Knowledge (XXG)

Wilkinson's polynomial

Source 📝

1033: 609: 1028:{\displaystyle {\begin{aligned}w(x)={}&x^{20}-210x^{19}+20615x^{18}-1256850x^{17}+53327946x^{16}\\&{}-1672280820x^{15}+40171771630x^{14}-756111184500x^{13}\\&{}+11310276995381x^{12}-135585182899530x^{11}\\&{}+1307535010540395x^{10}-10142299865511450x^{9}\\&{}+63030812099294896x^{8}-311333643161390640x^{7}\\&{}+1206647803780373360x^{6}-3599979517947607200x^{5}\\&{}+8037811822645051776x^{4}-12870931245150988800x^{3}\\&{}+13803759753640704000x^{2}-8752948036761600000x\\&{}+2432902008176640000.\end{aligned}}} 1257: 38: 24: 1093: 1929: 1252:{\displaystyle {\begin{array}{rrrrr}1.00000&2.00000&3.00000&4.00000&5.00000\\6.00001&6.99970&8.00727&8.91725&20.84691\\10.09527\pm {}&11.79363\pm {}&13.99236\pm {}&16.73074\pm {}&19.50244\pm {}\\0.64350i&1.65233i&2.51883i&2.81262i&1.94033i\end{array}}} 2891: 2602: 1261:
Some of the roots are greatly displaced, even though the change to the coefficient is tiny and the original roots seem widely spaced. Wilkinson showed by the stability analysis discussed in the next section that this behavior is related to the fact that some roots
1752: 2096:| ≈ 0.000000119 is greater than the radius of convergence of the power series mentioned above (which is about 0.0000000029, somewhat smaller than the value 0.00000001 given by the crude estimate) so the linearized theory does not apply. For a value such as 2117:= 20 of Wilkinson's polynomial appear to be similar, as they are on opposite ends of a symmetric line of roots, and have the same set of distances 1, 2, 3, ..., 19 from other roots. However the analysis above shows that this is grossly misleading: the root 436:
It is therefore natural to expect that ill-conditioning also occurs when the polynomial has zeros which are very close. However, the problem may also be extremely ill-conditioned for polynomials with well-separated zeros. Wilkinson used the polynomial
1677: 1300:, so for numbers around 210, 2 was an error in the first bit position not represented in the computer. The two real numbers, −210 and −210 − 2, are represented by the same floating point number, which means that 2 is the 2310: 1492: 2696: 2460:
expresses the polynomial in a particular basis, namely that of the monomials. If the polynomial is expressed in another basis, then the problem of finding its roots may cease to be ill-conditioned. For example, in a
2468: 273: 594: 2364: 2689: 122: 1550: 614: 2092:
where the perturbed root has a large imaginary part but the first-order approximation (and for that matter all higher-order approximations) are real. The reason for this discrepancy is that |
361: 2458: 2146: 1391: 2922:. However, a perturbation in the other coefficients (all equal to zero) will slightly change the roots. Therefore, Wilkinson's polynomial is well-conditioned in this basis. 469:
and then finding its roots, since using the coefficients as an intermediate step may introduce an extreme ill-conditioning even if the original problem was well conditioned.
1924:{\displaystyle {d\alpha _{j} \over dt}=-{\alpha _{j}^{19} \over \prod _{k\neq j}(\alpha _{j}-\alpha _{k})}=-\prod _{k\neq j}{\alpha _{j} \over \alpha _{j}-\alpha _{k}}.\,\!} 2465:, a small change in one (or several) coefficients need not change the roots too much. Indeed, the basis polynomials for interpolation at the points 0, 1, 2, ..., 20 are 1304:
error in representing a real coefficient close to −210 by a floating point number on that computer. The perturbation analysis shows that 30-bit coefficient
2100:= 0.000000001 that is significantly smaller than this radius of convergence, the first-order approximation 19.9569... is reasonably close to the root 19.9509... 156: 480: 384:. That is, we hope that a small change in the coefficients will lead to a small change in the roots. Unfortunately, this is not the case here. 2315: 3017: 2950: 2609: 2886:{\displaystyle w(x)=(20!)\ell _{0}(x)=\sum _{i=0}^{20}d_{i}\ell _{i}(x)\quad {\text{with}}\quad d_{0}=(20!),\,d_{1}=d_{2}=\cdots =d_{20}=0.} 2044: = 20, the derivative is equal to −20/19! which is huge (about 43000000), so this root is very sensitive to small changes in 290: 2390: 3045:, ed. by G. H. Golub, pp. 1–28. (Studies in Mathematics, vol. 24). Washington, D.C.: Mathematical Association of America. 2597:{\displaystyle \ell _{k}(x)=\prod _{i=0,\ldots ,20 \atop i\neq k}{\frac {x-i}{k-i}},\qquad {\text{for}}\quad k=0,\ldots ,20.} 46: 150:
of a polynomial: the location of the roots can be very sensitive to perturbations in the coefficients of the polynomial.
