Knowledge (XXG)

Weil pairing

Source đź“ť

585: 849: 948: 1015: 1114: 366: 430: 682: 226: 159: 1251: 283: 887: 1186: 464: 440: 1305: 1215: 790: 914: 960: 456: 1062: 288: 1230: 1155: 118: 371: 1300: 1176: 75: 1181: 1159: 1295: 1049: 639: 36: 183: 128: 890: 70:) for Jacobians of curves, who gave an abstract algebraic definition; the corresponding results for 91: 1151: 238: 1130:
As in the case of elliptic curves, explicit formulae for this pairing can be given in terms of
865: 1211: 777: 448: 162: 71: 706:
The Weil pairing does not extend to a pairing on all the torsion points (the direct limit of
1033: 1264: 1260: 906: 16:
Binary function non degenerative defined between the point of twist of an abelian variety
44: 1289: 1246: 1147: 1037: 232: 63: 55: 32: 1171: 166: 435:
A down-to-earth construction of the Weil pairing is as follows. Choose a function
1277: 744: 20: 699:
is alternating and bilinear, giving rise to a non-degenerate pairing on the
580:{\displaystyle \mathrm {div} (F)=\sum _{0\leq k<n}-\sum _{0\leq k<n}.} 695:
times must give 1) other than 1. With this definition it can be shown that
1131: 768:(μ) of the multiplicative group (the inverse limit of ℓ roots of unity). 58:. More generally there is a similar Weil pairing between points of order 28: 1249:(1940), "Sur les fonctions algébriques à corps de constantes fini", 1048:, which in this particular case happens to be an isomorphism (see 714:
are not the same. However they do fit together to give a pairing
761:(the inverse limit of the â„“-torsion points) to the Tate module 1024:
is a projective, nonsingular curve of genus ≥ 0 over
844:{\displaystyle A\times A^{\vee }\longrightarrow \mu _{n}} 62:
of an abelian variety and its dual. It was introduced by
954:
then composition gives a (possibly degenerate) pairing
610:
is well-defined up to multiplication by a constant. If
74:
were known, and can be expressed simply by use of the
1065: 963: 917: 868: 793: 642: 467: 374: 291: 241: 186: 131: 1056:
with the polarisation gives a nondegenerate pairing
710:-torsion points) because the pairings for different 943:{\displaystyle \lambda :A\longrightarrow A^{\vee }} 1108: 1010:{\displaystyle A\times A\longrightarrow \mu _{n}.} 1009: 942: 881: 843: 676: 579: 424: 360: 277: 220: 153: 1109:{\displaystyle J\times J\longrightarrow \mu _{n}} 361:{\displaystyle E(K)=\{T\in E(K)\mid n\cdot T=O\}} 425:{\displaystyle \mu _{n}=\{x\in K\mid x^{n}=1\}} 784:, the Weil pairing is a nondegenerate pairing 1252:Les Comptes rendus de l'AcadĂ©mie des sciences 8: 419: 388: 355: 316: 1279:The Weil pairing on elliptic curves over C 1187:Homomorphic Signatures for Network Coding 1100: 1064: 1052:). Hence, composing the Weil pairing for 998: 962: 934: 916: 873: 867: 835: 813: 792: 664: 641: 541: 495: 468: 466: 407: 379: 373: 290: 240: 212: 185: 138: 130: 1198: 606:if these points are all distinct. Then 677:{\displaystyle w(P,Q):={\frac {G}{F}}} 