Knowledge (XXG)

Wood-decay fungus

Source 📝

606:
deploying a different antagonistic mechanism that gave it an advantage over one species but a disadvantage over others. Research further highlighted the importance of environmental factors including temperature, water potential, and invertebrate interactions in influencing competition. Findings suggested that competition increased decay, due to competition being expensive and saprotrophs needing to access more resources to fund it. Similarly, decay rates increased in smaller environments where natural resources were limited and competition intense. Interestingly, even though brown-rot fungi lack the ability to decompose lignin, a relatively energetically expensive molecule, brown-rot fungi were slightly more competitive than white-rot fungi since they could still access the relatively cheaper cellulose and hemicellulose and devote more energy to competition and less to extracting nutrients. Further evidence for white-rot fungi possessing long-term advantages was found in a study that determined that a longer time was required for white-rot fungal invasion of wood chips than for foliage litters. The data they collected on white-rot mass loss was sigmoid-shaped. This finding suggests that while white-rot fungi are not as competitive at decomposing carbon from common sources as other decomposers within the first year, but they proved to be more competitive after one year due to their specialized ability to access carbon from lignin.
539:, a low-redox-potential oxidase incapable of direct attack. Laccase can be used both in breaking and forming lignin. It cleaves lignin by reducing oxygen, creating a free radical which allows a hydroxyl radical (·OH) to attack the ring and deposit an alcohol group (OH). Deprotonation follows, resulting in the breaking of C-C (aryl-alphaC) bond into two aromatic rings. These products enter the fungal hyphae to be further broken down via catabolic processes. After the lignin complex is broken down, other saprotrophs can enter and begin degrading the newly created products. The final products of these transformations are carbon dioxide and water. While it is known that brown-rot fungi can also target lignin, they are only capable of modifying and are not capable of completely recycling it with a few exceptions. The ability to degrade lignin, previously supposed to only occur in white-rot fungi which have PODs, was found in 573:, a heteropolymer like cellulose that is not exclusively catabolized by white-rot fungi. The prevalent hemicellulose found in soft wood trees is Galactoglucomannan, a molecule made up of b-1,4-linked D-mannopyranose and D-glucopyranose units. Endo-1,4-b-D-mannanase breaks the prior linkages along the main chain of galactoglucomannan. Recent studies have found that LPMOs, previously only thought to be used in cellulose cleavage, were also found to be important in the catabolism of hemicellulose in conjunction with glycoside hydrolase enzymes (GHs). The availability of non white-rot fungi to catabolize cellulose and hemicellulose results in the creation of interspecific competition for access to these resources. Understanding the methods white-rot fungi use to dominate a resource and prevent competition will prove an important facet to understanding white-rot fungi. 155: 587:
had good growth, but in soil with natural microbiota present, white-rot growth was variable. Even though white-rot fungi have a very specialized process for acquiring carbon, they are still vulnerable to competitors. Researchers clarified that white-rot fungi survival is dependent on its ability to defend lignocellulose substrate against attack by soil microbiota and its ability to establish itself within the soil bulk. These findings suggest that white-rot fungi and soil microbiota remain largely antagonistic in interactions, with only the highly competitive
520: 49: 997:, the durability of wood and wood-based products to fungal decay can be classified into five categories: very durable (DC1); durable (DC2); moderately durable (DC3); slightly durable (DC4); and not durable (DC5). The durability to insect attacks can be categorized as durable (DC D); moderately durable (DC M); and not durable (DC S). Generally, the heartwood of durable tree species is considered as very durable, whereas the sapwood of all tree species is considered as not durable and is the most vulnerable. 647:(300-250 mya) there was a very high carbon accumulation. However, near the end of the Permian there was a sharp decline in carbon accumulation. White-rot fungi and their ability to cleave lignin evolved at the end of the Permian period. Researchers attempted to reconstruct the evolution of saprotrophic capabilities. Results suggested that white-rot saprotrophs were the common ancestors of brown-rot fungi and ectomycorrhiza (ECM), but that in the latter two groups genes coding for PODs were lost. 1149: 679:, which in 2003 constituted approximately 25% of total mushroom production. Due to white-rot fungi’s important ability to degrade lignin, they have been increasingly explored as potential sources in mycoremediation applications, applications focused on removing organic pollutants from the environment. All three enzyme types of lignin decomposition (LiPs, MnP, and Laccase) have been explored. White-rot fungi have been determined to degrade chlorinated aromatic hydrocarbons ( 767: 31: 65: 291: 374: 1336:
Christophe Klopp, Daniel Cullen, Ronald P de Vries, Allen C Gathman, Matthieu Hainaut, Bernard Henrissat, Kristiina S HildĂ©n, Ursula KĂŒes, Walt Lilly, Anna Lipzen, Miia R MĂ€kelĂ€, Angel T Martinez, MĂ©lanie Morel-Rouhier, Emmanuelle Morin, Jasmyn Pangilinan, Arthur F J Ram, Han A B Wösten, Francisco J Ruiz-Dueñas, Robert Riley, Eric Record, Igor V Grigoriev, Marie-NoĂ«lle Rosso (2020).