2027:/19! ≈ 0.99999991779365). Similarly, the other small roots of Wilkinson's polynomial are insensitive to changes in  3039: 3074: 1098: 2023:
only changes from 1 to about 0.99999991779380 (which is very close to the first order approximation 1 + 
466: 2312:
The twenty zeros of this polynomial are in a geometric progression with common ratio 2, and hence the quotient
1986: = 1, the derivative is equal to 1/19! which is very small; this root is stable even for large changes in 1672:{\displaystyle \alpha _{j}+{d\alpha _{j} \over dt}t+{d^{2}\alpha _{j} \over dt^{2}}{t^{2} \over 2!}+\cdots } 1683:| is larger than the radius of convergence of this power series, which is given by the smallest value of | 1305: 147: 2085:·20/19! = 25.137... to the perturbed root 20.84... is terrible; this is even more obvious for the root 3079: 456:
Speaking for myself I regard it as the most traumatic experience in my career as a numerical analyst.
387:
The problem is ill-conditioned when the polynomial has a multiple root. For instance, the polynomial
2462: 363:
It is a natural question in numerical analysis to ask whether the problem of finding the roots of
2938: 143: 131: 3013: 2946: 287:
Wilkinson's polynomial arose in the study of algorithms for finding the roots of a polynomial
2986:
J. H. Wilkinson (1959). The evaluation of the zeros of ill-conditioned polynomials. Part I.
2305:{\displaystyle w_{2}(x)=\prod _{i=1}^{20}(x-2^{-i})=(x-2^{-1})(x-2^{-2})\cdots (x-2^{-20}).} 381: 1500:, and conversely if this derivative is small the roots will be unstable. In particular, if 461:
Wilkinson's polynomial is often used to illustrate the undesirability of naively computing
37: 1487:{\displaystyle {d\alpha _{j} \over dt}=-{c(\alpha _{j}) \over p^{\prime }(\alpha _{j})}.} 1294: 3068: 3054: 1698:
becomes multiple. A very crude estimate for this radius takes half the distance from
279:
is also used to refer to some other polynomials appearing in Wilkinson's discussion.
603:. These roots are far apart. However, the polynomial is still very ill-conditioned. 23: 1539: 1494:
When the derivative is large, the roots will be more stable under variations of
1297: 1045:(20) decreases from 0 to −220 = −6.25×10, and the root at 1388:. To first order, the change in the roots will be controlled by the derivative 1712:
In the example of Wilkinson's polynomial of degree 20, the roots are given by
462: 139: 1290: 1090:
as the perturbation increases further. The 20 roots become (to 5 decimals)
1041:
is decreased from −210 by 2 to −210.0000001192, then the polynomial value
2606:
Every polynomial (of degree 20 or less) can be expressed in this basis:
1529:
happens to vanish there), and the roots will be extremely unstable.
1308:
is insufficient for separating the roots of Wilkinson's polynomial.
268:{\displaystyle w(x)=\prod _{i=1}^{20}(x-i)=(x-1)(x-2)\cdots (x-20).} 3004:
It is mentioned in standard text books in numerical analysis, like
589:{\displaystyle w(x)=\prod _{i=1}^{20}(x-i)=(x-1)(x-2)\cdots (x-20)} 3028:
Ronald G. Mosier (July 1986). Root neighborhoods of a polynomial.
1511:
is a multiple root, then the denominator vanishes. In this case, α
465:
of a matrix by first calculating the coefficients of the matrix's
2081:= −2 the first-order approximation 20 −  2941:(1984). "The perfidious polynomial". In Gene H. Golub (ed.). 451:
In 1984, he described the personal impact of this discovery:
1457: 1709:
to the nearest root, and divides by the derivative above.
2359:{\displaystyle \alpha _{j} \over \alpha _{j}-\alpha _{k}} 3049:
A high-precision numerical computation is presented in:
2684:{\displaystyle p(x)=\sum _{i=0}^{20}d_{i}\ell _{i}(x).} 2895:
Given the definition of the Lagrange basis polynomial
1080:
which turns into a pair of complex conjugate roots at
117:{\displaystyle \operatorname {sgn}(w(x))\ln(1+|w(x)|)} 2699: 2612: 2471: 2393: 2319: 2149: 1755: 1553: 1394: 1096: 612: 483: 293: 159: 49: 2945:. Mathematical Association of America. p. 3. 2885: 2683: 2596: 2452: 2358: 2304: 2131:= 1 (to small perturbations in the coefficient of 1923: 1671: 1486: 1289:Wilkinson chose the perturbation of 2 because his 1251: 1027: 588: 355: 267: 116: 2135:) by a factor of 20 = 5242880000000000000000000. 1920: 3000:. Englewood Cliffs, New Jersey: Prentice Hall. 356:{\displaystyle p(x)=\sum _{i=0}^{n}c_{i}x^{i}.} 2453:{\displaystyle p(x)=\sum _{i=0}^{n}c_{i}x^{i}} 2143:The second example considered by Wilkinson is 1517:is usually not differentiable with respect to 8: 1940:will be less stable if there are many roots 1994:are a long way from it, in the sense that | 448:to illustrate this point (Wilkinson 1963). 2871: 2852: 2839: 2834: 2810: 2800: 2784: 2774: 2764: 2753: 2731: 2698: 2663: 2653: 2643: 2632: 2611: 2567: 2537: 2498: 2476: 2470: 2444: 2434: 2424: 2413: 2392: 2349: 2336: 2324: 2317: 2287: 2259: 2234: 2206: 2187: 2176: 2154: 2148: 1919: 1907: 1894: 1883: 1877: 1865: 1843: 1830: 1811: 1800: 1795: 1789: 1766: 1756: 1754: 1647: 1641: 1632: 1617: 1607: 1600: 1577: 1567: 1558: 1552: 1469: 1456: 1441: 1428: 1405: 1395: 1393: 1201: 1191: 1181: 1171: 1161: 1097: 1095: 1013: 991: 979: 966: 950: 938: 925: 909: 897: 884: 868: 856: 843: 827: 815: 802: 786: 774: 761: 745: 729: 717: 704: 688: 672: 656: 640: 632: 613: 611: 514: 503: 482: 344: 334: 324: 313: 292: 190: 179: 158: 106: 89: 48: 3061:(for Python), retrieved on 29 July 2006. 2982:Wilkinson discussed "his" polynomial in 2966:Trefethen, Lloyd N.; Bau, David (1997), 146:in 1963 to illustrate a difficulty when 2930: 2916:will produce no change in the roots of 2998:Rounding Errors in Algebraic Processes 2366:cannot be large. Indeed, the zeros of 2016:is as large as –10000000000, the root 1990:. This is because all the other roots 473:Conditioning of Wilkinson's polynomial 2005:| = 1, 2, 3, ..., 19 is larger than | 1377:, and ask how this affects the roots 1316:Suppose that we perturb a polynomial 7: 2693:For Wilkinson's polynomial, we find 1274:that are "close" in the sense that | 606:Expanding the polynomial, one finds 2070:| = 1, 2, 3, ..., 19 is less than | 1958:, in the sense that the distance |α 1538:the perturbed root is given by the 3055:Polynomials And Rational Functions 2499: 2037:. On the other hand, for the root 14: 2012:| = 1. For example, even if 1970:| between them is smaller than |α 596:clearly has 20 roots, located at 1749:. So the derivative is given by 36: 22: 2805: 2799: 2572: 2566: 1679:and one expects problems when | 2907:, a change in the coefficient 2828: 2819: 2796: 2790: 2743: 2737: 2724: 2715: 2709: 2703: 2675: 2669: 2622: 2616: 2488: 2482: 2403: 2397: 2296: 2274: 2268: 2246: 2243: 2221: 2215: 2193: 2166: 2160: 2138: 1849: 1823: 1475: 1462: 1447: 1434: 1073:collide into a double root at 626: 620: 583: 571: 565: 553: 550: 538: 532: 520: 493: 487: 303: 297: 259: 247: 241: 229: 226: 214: 208: 196: 169: 163: 111: 107: 103: 97: 90: 80: 71: 68: 62: 56: 29:Plot of Wilkinson's polynomial 1: 3043:Studies in Numerical Analysis 2943:Studies in Numerical Analysis 2379:changes in the coefficients. 410:(a perturbation of size  1270: = 15) have many roots 421:, which is much bigger than 3010:Numerical methods that work 1351:by adding a small multiple 3096: 3059:RPN Calculator User Manual 3040:The perfidious polynomial. 