626:has the same divisor, so the function 7: 1044:induces a principal polarisation of 67: 1237:, available at www.jmilne.org/math/ 780:over an algebraically closed field 772:Generalisation to abelian varieties 691:-th root of unity (as translating 602:, and a simple pole at each point 475: 472: 469: 221:{\displaystyle w(P,Q)\in \mu _{n}} 154:{\displaystyle E({\overline {K}})} 39:) on the points of order dividing 14: 1208:The Arithmetic of Elliptic Curves 594:has a simple zero at each point 1154:, and has also been applied in 1123:prime to the characteristic of 858:prime to the characteristic of 173:. The Weil pairing produces an 1093: 1090: 1084: 1075: 1069: 991: 988: 982: 973: 967: 927: 828: 825: 819: 803: 797: 658: 646: 571: 559: 531: 513: 485: 479: 334: 328: 310: 304: 301: 295: 272: 266: 263: 257: 202: 190: 148: 135: 113:) > 0) such that 101: > 0 (we require 1: 1210:. New York: Springer-Verlag. 143: 1156:elliptic curve cryptography 278:{\displaystyle P,Q\in E(K)} 119:primitive nth root of unity 1322: 1306:Pairing-based cryptography 1206:Silverman, Joseph (1986). 1177:Pairing-based cryptography 901:for higher dimensions. If 76:Weierstrass sigma function 1160:identity based encryption 882:{\displaystyle A^{\vee }} 86:Choose an elliptic curve 1146:The pairing is used in 1050:autoduality of Jacobians 897:. This is the so-called 757:) of the elliptic curve 633:Therefore if we define 622:, then by construction 37:multiplicative notation 1110: 1011: 944: 883: 845: 678: 614:is the translation of 581: 426: 362: 279: 222: 155: 105:to be coprime to char( 1182:Boneh–Franklin scheme 1111: 1012: 945: 884: 846: 679: 582: 427: 363: 280: 235:, for any two points 223: 156: 1063: 961: 915: 891:dual abelian variety 866: 791: 640: 465: 372: 289: 239: 184: 129: 905:is equipped with a 50:, taking values in 1152:algebraic geometry 1106: 1007: 940: 879: 841: 674: 577: 558: 512: 422: 358: 275: 218: 177:-th root of unity 151: 72:elliptic functions 1301:Abelian varieties 1235:Abelian Varieties 778:abelian varieties 687:we shall have an 672: 537: 491: 449:algebraic closure 163:Cartesian product 161:is known to be a 146: 97:, and an integer 1313: 1267: 1238: 1228: 1222: 1221: 1203: 1115: 1113: 1112: 1107: 1105: 1104: 1016: 1014: 1013: 1008: 1003: 1002: 949: 947: 946: 941: 939: 938: 888: 886: 885: 880: 878: 877: 850: 848: 847: 842: 840: 839: 818: 817: 683: 681: 680: 675: 673: 665: 586: 584: 583: 578: 557: 511: 478: 431: 429: 428: 423: 412: 411: 384: 383: 367: 365: 364: 359: 284: 282: 281: 276: 227: 225: 224: 219: 217: 216: 160: 158: 157: 152: 147: 139: 1321: 1320: 1316: 1315: 1314: 1312: 1311: 1310: 1296:Elliptic curves 1286: 1285: 1274: 1245: 1242: 1241: 1229: 1225: 1218: 1205: 1204: 1200: 1195: 1168: 1144: 1096: 1061: 1060: 994: 959: 958: 930: 913: 912: 869: 864: 863: 831: 809: 789: 788: 774: 767: 752: 742: 731: 720: 638: 637: 463: 462: 403: 375: 370: 369: 287: 286: 237: 236: 208: 182: 181: 127: 