291:Example of syntheses from esters and lactones 8: 563: 561: 318:Example of Syntheses from Carboxyllic Acids 641: 639: 602: 600: 102:and Steven Nahm as a method to synthesize 31: 751: 749: 747: 718: 716: 714: 532: 530: 526: 488:auxiliary, allowing diastereoselective 262:N,O-dimethylhydroxylamine hydrochloride 468:Synthons based on Weinreb–Nahm-amides 422:Reaction of Weinreb–Nahm amides with 172:of the incoming group add to form an 7: 1009:Carbon-carbon bond forming reactions 413:Syntheses using Weinreb–Nahm amide 402:family of macrosphelides, and the 25: 191:are present in a large number of 164:The Weinreb–Nahm ketone synthesis 964:The Journal of Organic Chemistry 907:The Journal of Organic Chemistry 685:The Journal of Organic Chemistry 98:. It was discovered in 1981 by 90:is a chemical reaction used in 1: 836:10.1016/s0040-4039(00)97039-4 726:Journal für praktische Chemie 553:10.1016/s0040-4039(01)91316-4 216:below) formed as a result of 88:Weinreb–Nahm ketone synthesis 948:10.1016/0040-4039(92)88108-h 892:10.1016/j.tetlet.2005.09.183 864:10.1016/j.tetlet.2006.06.118 183:Overaddition of nucleophiles 1035: 449:One-pot arylation reaction 510:N,O-Dimethylhydroxylamine 224:reagent is stabilized by 76: 65:Organic Chemistry Portal 59: 35:Weinreb ketone synthesis 34: 772:10.1002/prac.19973390194 406:family of spirofungins. 210:tetrahedral intermediate 151:lithium aluminum hydride 84:Weinreb ketone synthesis 70:weinreb-ketone-synthesis 1014:Substitution reactions 500: 469: 450: 438: 414: 394: 334: 319: 292: 244: 184: 165: 119:-Dimethylhydroxylamine 498: 467: 448: 436: 412: 392: 332: 317: 290: 242: 218:nucleophilic addition 182: 163: 135:organolithium reagent 346:, α-β unsaturation, 305:hydroxybenzotriazole 935:Tetrahedron Letters 920:10.1021/jo00008a057 879:Tetrahedron Letters 851:Tetrahedron Letters 823:Tetrahedron Letters 540:Tetrahedron Letters 243:Chelation mechanism 96:carbon–carbon bonds 1004:Coupling reactions 501: 470: 451: 439: 415: 395: 335: 320: 309:triphenylphosphine 293: 245: 206:reaction mechanism 185: 166: 149:with an excess of 129:reagent such as a 123:Weinreb–Nahm amide 977:10.1021/jo902499s 942:(15): 1941–1944, 886:(49): 8587–8589, 858:(35): 6293–6295, 830:(44): 6269–6272, 800:10.1021/ol061902t 794:(21): 4843–4846, 698:10.1021/jo061223w 692:(18): 7117–7119, 662:10.1021/ol052039k 656:(25): 5573–5576, 623:10.1021/ol801708x 617:(20): 4489–4492, 584:10.1021/ol0508429 578:(15): 3159–3162, 547:(39): 3815–3818, 474:Stephen G. Davies 400:immunosuppressant 364:Grignard reagents 189:functional groups 100:Steven M. Weinreb 92:organic chemistry 80: 79: 54:Coupling reaction 44:Steven M. Weinreb 27:Chemical reaction 16:(Redirected from 1026: 988: 987: 971:(4): 1214–1227, 957: 951: 950: 929: 923: 922: 914:(8): 2911–2912, 901: 895: 894: 873: 867: 866: 845: 839: 838: 817: 811: 810: 781: 775: 774: 753: 742: 741: 720: 709: 708: 679: 673: 672: 643: 634: 633: 604: 595: 594: 565: 556: 555: 534: 515:Ketone#Synthesis 482:chiral auxiliary 297:peptide coupling 267:Treatment of an 193:natural products 131:Grignard reagent 72: 32: 21: 1034: 1033: 1029: 1028: 1027: 1025: 1024: 1023: 994: 993: 992: 991: 959: 958: 954: 931: 930: 926: 903: 902: 898: 875: 874: 870: 847: 846: 842: 819: 818: 814: 787:Organic Letters 783: 782: 778: 755: 754: 745: 722: 721: 712: 681: 680: 676: 649:Organic Letters 645: 644: 637: 610:Organic Letters 606: 605: 598: 571:Organic Letters 567: 566: 559: 536: 535: 528: 523: 506: 486:pseudoephedrine 480:has designed a 457:and α-diketone 456: 424:Wittig reagents 420: 340: 282: 278: 254: 202: 155:amide reduction 68: 28: 23: 22: 15: 12: 11: 5: 1032: 1030: 1022: 1021: 1019:Name reactions 1016: 1011: 1006: 996: 995: 990: 989: 952: 924: 896: 868: 840: 812: 776: 743: 710: 674: 635: 596: 557: 525: 524: 522: 519: 518: 517: 512: 505: 502: 454: 419: 416: 354:and