3030:Mathematics of Computation 2375:are quite stable to large 2139:Wilkinson's second example 472: 400:. However, the polynomial 393:has a double root at  2124:= 20 is less stable than 2103:At first sight the roots 1931:This shows that the root 467:characteristic polynomial 3038:J. H. Wilkinson (1984). 2996:J. H. Wilkinson (1963). 2968:Numerical Linear Algebra 1282:| is smaller than | 2383:The effect of the basis 477:Wilkinson's polynomial 2887: 2769: 2685: 2648: 2598: 2454: 2429: 2360: 2306: 2192: 1925: 1673: 1488: 1253: 1037:If the coefficient of 1029: 590: 519: 459: 369:from the coefficients 357: 329: 277:Wilkinson's polynomial 269: 195: 136:Wilkinson's polynomial 118: 2988:Numerische Mathematik 2888: 2749: 2686: 2628: 2599: 2455: 2409: 2361: 2307: 2172: 2059:, in the sense that | 1926: 1687:| such that the root 1674: 1489: 1254: 1030: 591: 499: 453: 358: 309: 270: 175: 119: 2697: 2610: 2469: 2391: 2316: 2147: 1964: − α 1753: 1551: 1532:For small values of 1392: 1293:computer had 30-bit 1094: 1019:2432902008176640000. 985:13803759753640704000 960:12870931245150988800 610: 481: 291: 275:Sometimes, the term 157: 47: 2939:Wilkinson, James H. 2063: −  2001: −  1805: 1001:8752948036761600000 944:8037811822645051776 919:3599979517947607200 903:1206647803780373360 3075:Numerical analysis 3024:Other references: 2883: 2681: 2594: 2536: 2450: 2330: 2302: 2048:. The other roots 1921: 1876: 1822: 1791: 1669: 1484: 1312:Stability analysis 1249: 1247: 1025: 1023: 878:311333643161390640 586: 353: 265: 153:The polynomial is 144:James H. Wilkinson 142:which was used by 132:numerical analysis 114: 3018:978-0-88385-450-1 2952:978-0-88385-126-5 2803: 2570: 2561: 2534: 2494: 2356: 1914: 1861: 1853: 1807: 1781: 1661: 1639: 1592: 1479: 1420: 862:63030812099294896 837:10142299865511450 3087: 2972: 2971: 2963: 2957: 2956: 2935: 2921: 2915: 2906: 2892: 2890: 2889: 2884: 2876: 2875: 2857: 2856: 2844: 2843: 2815: 2814: 2804: 2801: 2789: 2788: 2779: 2778: 2768: 2763: 2736: 2735: 2690: 2688: 2687: 2682: 2668: 2667: 2658: 2657: 2647: 2642: 2603: 2601: 2600: 2595: 2571: 2568: 2562: 2560: 2549: 2538: 2535: 2533: 2522: 2481: 2480: 2459: 2457: 2456: 2451: 2449: 2448: 2439: 2438: 2428: 2423: 2374: 2365: 2363: 2362: 2357: 2355: 2354: 2353: 2341: 2340: 2329: 2328: 2318: 2311: 2309: 2308: 2303: 2295: 2294: 2267: 2266: 2242: 2241: 2214: 2213: 2191: 2186: 2159: 2158: 1982:. For the root α 1957: 1948: 1939: 1930: 1928: 1927: 1922: 1915: 1913: 1912: 1911: 1899: 1898: 1888: 1887: 1878: 1875: 1854: 1852: 1848: 1847: 1835: 1834: 1821: 1804: 1799: 1790: 1782: 1780: 1772: 1771: 1770: 1757: 1744: 1733: 1726: 1708: 1697: 1678: 1676: 1675: 1670: 1662: 1660: 1652: 1651: 1642: 1640: 1638: 1637: 1636: 1623: 1622: 1621: 1612: 1611: 1601: 1593: 1591: 1583: 1582: 1581: 1568: 1563: 1562: 1547: 1537: 1528: 1522: 1510: 1499: 1493: 1491: 1490: 1485: 1480: 1478: 1474: 1473: 1461: 1460: 1450: 1446: 1445: 1429: 1421: 1419: 1411: 1410: 1409: 1396: 1387: 1376: 1366:of a polynomial 1365: 1350: 1339: 1258: 1256: 1255: 1250: 1248: 1202: 1192: 1182: 1172: 1162: 1089: 1079: 1072: 1065: 1058: 1051: 1034: 1032: 1031: 1026: 1024: 1014: 1009: 996: 995: 980: 975: 971: 970: 955: 954: 939: 934: 930: 929: 914: 913: 898: 893: 889: 888: 873: 872: 857: 852: 848: 847: 832: 831: 821:1307535010540395 816: 811: 807: 806: 791: 790: 775: 770: 766: 765: 750: 749: 734: 733: 718: 713: 709: 708: 693: 692: 677: 676: 661: 660: 645: 644: 633: 602: 595: 593: 592: 587: 518: 513: 447: 432: 426: 420: 409: 399: 392: 382:well-conditioned 379: 368: 362: 360: 359: 354: 349: 348: 