662:
highlight the importance of taking plant evolution into account when analyzing the evolution of white-rot fungus. Researchers note that plant cell walls have been steadily increasing and show evidence of convergent evolution. White-rot PODs also demonstrated convergent evolution. As plant cell walls have become more efficient, so have the peroxidases that destroy them. 
498:→ Fe + ·OH + OH The peroxidases used to oxidize lignin are lignin peroxidase (LiP), manganese peroxidase (MnP), and versatile peroxidase (VP). These peroxidases are commonly referred to as fungal class II peroxidases (PODs). Research suggests there may be another group of POD enzymes: basal peroxidases, including novel peroxidase (NoP). The NoP of 357: 666:
cellulose and hemicellulose, they suggest that PODs developed after cellulolytic enzymes and that white-rot mechanisms were an elaboration based on the already existing saprotrophic model, not just on the utilization of PODs. Understanding the evolutionary development of white-rot fungi provides insight onto a variety of potential uses.
658:. One of the major findings was that ancestral versatile peroxidase (AVP) was not capable of functioning efficiently at low pH, a characteristic associated with modern LiPs. Findings also suggested that AVP possessed a much wider substrate specificity, the loss of which being an evolutionary cost of developing further specificity. 631:
release of PODs to lower the pH and create a more acidic habitat. The resulting conclusion is that peroxides not only make lignin accessible, but create a more accessible environment for white-rot fungi to compete in. Even with a specialized catabolic mechanism, competition remains a highly selective force on white-rot evolution.
397: 598:
occurs: ‘deadlock’, when neither species could dominate the other; and ‘replacement’ when once species achieved complete colonization and replaced the other. A different study noted a third option: ‘reciprocal replacement’ when fungi successfully captured some territory and simultaneously lost other territory.
848:
and this brings physical and chemical changes to the wood. As a result, the permeability decreases while the natural durability increases. Thus, the extractives responsible for natural durability are mainly present in the heartwood, although they may also be contained in small amounts in the sapwood.
661:
Early peroxidases were unable to directly degrade lignin and relied on metal cations to separate phenol groups. Only later would peroxidases acquire the ability use a tryptophanyl radical, interacting with a bulky polymer at the surface of the peroxidase, to attack non-phenolic lignin. These findings
1335:
Shingo Miyauchi, Hayat Hage, Elodie Drula, Laurence Lesage-Meessen, Jean-Guy Berrin, David Navarro, Anne Favel, Delphine Chaduli, Sacha Grisel, Mireille Haon, François Piumi, Anthony Levasseur, Anne Lomascolo, Steven Ahrendt, Kerrie Barry, Kurt M LaButti, Didier Chevret, Chris Daum, JérÎme Mariette,
674:
White-rot fungi have historically been valued as food, but in recent years exploration of their enzymatic capabilities has revealed white-rot fungi’s potential in depollution. White-rot fungi have long since been staples of human diet and remain an important source of nutrition for people around the
560:
brace that increases glycoside hydrolase activity, effectively lowering the activation cost of the reaction, making cleavage much cheaper, and therefore, more profitable for the fungi. Products from the cleavage are glucose and cellobiose. Another method involves endoglucanases hydrolyzing cellulose
1124:
is another environmental problem. Different regulatory interventions have been undertaken worldwide to restrict their use in the wood industry, especially in timber for residential use. By the end of 2003, the U.S EPA and the wood industry agreed to discontinue the use of CCA in treating timber for
897:
lasts longer than other trees. Notably, the timber of these trees remain durable for a long-time period, even around a century, thereby they have been used as a reliable building material for centuries. Since the young trees do not produce enough protecting chemicals, some trees grow with a hollow,
597:
Brown-rot fungi and white-rot fungi have similar interspecific mycelial interactions. When white-rot fungal species occupied the same host distinct districts formed known as ‘decay columns’. Interactions were classified as interspecific competition. There were two important results when competition