126: 90:defined over a 84: 17: 12: 11: 5: 1319: 1317: 1309: 1308: 1303: 1298: 1288: 1287: 1284: 1283: 1273: 1272:External links 1270: 1269: 1268: 1240: 1239: 1223: 1216: 1197: 1196: 1194: 1191: 1190: 1189: 1184: 1179: 1174: 1167: 1164: 1143: 1140: 1117: 1116: 1103: 1099: 1095: 1092: 1089: 1086: 1083: 1080: 1077: 1074: 1071: 1068: 1018: 1017: 1006: 1001: 997: 993: 990: 987: 984: 981: 978: 975: 972: 969: 966: 952: 951: 937: 933: 929: 926: 923: 920: 876: 872: 852: 851: 838: 834: 830: 827: 824: 821: 816: 812: 808: 805: 802: 799: 796: 773: 770: 765: 750: 740: 729: 718: 685: 684: 671: 668: 663: 660: 657: 654: 651: 648: 645: 588: 587: 576: 573: 570: 567: 564: 561: 556: 553: 550: 547: 544: 540: 536: 533: 530: 527: 524: 521: 518: 515: 510: 507: 504: 501: 498: 494: 490: 487: 484: 481: 477: 474: 471: 441:function field 421: 418: 415: 410: 406: 402: 399: 396: 393: 390: 387: 382: 378: 357: 354: 351: 348: 345: 342: 339: 336: 333: 330: 327: 324: 321: 318: 315: 312: 309: 306: 303: 300: 297: 294: 274: 271: 268: 265: 262: 259: 256: 253: 250: 247: 244: 229: 228: 215: 211: 207: 204: 201: 198: 195: 192: 189: 150: 145: 142: 137: 134: 83: 80: 56:roots of unity 45:elliptic curve 35:, though with 15: 13: 10: 9: 6: 4: 3: 2: 1318: 1307: 1304: 1302: 1299: 1297: 1294: 1293: 1291: 1282: 1280: 1276: 1275: 1271: 1266: 1262: 1258: 1254: 1253: 1248: 1244: 1243: 1236: 1232: 1227: 1224: 1219: 1217:0-387-96203-4 1213: 1209: 1202: 1199: 1192: 1188: 1185: 1183: 1180: 1178: 1175: 1173: 1170: 1169: 1165: 1163: 1161: 1157: 1153: 1149: 1148:number theory 1141: 1139: 1137: 1133: 1128: 1126: 1122: 1101: 1097: 1087: 1081: 1078: 1072: 1066: 1059: 1058: 1057: 1055: 1051: 1047: 1043: 1039: 1038:theta-divisor 1035: 1031: 1027: 1023: 1004: 999: 995: 985: 979: 976: 970: 964: 957: 956: 955: 935: 931: 924: 921: 918: 911: 910: 909: 908: 904: 900: 896: 892: 874: 870: 861: 857: 836: 832: 822: 814: 810: 806: 800: 794: 787: 786: 785: 783: 779: 771: 769: 764: 760: 756: 749: 746: 739: 735: 728: 724: 717: 713: 709: 704: 702: 698: 694: 690: 669: 666: 661: 655: 652: 649: 643: 636: 635: 634: 631: 630:is constant. 629: 625: 621: 617: 613: 609: 605: 601: 597: 593: 574: 568: 565: 562: 554: 551: 548: 545: 542: 538: 534: 528: 525: 522: 519: 516: 508: 505: 502: 499: 496: 492: 488: 482: 461: 460: 459: 458: 454: 450: 446: 442: 438: 433: 416: 413: 408: 404: 400: 397: 394: 391: 385: 380: 376: 352: 349: 346: 343: 340: 337: 331: 325: 322: 319: 313: 307: 298: 292: 269: 260: 254: 251: 248: 245: 242: 234: 233:Kummer theory 213: 209: 205: 199: 196: 193: 187: 180: 179: 178: 176: 172: 168: 167:cyclic groups 164: 140: 132: 124: 120: 116: 112: 108: 104: 100: 96: 93: 89: 81: 79: 77: 73: 69: 65: 61: 57: 53: 49: 46: 42: 38: 34: 33:bilinear form 30: 26: 22: 1278: 1256: 1250: 1234: 1226: 1207: 1201: 1172:Tate pairing 1145: 1142:Applications 1135: 1129: 1124: 1120: 1118: 1053: 1045: 1041: 1029: 1025: 1021: 1019: 953: 907:polarisation 902: 899:Weil pairing 898: 