339: 338: 328: 323: 274: 272: 271: 266: 194: 189: 148:finding the root 123: 121: 120: 115: 110: 93: 40: 26: 3095: 3094: 3090: 3089: 3088: 3086: 3085: 3084: 3065: 3064: 2980: 2975: 2965: 2964: 2960: 2953: 2937: 2936: 2932: 2928: 2917: 2914: 2908: 2900: 2896: 2867: 2848: 2835: 2806: 2780: 2770: 2727: 2695: 2694: 2659: 2649: 2608: 2607: 2550: 2539: 2523: 2500: 2472: 2467: 2466: 2440: 2430: 2389: 2388: 2385: 2373: 2367: 2345: 2332: 2331: 2320: 2314: 2313: 2283: 2255: 2230: 2202: 2150: 2145: 2144: 2141: 2130: 2123: 2116: 2109: 2091: 2076: 2069: 2058: 2043: 2022: 2011: 2000: 1985: 1975: 1969: 1963: 1956: 1950: 1947: 1941: 1938: 1932: 1903: 1890: 1889: 1879: 1839: 1826: 1806: 1773: 1762: 1758: 1751: 1750: 1735: 1728: 1721: 1713: 1707: 1699: 1696: 1688: 1653: 1643: 1628: 1624: 1613: 1603: 1602: 1584: 1573: 1569: 1554: 1549: 1548: 1543: 1533: 1524: 1518: 1516: 1509: 1501: 1495: 1465: 1452: 1451: 1437: 1430: 1412: 1401: 1397: 1390: 1389: 1386: 1378: 1367: 1352: 1349: 1341: 1337: 1317: 1314: 1246: 1245: 1237: 1229: 1221: 1213: 1204: 1203: 1193: 1183: 1173: 1163: 1152: 1151: 1146: 1141: 1136: 1131: 1125: 1124: 1119: 1114: 1109: 1104: 1092: 1091: 1081: 1074: 1067: 1060: 1059:. The roots at 1053: 1046: 1022: 1021: 1007: 1006: 987: 973: 972: 962: 946: 932: 931: 921: 905: 891: 890: 880: 864: 850: 849: 839: 823: 809: 808: 798: 796:135585182899530 782: 768: 767: 757: 741: 725: 711: 710: 700: 684: 668: 652: 636: 634: 608: 607: 601:= 1, 2, ..., 20 597: 479: 478: 475: 438: 428: 422: 415: 414:) has roots at 401: 394: 388: 378: 370: 364: 340: 330: 289: 288: 285: 155: 154: 128: 127: 126: 125: 124: 45: 44: 41: 32: 31: 30: 27: 12: 11: 5: 3093: 3091: 3083: 3082: 3077: 3067: 3066: 3063: 3062: 3057:, part of the 3047: 3046: 3036: 3035:(175):265–273. 3022: 3021: 3020:, p. 201. 3002: 3001: 2994: 2979: 2976: 2974: 2973: 2958: 2951: 2929: 2927: 2924: 2912: 2898: 2882: 2879: 2874: 2870: 2866: 2863: 2860: 2855: 2851: 2847: 2842: 2838: 2833: 2830: 2827: 2824: 2821: 2818: 2813: 2809: 2798: 2795: 2792: 2787: 2783: 2777: 2773: 2767: 2762: 2759: 2756: 2752: 2748: 2745: 2742: 2739: 2734: 2730: 2726: 2723: 2720: 2717: 2714: 2711: 2708: 2705: 2702: 2680: 2677: 2674: 2671: 2666: 2662: 2656: 2652: 2646: 2641: 2638: 2635: 2631: 2627: 2624: 2621: 2618: 2615: 2593: 2590: 2587: 2584: 2581: 2578: 2575: 2565: 2559: 2556: 2553: 2548: 2545: 2542: 2532: 2529: 2526: 2521: 2518: 2515: 2512: 2509: 2506: 2503: 2497: 2493: 2490: 2487: 2484: 2479: 2475: 2447: 2443: 2437: 2433: 2427: 2422: 2419: 2416: 2412: 2408: 2405: 2402: 2399: 2396: 2387:The expansion 2384: 2381: 2371: 2352: 2348: 2344: 2339: 2335: 2327: 2323: 2301: 2298: 2293: 2290: 2286: 2282: 2279: 2276: 2273: 2270: 2265: 2262: 2258: 2254: 2251: 2248: 2245: 2240: 2237: 2233: 2229: 2226: 2223: 2220: 2217: 2212: 2209: 2205: 2201: 2198: 2195: 2190: 2185: 2182: 2179: 2175: 2171: 2168: 2165: 2162: 2157: 2153: 2140: 2137: 2128: 2121: 2114: 2107: 2089: 2074: 2067: 2056: 2041: 2020: 2009: 1998: 1983: 1971: 1965: 1959: 1952: 1943: 1934: 1918: 1910: 1906: 1902: 1897: 1893: 1886: 1882: 1874: 1871: 1868: 1864: 1860: 1857: 1851: 1846: 1842: 1838: 1833: 1829: 1825: 1820: 1817: 1814: 1810: 1803: 1798: 1794: 1788: 1785: 1779: 1776: 1769: 1765: 1761: 1717: 1703: 1692: 1668: 1665: 1659: 1656: 1650: 1646: 1635: 1631: 1627: 1620: 1616: 1610: 1606: 1599: 1596: 1590: 1587: 1580: 1576: 1572: 1566: 1561: 1557: 1512: 1505: 1483: 1477: 1472: 1468: 1464: 1459: 1455: 1449: 1444: 1440: 1436: 1433: 1427: 1424: 1418: 1415: 1408: 1404: 1400: 1382: 1345: 1333: 1313: 1310: 1295:floating point 1244: 1241: 1238: 1236: 1233: 1230: 1228: 1225: 1222: 1220: 1217: 1214: 1212: 