593:
species capable of establishing themselves with only negligible negative impact due to soil microbiota. Less competitive white-rot fungi either failed to establish or produced lower enzyme concentrations associated with respiration. Successful interactions are characterized by which microbe arrives
1011:
A wide selection of timber preservation has been developed to give the wood an improved durability and to protect it from decay. The wood can be treated according to the purpose (biological protection, e.g. fungi, insects, marine organisms) and the environment (interior, exterior, above ground, in
605:
Findings suggested the important distinction between primary competition, that is competition to colonize unoccupied territory and antagonistic capture and defense of territory. Many competitive interactions were ‘intransitive’, meaning interactions involved more than two fungal species each often
586:
Since white-rot fungi aren't the only saprotrophs capable of accessing cellulose and hemicellulose, competition ensues. Researchers attempted to estimate the effect of competition on white rot fungi. They reported that in sterile environments with no microbiota competitors present, white-rot fungi
453:
Compared to other saprotrophs, white-rot fungi possess the specialized ability to cleave lignin into smaller, more processable molecules. Lignin is a biopolymer which combines with cellulose to form the lignocellulose complex, an important complex that confers strength and durability to plant cell
555:
While white-rot fungi specialized in catabolizing lignin, they are also capable of metabolizing other common organic forms of carbon like cellulose. Cellulose is also a laborious molecule to cleave. First, cellobiohydrolases, found in all white-rot fungi, hydrolyze the 1,4-beta-D-glycosidic bonds
506:
or contraction in the latter two groups. LiPs are oxidioreductases specific to lignin degradation. VPs are a class of peroxidase that combines elements of both LiPs and MnPs. LiPs and VPs are specific to heme product architecture allowing direct oxidation of benzene groups regardless of linkages.
142:
Wood decay fungi are considered key species in the forest ecosystems because the process of decomposing dead wood creates new habitats for other species, helps in the nutrient recycling, participate in the energy transportation and transformation and provides food to other species. They are also
630:
weapons utilized by white-rot fungi against competitor bacteria. Though the mechanism is unknown, researchers suggested that white-rot fungi may utilize lignin decomposing enzymes, hydroxyl radicals, and aryl alcohols to create a toxic environment. Further environmental manipulation involved the
138:
but not its lignin; white rot digests lignin as well. The residual products of decomposition from fungal action have variable pH, solubility and redox potentials. Over time this residue becomes incorporated in the soil and sediment so can have a noticeable effect on the environment of that area.
2344:
Floudas, D., Binder, M., Riley, R., Barry, K., Blanchette, R. A., Henrissat, B., MartĂ­nez, A.T., Otillar, R., Spatafora, J. W., Yadav, J. Y., Aerts, A., Benoit, I., Boyd, A., Carlson, A., Copeland, A., Coutinho, P. M., de Vries, R. P., Ferreira, P., Findley, K., & Hibbett, D. S. (2012). The
1676:
Martinez, D., Larrondo, L. F., Putnam, N., Gelpke, M. D. S., Huang, K., Chapman, J., Helfenbein, K. G., Ramaiya, P., Detter, J. C., Larimer, F., Coutinho, P. M., Henrissat, B., Berka, R., Cullen, D., & Rokhsar, D. (2004). Genome sequence of the lignocellulose degrading fungus Phanerochaete
621:
wood blocks resulted in a lower number of wood-inhabiting bacteria, even though lignin is not a food source of these bacteria. This finding points to an antagonistic relationship between white-rot fungi and bacteria that both compete for cellulose and hemicellulose, as well as the existence of
665:
Researchers attempted to further understand the evolutionary development of white-rot fungi by using bioinformatics. They analyzed sixty-two genomes of Agaricomycetes of white-rot, brown-rot, ECM and other nutritional modes. Given that both white-rot and brown-rot share the ability to cleave
2916:
Binbuga, Nursen; Ruhs, Christopher; Hasty, Julia K.; Henry, William P.; Schultz, Tor P. (1 May 2008). "Developing environmentally benign and effective organic wood preservatives by understanding the biocidal and non-biocidal properties of extractives in naturally durable heartwood".