lactones, 339: 336: 280: 276: 253: 250: 222:organometallic 201: 198: 127:organometallic 78: 77: 74: 73: 66: 62: 61: 57: 56: 51: 50:Reaction type 47: 46: 41: 37: 36: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1031: 1020: 1017: 1015: 1012: 1010: 1007: 1005: 1002: 1001: 999: 986: 982: 978: 974: 970: 966: 965: 956: 953: 949: 945: 941: 937: 936: 928: 925: 921: 917: 913: 909: 908: 900: 897: 893: 889: 885: 881: 880: 872: 869: 865: 861: 857: 853: 852: 844: 841: 837: 833: 829: 825: 824: 816: 813: 809: 805: 801: 797: 793: 789: 788: 780: 777: 773: 769: 765: 761: 760: 752: 750: 748: 744: 740: 736: 732: 728: 727: 719: 717: 715: 711: 707: 703: 699: 695: 691: 687: 686: 678: 675: 671: 667: 663: 659: 655: 651: 650: 642: 640: 636: 632: 628: 624: 620: 616: 612: 611: 603: 601: 597: 593: 589: 585: 581: 577: 573: 572: 564: 562: 558: 554: 550: 546: 542: 541: 533: 531: 527: 520: 516: 513: 511: 508: 507: 503: 497: 493: 491: 487: 483: 479: 475: 466: 462: 460: 447: 443: 435: 431: 429: 425: 417: 411: 407: 405: 401: 393:Side reaction 391: 387: 385: 381: 377: 373: 369: 365: 361: 357: 353: 349: 345: 337: 331: 327: 325: 316: 312: 310: 306: 302: 298: 295:A variety of 289: 285: 274: 270: 265: 263: 259: 251: 249: 241: 237: 235: 231: 227: 223: 219: 215: 211: 207: 199: 197: 194: 190: 181: 177: 175: 171: 162: 158: 156: 152: 148: 144: 140: 136: 132: 128: 124: 120: 118: 114: 109: 108:acid chloride 105: 101: 97: 93: 89: 85: 75: 71: 67: 64: 63: 58: 55: 52: 49: 48: 45: 42: 39: 38: 33: 30: 19: 18:Weinreb amide 968: 962: 955: 939: 933: 927: 911: 905: 899: 883: 877: 871: 855: 849: 843: 827: 821: 815: 791: 785: 779: 763: 757: 730: 724: 689: 683: 677: 653: 647: 614: 608: 575: 569: 544: 538: 471: 452: 440: 421: 396: 384:nucleophiles 348:silyl ethers 341: 321: 301:carbodiimide 294: 266: 255: 246: 213: 203: 186: 167: 122: 121:, to form a 116: 112: 87: 83: 81: 60:Identifiers 40:Named after 29: 766:: 517–524, 344:amino acids 252:Preparation 170:equivalents 998:Categories 521:References 418:Variations 404:antibiotic 356:sulfonates 350:, various 472:Finally, 368:aliphatic 360:Lithiates 275:with AlMe 228:from the 226:chelation 200:Mechanism 143:reduction 139:aldehydes 985:20095549 808:17020317 706:16930080 670:16320994 631:18811171 592:16018610 504:See also 459:synthons 94:to make 733:: 340, 490:enolate 428:enamine 382:carbon 380:alkynyl 352:lactams 307:-, and 279:or AlMe 273:lactone 230:methoxy 220:by the 174:alcohol 145:of the 104:ketones 983:  806:  704:  668:  629:  590:  478:Oxford 378:, and 234:quench 372:vinyl 338:Scope 269:ester 153:(see 147:amide 110:with 981:PMID 804:PMID 702:PMID 666:PMID 627:PMID 588:PMID 376:aryl 362:and 324:aryl 258:acyl 82:The 973:doi 944:doi 916:doi 888:doi 860:doi 832:doi 796:doi 768:doi 764:339 735:doi 731:342 694:doi 658:doi 619:doi 580:doi 549:doi 476:of 303:-, 271:or 157:). 141:by 133:or 86:or 1000:: 979:, 969:75 967:, 940:33 938:, 912:56 910:, 884:46 882:, 856:47 854:, 828:31 826:, 802:, 790:, 762:, 746:^ 729:, 713:^ 700:, 690:71 688:, 664:, 652:, 638:^ 625:, 615:10 613:, 599:^ 586:, 574:, 560:^ 545:22 543:, 529:^ 461:. 374:, 370:, 236:. 975:: 946:: 918:: 890:: 862:: 834:: 798:: 792:8 770:: 737:: 696:: 660:: 654:7 621:: 582:: 576:7 551:: 455:2 281:2 277:3 214:A 212:( 117:O 115:, 113:N 20:)

Index

Weinreb amide
Steven M. Weinreb
Coupling reaction
weinreb-ketone-synthesis
organic chemistry
carbon–carbon bonds
Steven M. Weinreb
ketones
acid chloride
N,O-Dimethylhydroxylamine
organometallic
Grignard reagent
organolithium reagent
aldehydes
reduction
amide
lithium aluminum hydride
amide reduction
The Weinreb–Nahm ketone synthesis
equivalents
alcohol
Overaddition of nucleophiles
functional groups
natural products
reaction mechanism
tetrahedral intermediate
nucleophilic addition
organometallic
chelation
methoxy

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.