1209: 1206: 1205: 1200: 1197: 1194: 1190: 1187: 1184: 1180: 1177: 1174: 1170: 1167: 1164: 1160: 1157: 1154: 1153: 1150: 1147: 1145: 1142: 1140: 1137: 1135: 1132: 1130: 1127: 1126: 1123: 1120: 1118: 1115: 1113: 1110: 1108: 1105: 1103: 1100: 1099: 1020: 1017: 1012: 1010: 1008: 1005: 1002: 999: 994: 990: 986: 983: 978: 976: 974: 969: 965: 961: 958: 953: 949: 945: 942: 937: 935: 933: 928: 924: 920: 917: 912: 908: 904: 901: 896: 894: 892: 887: 883: 879: 876: 871: 867: 863: 860: 855: 853: 851: 846: 842: 838: 835: 830: 826: 822: 819: 814: 812: 810: 805: 801: 797: 794: 789: 785: 781: 780:11310276995381 778: 773: 771: 769: 764: 760: 756: 753: 748: 744: 740: 737: 732: 728: 724: 721: 716: 714: 712: 707: 703: 699: 696: 691: 687: 683: 680: 675: 671: 667: 664: 659: 655: 651: 648: 643: 639: 635: 631: 628: 625: 622: 619: 616: 615: 585: 582: 579: 576: 573: 570: 567: 564: 561: 558: 555: 552: 549: 546: 543: 540: 537: 534: 531: 528: 525: 522: 517: 512: 509: 506: 502: 498: 495: 492: 489: 486: 474: 471: 374: 352: 347: 343: 337: 333: 327: 322: 319: 316: 312: 308: 305: 302: 299: 296: 284: 281: 264: 261: 258: 255: 252: 249: 246: 243: 240: 237: 234: 231: 228: 225: 222: 219: 216: 213: 210: 207: 204: 201: 198: 193: 188: 185: 182: 178: 174: 171: 168: 165: 162: 138:is a specific 113: 109: 105: 102: 99: 96: 92: 88: 85: 82: 79: 76: 73: 70: 67: 64: 61: 58: 55: 52: 42: 35: 34: 33: 28: 21: 20: 19: 18: 17: 13: 10: 9: 6: 4: 3: 2: 3092: 3081: 3078: 3076: 3073: 3072: 3070: 3060: 3056: 3052: 3051: 3050: 3044: 3041: 3037: 3034: 3031: 3027: 3026: 3025: 3019: 3015: 3011: 3008:F. S. Acton, 3007: 3006: 3005: 2999: 2995: 2992: 2989: 2985: 2984: 2983: 2977: 2969: 2962: 2959: 2954: 2948: 2944: 2940: 2934: 2931: 2925: 2923: 2920: 2911: 2904: 2893: 2880: 2877: 2872: 2868: 2864: 2861: 2858: 2853: 2849: 2845: 2840: 2836: 2831: 2825: 2822: 2816: 2811: 2807: 2793: 2785: 2781: 2775: 2771: 2765: 2760: 2757: 2754: 2750: 2746: 2740: 2732: 2728: 2721: 2718: 2712: 2706: 2700: 2691: 2678: 2672: 2664: 2660: 2654: 2650: 2644: 2639: 2636: 2633: 2629: 2625: 2619: 2613: 2604: 2591: 2588: 2585: 2582: 2579: 2576: 2573: 2563: 2557: 2554: 2551: 2546: 2543: 2540: 2530: 2527: 2524: 2519: 2516: 2513: 2510: 2507: 2504: 2501: 2495: 2491: 2485: 2477: 2473: 2464: 2463:Lagrange form 2445: 2441: 2435: 2431: 2425: 2420: 2417: 2414: 2410: 2406: 2400: 2394: 2382: 2380: 2378: 2370: 2350: 2346: 2342: 2337: 2333: 2325: 2321: 2299: 2291: 2288: 2284: 2280: 2277: 2271: 2263: 2260: 2256: 2252: 2249: 2238: 2235: 2231: 2227: 2224: 2218: 2210: 2207: 2203: 2199: 2196: 2188: 2183: 2180: 2177: 2173: 2169: 2163: 2155: 2151: 2136: 2134: 2127: 2120: 2113: 2106: 2101: 2099: 2095: 2088: 2084: 2080: 2073: 2066: 2062: 2055: 2052:are close to 2051: 2047: 2040: 2036: 2032: 2030: 2026: 2019: 2015: 2008: 2004: 1997: 1993: 1989: 1981: 1977: 1974: 1968: 1962: 1955: 1946: 1937: 1916: 1908: 1904: 1900: 1895: 1891: 1884: 1880: 1872: 1869: 1866: 1862: 1858: 1855: 1844: 1840: 1836: 1831: 1827: 1818: 1815: 1812: 1808: 1801: 1796: 1792: 1786: 1783: 1777: 1774: 1767: 1763: 1759: 1748: 1742: 1738: 1731: 1725: 1720: 1716: 1710: 1706: 1702: 1695: 1691: 1686: 1682: 1666: 1663: 1657: 1654: 1648: 1644: 1633: 1629: 1625: 1618: 1614: 1608: 1604: 1597: 1594: 1588: 1585: 1578: 1574: 1570: 1564: 1559: 1555: 1546: 1542:expansion in 1541: 1536: 1530: 1527: 1521: 1515: 1508: 1504: 1498: 1481: 1470: 1466: 1453: 1442: 1438: 1431: 1425: 1422: 1416: 1413: 1406: 1402: 1398: 1385: 1381: 1374: 1370: 1363: 1359: 1355: 1348: 1344: 1336: 1332: 1328: 1324: 1320: 1311: 1309: 1307: 1303: 1299: 1296: 1292: 1287: 1285: 1281: 1278: −  1277: 1273: 1269: 1265: 1259: 1242: 1239: 1234: 