425:, because of their ability to access carbon pools that would otherwise remain inaccessible. The name “white rot” derives from the white color and rotting texture of the remaining crystalline cellulose from wood degraded by these fungi. Most knowledge of white-rot fungi comes from 507:
Direct oxidation of benzene groups results in the creation of an unstable radical aromatic. However, the hydrogen peroxide, bound to the heme group on the heme pocket, is unable to access the bulky lignin due to steric hindrance. As a result, LiP and VP enzymes create a
343:, which may act as a microbial barrier. The bark acts as a form of protection for the more vulnerable interior of the plant. Soft-rot fungi are, apparently, not able to decompose matter as effectively as white-rot fungi, as they are less aggressive decomposers. 193:. As a result of this type of decay, the wood shrinks, shows a brown discoloration, and cracks into roughly cubical pieces, a phenomenon termed cubical fracture. The fungi of certain types remove cellulose compounds from wood, and hence the wood turns brown. 757:
was capable of biosorption of Hg, Cd, and Zn in low pH environments. The potential establishment of white-rot fungi as a stable mycoremediator remains an important future discovery. White-rot fungi remain an important source of great unrealized potential.
106:
in wood is required for fungal colonization and proliferation. In nature, this process causes the breakdown of complex molecules and leads to the return of nutrients to the soil. Wood-decay fungi consume wood in various ways; for example, some attack the
420:
interactions have profound effects on forest biomes. White-rot fungi are characterized by their ability to break down the lignin, cellulose, and hemicellulose of wood. As a result of this ability, white-rot fungi are considered a vital component of the
330:
Soft-rot fungi are able to colonise conditions that are normally too hot, cold or wet for brown- or white-rot to inhabit. They can also decompose woods containing high levels of protective from the compounds that are resistant to biological attack; the
528: 2410:
Nagy, L. G., Riley, R., Bergmann, P. J., KrizsĂĄn, K., Martin, F. M., Grigoriev, I. V., ... & Hibbett, D. S. (2017). Genetic bases of fungal white rot wood decay predicted by phylogenomic analysis of correlated gene-phenotype evolution.
2012:
Riley, R., Salamov, A. A., Brown, D. W., Nagy, L. G., Floudas, D., Held, B. W., & Grigoriev, I. V. (2014). Extensive Sampling of Basidiomycete Genomes Demonstrates Inadequacy of the White-rot/brown-rot Paradigm for Wood Decay Fungi.
458:. Because of its high stability, lignin is incapable of being broken down through simple decomposition. As a result, white-rot fungi employ a series of enzymes that break lignin down into smaller aromatic rings. The relative abundance of 789:. This process creates individual patterns and shades of colour. The wood treated in this way is then excellently suited for the production of all kinds of design objects. In order to stabilise the wood structure weakened by the fungus, 3115: 304:
from their hyphae, an enzyme that breaks down cellulose in wood. This leads to the formation of microscopic cavities inside the wood and, sometimes, to a discoloration and cracking-pattern, similar to brown rot. Soft-rot fungi need
1949:
Bogan, B. W., Schoenike, B., Lamar, R. T., & Cullen, D. (1996). Manganese Peroxidase mRNA and Enzyme Activity Levels During Bioremediation of Polycyclic Aromatic Hydrocarbon-Contaminated Soil with Phanerochaete chrysosporium.
893:). The natural durability varies between tree species, geographic regions, environmental conditions, growth stage, and increases with the age. Thereby, some trees are more resistant to fungal diseases and insects and their 2107:
Ademark, P., Varga, A., Medve, J., HarjunpÀÀ, V., Drakenberg, T., Tjerneld, F., & StĂ„lbrand, H. (1998). Softwood Hemicellulose-Degrading Enzymes from Aspergillus niger: Purification and Properties of a ÎČ-mannanase.
547:, two brown-rot fungi, lacking PODs. While the general pathway is currently unknown, research supports the existence of a continuum of features that separate the two fungal types rather than distinct categories. 249:
Brown-rot fungal decay is characterised by extensive demethylation of lignins whereas white-rot tends to produce low yields of molecules with demethylated functional groups. There are very few brown rot fungi in
3052:
Belluck, D. A.; Benjamin, S. L.; Baveye, P.; Sampson, J.; Johnson, B. (March 2003). "Widespread Arsenic Contamination of Soils in Residential Areas and Public Spaces: An Emerging Regulatory or Medical Crisis?".
1597:
Vane, C. H., et al. (2006). "Bark decay by the white-rot fungus Lentinula edodes: Polysaccharide loss, lignin resistance and the unmasking of suberin." International Biodeterioration & Biodegradation 57(1):
2987:
Brocco, Victor Fassina; Paes, Juarez Benigno; Costa, Lais Gonçalves da; Brazolin, Sérgio; Arantes, Marina Donåria Chaves (January 2017). "Potential of teak heartwood extracts as a natural wood preservative".