894: 889:denotes the 859: 855: 853: 781: 775: 762: 758: 754: 747: 737: 733: 726: 722: 715: 711: 707: 705: 700: 696: 692: 688: 686: 632: 627: 623: 619: 615: 611: 607: 603: 599: 595: 591: 589: 452: 444: 436: 434: 231:by means of 230: 174: 170: 125:-torsion on 122: 114: 110: 106: 102: 98: 94: 87: 85: 59: 51: 47: 40: 25:Weil pairing 24: 18: 1259:: 592–594, 1247:Weil, AndrĂ© 1231:James Milne 1036:, then the 745:Tate module 743:(ÎĽ) on the 121:. Then the 117:contains a 82:Formulation 21:mathematics 1290:Categories 1193:References 703:-torsion. 109:) if char( 64:AndrĂ© Weil 1098:μ 1094:⟶ 1079:× 996:μ 992:⟶ 977:× 936:∨ 928:⟶ 919:λ 875:∨ 833:μ 829:⟶ 815:∨ 807:× 566:⋅ 546:≤ 539:∑ 535:− 526:⋅ 500:≤ 493:∑ 447:over the 401:∣ 395:∈ 377:μ 344:⋅ 338:∣ 323:∈ 252:∈ 210:μ 206:∈ 169:of order 144:¯ 1166:See also 1132:divisors 1119:for all 1034:Jacobian 854:for all 285:, where 1265:0002863 862:. Here 457:divisor 439:in the 165:of two 29:pairing 1263:  1214:  1028:, and 43:of an 27:is a 23:, the 1281:(PDF) 736:) → 455:with 92:field 1212:ISBN 1158:and 1150:and 1032:its 776:For 725:) Ă— 552:< 506:< 368:and 68:1940 1257:210 1134:of 1040:of 1020:If 893:of 628:G/F 618:by 590:So 451:of 443:of 54:th 19:In 1292:: 1261:MR 1255:, 1233:, 1162:. 1138:. 1127:. 662::= 604:kQ 600:kQ 598:+ 432:. 78:. 1220:. 1136:C 1125:k 1121:n 1102:n 1091:] 1088:n 1085:[ 1082:J 1076:] 1073:n 1070:[ 1067:J 1054:J 1046:J 1042:J 1030:J 1026:k 1022:C 1005:. 1000:n 989:] 986:n 983:[ 980:A 974:] 971:n 968:[ 965:A 950:, 932:A 925:A 922:: 903:A 895:A 871:A 860:K 856:n 837:n 826:] 823:n 820:[ 811:A 804:] 801:n 798:[ 795:A 782:K 766:â„“ 763:T 759:E 755:E 753:( 751:â„“ 748:T 741:â„“ 738:T 734:E 732:( 730:â„“ 727:T 723:E 721:( 719:â„“ 716:T 712:n 708:n 701:n 697:w 693:n 689:n 670:F 667:G 659:) 656:Q 653:, 650:P 647:( 644:w 624:G 620:Q 616:F 612:G 608:F 596:P 592:F 575:. 572:] 569:Q 563:k 560:[ 555:n 549:k 543:0 532:] 529:Q 523:k 520:+ 517:P 514:[ 509:n 503:k 497:0 489:= 486:) 483:F 480:( 476:v 473:i 470:d 453:K 445:E 437:F 420:} 417:1 414:= 409:n 405:x 398:K 392:x 389:{ 386:= 381:n 356:} 353:O 350:= 347:T 341:n 335:) 332:K 329:( 326:E 320:T 317:{ 314:= 311:] 308:n 305:[ 302:) 299:K 296:( 293:E 273:] 270:n 267:[ 264:) 261:K 258:( 255:E 249:Q 246:, 243:P 214:n 203:) 200:Q 197:, 194:P 191:( 188:w 175:n 171:n 149:) 141:K 136:( 133:E 123:n 115:K 111:K 107:K 103:n 99:n 95:K 88:E 66:( 60:n 52:n 48:E 41:n 31:(

Index

mathematics
pairing
bilinear form
multiplicative notation
elliptic curve
roots of unity
André Weil
1940
elliptic functions
Weierstrass sigma function
field
primitive nth root of unity
Cartesian product
cyclic groups
Kummer theory
function field
algebraic closure
divisor
Tate module
abelian varieties
dual abelian variety
polarisation
Jacobian
theta-divisor
autoduality of Jacobians
divisors
number theory
algebraic geometry
elliptic curve cryptography
identity based encryption

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