1231: 1226: 1223: 1218: 1215: 1210: 1207: 1198: 1195: 1188: 1185: 1178: 1175: 1168: 1165: 1158: 1155: 1148: 1143: 1138: 1133: 1128: 1121: 1116: 1111: 1106: 1101: 1088: 1084: 1077: 1070: 1063: 1056: 1049: 1044: 1040: 1035: 1018: 1015: 1011: 1003: 1000: 997: 992: 988: 984: 981: 977: 967: 963: 959: 956: 951: 947: 943: 940: 936: 926: 922: 918: 915: 910: 906: 902: 899: 895: 885: 881: 877: 874: 869: 865: 861: 858: 854: 844: 840: 836: 833: 828: 824: 820: 817: 813: 803: 799: 795: 792: 787: 783: 779: 776: 772: 762: 758: 754: 751: 746: 742: 738: 735: 730: 726: 722: 719: 715: 705: 701: 697: 694: 689: 685: 681: 678: 673: 669: 665: 662: 657: 653: 649: 646: 641: 637: 629: 623: 617: 604: 600: 580: 577: 574: 568: 562: 559: 556: 547: 544: 541: 535: 529: 526: 523: 515: 510: 507: 504: 500: 496: 490: 484: 470: 468: 464: 458: 457: 452: 449: 445: 441: 434: 431: 425: 419: 413: 408: 404: 397: 391: 385: 383: 377: 373: 367: 350: 345: 341: 335: 331: 325: 320: 317: 314: 310: 306: 300: 294: 282: 280: 278: 262: 256: 253: 250: 244: 238: 235: 232: 223: 220: 217: 211: 205: 202: 199: 191: 186: 183: 180: 176: 172: 166: 160: 151: 149: 145: 141: 137: 133: 100: 94: 86: 83: 77: 74: 65: 59: 53: 50: 39: 25: 16: 3058: 3048: 3042: 3032: 3029: 3023: 3009: 3003: 2997: 2990: 2987: 2981: 2967: 2961: 2942: 2933: 2918: 2909: 2902: 2894: 2692: 2605: 2386: 2376: 2368: 2142: 2132: 2125: 2118: 2111: 2104: 2102: 2097: 2093: 2086: 2082: 2078: 2077:| = 20. For 2071: 2064: 2060: 2053: 2049: 2045: 2038: 2034: 2033: 2028: 2024: 2017: 2013: 2006: 2002: 1995: 1991: 1987: 1979: 1978: 1972: 1966: 1960: 1953: 1944: 1935: 1746: 1745:is equal to 1740: 1736: 1732:= 1, ..., 20 1729: 1723: 1718: 1714: 1711: 1704: 1700: 1693: 1689: 1684: 1680: 1544: 1540:power series 1534: 1531: 1525: 1519: 1513: 1506: 1502: 1496: 1383: 1379: 1372: 1368: 1361: 1357: 1353: 1346: 1342: 1334: 1330: 1326: 1322: 1318: 1315: 1301: 1298:significands 1288: 1283: 1279: 1275: 1271: 1267: 1263: 1260: 1086: 1085:≈ 19.5 ± 1.9 1082: 1075: 1068: 1061: 1054: 1047: 1042: 1038: 1036: 755:756111184500 605: 598: 476: 460: 455: 454: 450: 443: 439: 435: 429: 423: 417: 411: 406: 402: 395: 389: 386: 375: 371: 365: 286: 276: 152: 135: 129: 15: 3080:Polynomials 3053:Ray Buvel, 1340:with roots 1302:unavoidable 739:40171771630 463:eigenvalues 3069:Categories 2978:References 723:1672280820 433:is small. 283:Background 140:polynomial 2993::150–166. 2862:⋯ 2782:ℓ 2751:∑ 2729:ℓ 2661:ℓ 2630:∑ 2586:… 2555:− 2544:− 2528:≠ 2514:… 2496:∏ 2474:ℓ 2411:∑ 2347:α 2343:− 2334:α 2322:α 2289:− 2281:− 2272:⋯ 2261:− 2253:− 2236:− 2228:− 2208:− 2200:− 2174:∏ 1949:close to 1905:α 1901:− 1892:α 1881:α 1870:≠ 1863:∏ 1859:− 1841:α 1837:− 1828:α 1816:≠ 1809:∏ 1793:α 1787:− 1764:α 1667:⋯ 1615:α 1575:α 1556:α 1467:α 1458:′ 1439:α 1426:− 1403:α 1306:precision 1291:Pilot ACE 1266:(such as 1199:± 1189:± 1179:± 1169:± 1159:± 1052:grows to 998:− 957:− 916:− 875:− 834:− 793:− 752:− 720:− 679:− 647:− 578:− 569:⋯ 560:− 545:− 527:− 501:∏ 311:∑ 254:− 245:⋯ 236:− 221:− 203:− 177:∏ 78:⁡ 54:⁡ 2377:relative 2110:= 1 and 1523:(unless 1329:− 1196:19.50244 1186:16.73074 1176:13.99236 1166:11.79363 1156:10.09527 1149:20.84691 698:53327946 405:− 43:Plot of 2035:Example 1980:Example 1325:) = Π ( 1240:1.94033 1232:2.81262 1224:2.51883 1216:1.65233 1208:0.64350 1144:8.91725 1139:8.00727 1134:6.99970 1129:6.00001 1122:5.00000 1117:4.00000 1112:3.00000 1107:2.00000 1102:1.00000 1078:≈ 18.62 682:1256850 3016:  2970:, SIAM 2949:  1734:, and 1057:≈ 20.8 2926:Notes 666:20615 427:when 3014:ISBN 2947:ISBN 2802:with 1727:for 1071:= 19 1066:and 1064:= 18 1050:= 20 2592:20. 2569:for 1976:|. 1286:|. 