2187:
Lang, E., Eller, G., & Zadrazil, F. (1997). Lignocellulose Decomposition and Production of Ligninolytic Enzymes during Interaction of White Rot Fungi with Soil Microorganisms. Microbial Ecology, 34(1),
1686:
Palmer, J. M., & Evans, C. S. (1983). The Enzymic Degradation of Lignin by White-Rot Fungi. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 300(1100), 293–303.
2358:
Kohler, A., Kuo, A., Nagy, L. G., Morin, E., Barry, K. W., Buscot, F., ... & Martin, F. (2015). Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists.
466:
of lignin characteristically decreases when decayed by white-rot fungi. Since lignin is the specialized food source of white-rot fungi, understanding the two different catabolic pathways is important.
502:
is characterized by its inability to bind Mn and its low redox potential. PODs developed in the common ancestor of white-rot, brown-rot and mycorrhizal fungi but these enzyme families have undergone
3096: 556:
partially degrading cellulose. GH61 enzymes initiate a copper-dependent oxidative (LPMO) attack on crystalline cellulose. LPMOs boost degradation by activating oxygen using a copper-containing
2286:
McClaugherty, C. A., Pastor, J., Aber, J. D., & Melillo, J. M. (1985). Forest Litter Decomposition in Relation to Soil Nitrogen Dynamics and Litter Quality. Ecology, 66(1), 266–275.
1889:
Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B, et al. (2012). "The Paleozoic Origin of Enzymatic Lignin Decomposition Reconstructed from 31 Fungal Genomes".
1808:
Bissaro, B., RĂžhr, Å. K., MĂŒller, G., Chylenski, P., Skaugen, M., Forsberg, Z., & Eijsink, V. G. (2017). Oxidative Cleavage of Polysaccharides by Copper Enzymes Depends on H2O2.
2445:
Arıca, M. Y., Bayramoǧlu, G., Yılmaz, M., BektaƟ, S., & Genç, Ö. (2004). Biosorption of Hg2+, Cd2+, and Zn2+ by Ca-Alginate and Immobilized Wood-Rotting fungus Funalia trogii.
804:
wood leads to results similar to those obtained with fungal decay. After the wood has been soaked, it is iced and then dried. The result is a very light wood with an almost black
561:
at random points before cellobiohydrolases cleave the chains, resulting in cellobiose. At the end of both processes, Beta-glucosidases further catabolize cellobiose into glucose.
739:, a process where biomass is utilized to remove solute wastes preventing pollution. Researchers studied the effect white-rot fungi could have on absorbing heavy metal ions via 1120:(EPA) recognized arsenic as a human carcinogen. Water contamination with arsenic and its compounds is a serious public health issue, and their release to the environment and 1096:, the treatability of woods can be categorized in four levels: (1) easy to treat; (2) moderately easy to treat; (3) difficult to treat; and (4) extremely difficult to treat. 2758:
Munir, Muhammad Tanveer; Pailhories, HĂ©lĂšne; Eveillard, Matthieu; Irle, Mark; Aviat, Florence; Dubreil, Laurence; Federighi, Michel; Belloncle, Christophe (1 May 2020).
1092:, and tree extracts, is another promising environmentally-friendly wood preservation method. The more permeable is the wood, the easier is it to treat. According to the 2376:
Ayuso-Fernåndez, I., Martínez, A. T., & Ruiz-Dueñas, F. J. (2017). Experimental recreation of the evolution of lignin-degrading enzymes from the Jurassic to date.
1385: 639:
Insight on the evolutionary development of white-rot fungi comes from the evolution of lignin catabolism. Lignin is a precursor to the development of coal. During the
2952:
Hu, Junyi; Shen, Yu; Pang, Song; Gao, Yun; Xiao, Guoyong; Li, Shujun; Xu, Yingqian (December 2013). "Application of hinokitiol potassium salt for wood preservative".
130:. Each produce different enzymes, can degrade different plant materials, and can colonise different environmental niches. Brown rot and soft rot both digest a tree's 3097:"Response to Requests to Cancel Certain Chromated Copper Arsenate (CCA) Wood Preservative Products and Amendments to Terminate Certain Uses of other CCA Products" 1556:) on wheat straw lignin using pyrolysis–GC–MS in the presence of tetramethylammonium hydroxide (TMAH)." Journal of Analytical and Applied Pyrolysis 60(1): 69-78. 797:
processes. This also kills the residual fungus after the desired pattern has been achieved, thus preserving the wood from being further consumed by the fungus.
735:. Noted limitations of white-rot fungi as pollutant cleaners is due to difficulty establishing the fungi in non-natural conditions. Other applications include 3241: 680: 2586:
Munir, Muhammad Tanveer; Pailhories, HĂ©lĂšne; Eveillard, Matthieu; Irle, Mark; Aviat, Florence; Federighi, Michel; Belloncle, Christophe (24 August 2020).
1474:
Schilling, Marion; Farine, Sibylle; PĂ©ros, Jean-Pierre; Bertsch, Christophe; Gelhaye, Eric (2021-01-01), Morel-Rouhier, MĂ©lanie; Sormani, Rodnay (eds.),
994: 3193: 486:), a process completed via glyoxal oxidase (GLX). Extracellular hydrogen peroxide may be responsible for creation of hydroxyl radical (·OH) via the 146:
Wood decay fungi are dependent on wood. Due to forestry, cutting trees and removal of decaying wood, many species are classified as threatened.
1308:, using solid state 13C NMR and off-line TMAH thermochemolysis with GC–MS." International Biodeterioration & Biodegradation 55(3): 175-185. 1167: 3227:. Fungi from different substrates / J. K. Misra, J. P. Tewari, S. K. Deshmukh, C. VĂĄgvölgyi (eds). N. Y.: CRC Press, Taylor and Francis group. 3184: 1579: 1534: 1198: 1748:"Structure, Organization, and Transcriptional Regulation of a Family of Copper Radical Oxidase Genes in the Lignin-Degrading Basidiomycete 2842:
Silveira, Amanda G. Da; Santini, Elio J.; Kulczynski, Stela M.; Trevisan, RĂŽmulo; Wastowski, Arci D.; Gatto, Darci A. (7 December 2017).
270:
distribution. Those brown rot fungi between latitudes 23.5° and 35° are typically found at high elevations in pine forest regions, or in
478:
attack on the heme pocket, thus reducing the stability of lignin. The process starts with creation of extracellular hydrogen peroxide (H
1244:
Viitanen, T. et al. (2010). Towards modelling of decay risk of wooden materials. European Journal of Wood and Wood Products 68:303-313.
849:
Different chemicals have been isolated from the heartwood of naturally rot-resistant trees and have shown to be protectants, including
309:
in order to synthesize enzymes, which they obtain either from the wood or from the environment. Examples of soft-rot-causing fungi are
2826: 2715: 2562: 2505: 511:
radical on their protein surface which allows long-range electron transfer from the aromatic substrate to the activated cofactor.
2531: 1093: 990: 2672:
Morris, Paul I.; Stirling, Rod (September 2012). "Western red cedar extractives associated with durability in ground contact".
1696:
Cohen, R.; Persky, L.; Hadar, Y. (2002). "Biotechnological applications and potential of wood-degrading mushrooms of the genus
1279: 1117: 692: 1214: 650:
To gain insight on the evolution of lignolytic peroxidases, researchers resurrected ancestral lignolytic peroxidases from the
2393:
Ayuso-Fernåndez, I., Ruiz-Dueñas, F. J., & Martínez, A. T. (2018). Evolutionary convergence in lignin-degrading enzymes.
2246: 1399:
Jenna, Purhonen; Nerea, Abrego; Atte, Komonen; Seppo, Huhtinen; Heikki, Kotiranta; Thomas, LĂŠssĂže; Panu, Halme (2021-07-16).
704: 189:, it can diffuse rapidly through the wood, leading to a decay that is not confined to the direct surroundings of the fungal 154: 2128:"Discovery of LPMO Activity on Hemicelluloses Shows the Importance of Oxidative Processes in Plant Cell Wall Degradation" 3251: 713: 271: 212:
is a generic name for certain species of brown-rot fungi. Brown-rot fungi of particular economic importance include
2298:"Impact of white-rot fungi on numbers and community composition of bacteria colonizing beech wood from forest soil" 1017: 2545:
Verbist, Maxime; Nunes, Lina; Jones, Dennis; Branco, Jorge M. (2019). "Service life design of timber structures".
1113: 1013: 982: 434: 3205:(2nd ed.). Madison, WI: United States Department of Agriculture, Forest Service, Forest Products Laboratory 1826:
Martinez D, Challacombe J, Morgenstern I, Hibbett D, Schmoll M, Kubicek CP, et al. (2009). Dixon RA (ed.).