650:210 398:= 0 380:is 130:In 51:sgn 3071:: 3033:47 3012:, 2881:0. 2873:20 2823:20 2766:20 2719:20 2645:20 2520:20 2292:20 2189:20 2122:20 2115:20 2090:19 2075:20 2068:20 2057:20 2042:20 2031:. 1802:19 1722:= 829:10 804:11 788:12 763:13 747:14 731:15 706:16 690:17 674:18 658:19 642:20 581:20 516:20 416:±√ 257:20 192:20 134:, 75:ln 2991:1 2955:. 2919:w 2913:0 2910:d 2905:) 2903:x 2901:( 2899:0 2897:ℓ 2878:= 2869:d 2865:= 2859:= 2854:2 2850:d 2846:= 2841:1 2837:d 2832:, 2829:) 2826:! 2820:( 2817:= 2812:0 2808:d 2797:) 2794:x 2791:( 2786:i 2776:i 2772:d 2761:0 2758:= 2755:i 2747:= 2744:) 2741:x 2738:( 2733:0 2725:) 2722:! 2716:( 2713:= 2710:) 2707:x 2704:( 2701:w 2679:. 2676:) 2673:x 2670:( 2665:i 2655:i 2651:d 2640:0 2637:= 2634:i 2626:= 2623:) 2620:x 2617:( 2614:p 2589:, 2583:, 2580:0 2577:= 2574:k 2564:, 2558:i 2552:k 2547:i 2541:x 2531:k 2525:i 2517:, 2511:, 2508:0 2505:= 2502:i 2492:= 2489:) 2486:x 2483:( 2478:k 2446:i 2442:x 2436:i 2432:c 2426:n 2421:0 2418:= 2415:i 2407:= 2404:) 2401:x 2398:( 2395:p 2372:2 2369:w 2351:k 2338:j 2326:j 2300:. 2297:) 2285:2 2278:x 2275:( 2269:) 2264:2 2257:2 2250:x 2247:( 2244:) 2239:1 2232:2 2225:x 2222:( 2219:= 2216:) 2211:i 2204:2 2197:x 2194:( 2184:1 2181:= 2178:i 2170:= 2167:) 2164:x 2161:( 2156:2 2152:w 2133:x 2129:1 2126:α 2119:α 2112:α 2108:1 2105:α 2098:t 2094:t 2087:α 2083:t 2079:t 2072:α 2065:α 2061:β 2054:α 2050:β 2046:t 2039:α 2029:t 2025:t 2021:1 2018:α 2014:t 2010:1 2007:α 2003:β 1999:1 1996:α 1992:β 1988:t 1984:1 1973:j 1967:k 1961:j 1954:j 1951:α 1945:k 1942:α 1936:j 1933:α 1917:. 1909:k 1896:j 1885:j 1873:j 1867:k 1856:= 1850:) 1845:k 1832:j 1824:( 1819:j 1813:k 1797:j 1784:= 1778:t 1775:d 1768:j 1760:d 1747:x 1743:) 1741:x 1739:( 1737:c 1730:j 1724:j 1719:j 1715:α 1705:j 1701:α 1694:j 1690:α 1685:t 1681:t 1664:+ 1658:! 1655:2 1649:2 1645:t 1634:2 1630:t 1626:d 1619:j 1609:2 1605:d 1598:+ 1595:t 1589:t 1586:d 1579:j 1571:d 1565:+ 1560:j 1545:t 1535:t 1526:c 1520:t 1514:j 1507:j 1503:α 1497:t 1482:. 1476:) 1471:j 1463:( 1454:p 1448:) 1443:j 1435:( 1432:c 1423:= 1417:t 1414:d 1407:j 1399:d 1384:j 1380:α 1375:) 1373:x 1371:( 1369:c 1364:) 1362:x 1360:( 1358:c 1356:· 1354:t 1347:j 1343:α 1338:) 1335:j 1331:α 1327:x 1323:x 1321:( 1319:p 1284:α 1280:β 1276:α 1272:β 1268:α 1264:α 1243:i 1235:i 1227:i 1219:i 1211:i 1087:i 1083:x 1076:x 1069:x 1062:x 1055:x 1048:x 1043:w 1039:x 1016:+ 1004:x 993:2 989:x 982:+ 968:3 964:x 952:4 948:x 941:+ 927:5 923:x 911:6 907:x 900:+ 886:7 882:x 870:8 866:x 859:+ 845:9 841:x 825:x 818:+ 800:x 784:x 777:+ 759:x 743:x 736:+ 727:x 702:x 695:+ 686:x 670:x 663:+ 654:x 638:x 630:= 627:) 624:x 621:( 618:w 599:x 584:) 575:x 572:( 566:) 563:2 557:x 554:( 551:) 548:1 542:x 539:( 536:= 533:) 530:i 524:x 521:( 511:1 508:= 505:i 497:= 494:) 491:x 488:( 485:w 446:) 444:x 442:( 440:w 430:ε 424:ε 418:ε 412:ε 407:ε 403:x 396:x 390:x 376:i 372:c 366:p 351:. 346:i 342:x 336:i 332:c 326:n 321:0 318:= 315:i 307:= 304:) 301:x 298:( 295:p 263:. 260:) 251:x 248:( 242:) 239:2 233:x 230:( 227:) 224:1 218:x 215:( 212:= 209:) 206:i 200:x 197:( 187:1 184:= 181:i 173:= 170:) 167:x 164:( 161:w 112:) 108:| 104:) 101:x 98:( 95:w 91:| 87:+ 84:1 81:( 72:) 69:) 66:x 63:( 60:w 57:(

Index



numerical analysis
polynomial
James H. Wilkinson
finding the root
well-conditioned
eigenvalues
characteristic polynomial
Pilot ACE
floating point
significands
precision
power series
Lagrange form
Wilkinson, James H.
ISBN
978-0-88385-126-5
ISBN
978-0-88385-450-1
The perfidious polynomial.
Polynomials And Rational Functions
Categories
Numerical analysis
Polynomials

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.