519: 908: 696: 1065: 748: 744: 118:
Wood-decay fungi can be classified according to the type of decay that they cause. The best-known types are
3016: 2247:"Inoculum volume effects on competitive outcome and wood decay rate of brown-and white-rot basidiomycetes" 1629: 417: 103: 1379: 725: 654:, a basidiomycete order that emerged 150 mya, and analyzed the lineage from that ancestor to the modern 236: 231: 226: 220: 3219: 1475: 48: 2588:"Experimental Parameters Influence the Observed Antimicrobial Response of Oak Wood (Quercus petraea)" 2309: 2214: 2139: 1898: 1843: 1763: 1412: 952: 753: 627: 323: 259: 1634: 266:(23.5° latitude), and most of these are found north of the 35° latitude, corresponding to a roughly 2637:
Singh, Tripti; Singh, Adya P. (September 2012). "A review on natural products as wood protectant".
731: 719: 599: 242: 454:
walls. Lignin is a macromolecule formed from the combination of many phenolic aromatic groups via
115:. The rate of decay of wooden materials in various climates can be estimated by empirical models. 3246: 3078: 2934: 2689: 2654: 2568: 2269: 1932: 1725: 1491: 1261: 1033: 455: 1968:
Pogni R, Baratto MC, Teutloff C, Giansanti S, Ruiz-Dueñas FJ, Choinowski T, et al. (2006).
766: 441:
specificity. The current and future applications of white-rot fungi as a potential component of
1526: 1519: 185:) that is produced during the breakdown of hemicellulose. Because hydrogen peroxide is a small 3180: 3070: 2969: 2865: 2822: 2791: 2711: 2619: 2558: 2327: 2167: 2069: 1995: 1924: 1871: 1791: 1717: 1647: 1575: 1567: 1530: 1456: 1438: 1367: 1338:"Conserved white-rot enzymatic mechanism for wood decay in the Basidiomycota genus Pycnoporus" 1194: 1188: 1084:, etc. Treatment of timber with natural extractives derived from rot-resistant trees, such as 1077: 1045: 1041: 1021: 1006: 942: 930: 899: 825: 820:
Natural durability is the inherent capability of wood to tolerate and resist fungal decay and
676: 474:
The first way white-rot fungi can break down lignin involves a high-redox-potential catalyzed
267: 255: 214: 174: 53: 36: 30: 609:
Competition is not just limited between fungi. The presence of white rot fungi, in this case
3062: 2997: 2961: 2926: 2896: 2855: 2814: 2781: 2771: 2740: 2681: 2646: 2609: 2599: 2550: 2317: 2261: 2222: 2157: 2147: 2059: 2051: 1985: 1914: 1906: 1861: 1851: 1781: 1771: 1709: 1639: 1483: 1446: 1428: 1420: 1357: 1349: 1081: 976: 970: 903: 390: 263: 251: 3034: 2731:
Scheffer, T. C.; Morrell, Jeffrey J.; Laboratory, Oregon State University Forest Research.
1482:, Wood Degradation and Ligninolytic Fungi, vol. 99, Academic Press, pp. 175–207, 1064:
resins, wood acetylation, natural or biological preservation, such as treatment with heat (
2126:
Agger JW, Isaksen T, VĂĄrnai A, Vidal-Melgosa S, Willats WG, Ludwig R, et al. (2014).
2034:
Frandsen KE, Simmons TJ, Dupree P, Poulsen JN, Hemsworth GR, Ciano L, et al. (2016).
1283: 1029: 487: 442: 275: 92:. Some species of wood-decay fungi attack dead wood, such as brown rot, and some, such as 64: 2809:
Woodard, A.C.; Milner, H.R. (2016). "Sustainability of timber and wood in construction".
2345:
Paleozoic Origin of Enzymatic Lignin Decomposition Reconstructed from 31 Fungal Genomes.
230:(cellar fungus), which may attack timber in buildings. Other brown-rot fungi include the 2436:) Using Diffuse Reflectance Infrared Spectroscopy." Applied Spectroscopy 57(5): 514–517. 2313: 2218: 2143: 1902: 1847: 1767: 1608:
Hoff JA, Klopfenstein NB, McDonald GI, Tonn JR, Kim MS, Zambino PJ, et al. (2004).
1416: 1319: 2818: 2786: 2759: 2614: 2587: 2554: 2227: 2202: 2162: 2127: 2064: 2035: 1866: 1827: 1786: 1747: 1451: 1400: 1362: 1162: 1134: 1121: 841: 833: 786: 503: 405: 58: 2965: 2203:"Outcome of interspecific interactions among brown-rot and white-rot wood decay fungi" 3235: 2885:"Efficiency of natural wood extractives as wood preservatives against termite attack" 2572: 2322: 2297: 2273: 1643: 1495: 1049: 958: 914: 890: 886: 862: 770: 700: 640: 570: 459: 409: 166: 135: 89: 3082: 2938: 2901: 2884: 2693: 2658: 1936: 1729: 1609: 1276: 675:
world. White-rot fungi are commercially grown as a source of food – for example the
1574:. British Mycological Society. Symposium. Cambridge University Press. p. 159. 1548: 1546: 1514: 1221: 1154: 1057: 1053: 947: 936: 836:. This protective feature is attributable to specific biological compounds, called 740: 422: 317: 108: 3001: 2860: 2843: 2760:"Testing the Antimicrobial Characteristics of Wood Materials: A Review of Methods" 290: 3174: 2265: 1970:"A Tryptophan Neutral Radical in the Oxidized State of Versatile Peroxidase from 1401:"Wood-inhabiting fungal responses to forest naturalness vary among morpho-groups" 882: 736: 651: 623: 17: 2776: 2604: 1836:
Proceedings of the National Academy of Sciences of the United States of America
1746:
Wymelenberg AV, Sabat G, Mozuch M, Kersten PJ, Cullen D, Blanchette RA (2006).
1487: 1424: 840:
that are toxic to wood-destroying organisms. Along with the tree’s growth, the
777:
A special way of giving grown wood an unusual structure is to infect it with a
373: 2685: 2650: 1713: 1144: 1085: 920: 878: 850: 805: 785:). The fungus penetrates the layers of the wood and changes the nature of the 778: 508: 475: 463: 438: 413: 311: 196:
Brown rot in a dry, crumbly condition is sometimes incorrectly referred to as
99: 94: 1651: 1442: 1353: 416:
that are capable of decomposing many tree species. It is now recognized that
2152: 1910: 1856: 1130: 964: 874: 870: 866: 845: 589: 557: 332: 300: 279: 170: 131: 3074: 3066: 2973: 2869: 2795: 2623: 2331: 2171: 2073: 1999: 1990: 1969: 1928: 1875: 1795: 1721: 1460: 1371: 527: 3151: 2844:"Tannic extract potential as natural wood preservative of Acacia mearnsii" 2055: 3017:"Arsenic, Inorganic CASRN 7440-38-2 | DTXSID4023886 | IRIS | US EPA, ORD" 2463: 2086:
Brady, S. K., Sreelatha, S., Feng, Y., Chundawat, S. P., & Lang, M. J
1776: 1337: 1109: 1073: 1037: 925: 858: 306: 186: 2930: 1433: 1919: 1105: 1089: 1025: 854: 829: 708: 688: 644: 536: 340: 209: 3116:"Wood preservation facilities, chromated copper arsenate: chapter B-1" 3200: 2744: 1126: 894: 821: 794: 336: 112: 81: 1974:: A Combined Multifrequency EPR and Density Functional Theory Study" 1828:"Genome, Transcriptome, and Secretome Analysis of Wood Decay Fungus 356: 3173:
Schwarze, Francis W. M. R.; Engels, Julia; Mattheck, Claus (2000).
208:, as wood must be damp to decay, although it may become dry later. 3133: 2732: 1296: 1294: 1292: 1061: 808:. This result, which also occurs very rarely in nature, is called 801: 790: 765: 618: 526: 518: 396: 395: 363: 289: 190: 153: 63: 47: 29: 1677:
chrysosporium strain RP78. Nature Biotechnology, 22(6), 695–700.
1190:
Building Pathology: Deterioration, Diagnostics, and Intervention
906:. Tree species that have significant natural durability include 793:
or plastics are usually introduced into the material by special
85: 27:
Any species of fungus that digests moist wood, causing it to rot
1321:
Colonization Patterns of Wood-inhabiting Fungi in Boreal Forest
1300:
Vane, C. H., et al. (2005). "Decay of cultivated apricot wood (
2733:"Natural durability of wood: a worldwide checklist of species" 1069: 684: 380: 159: 2710:. Vancouver, B.C.: Douglas & McIntyre. 1984. p. 22. 2015:
Proceedings of the National    Academy of Sciences
3114:
Canada, Environment and Climate Change (26 February 2014).
2484: 1215:"Wood Decay in Living and Dead Trees: A Pictorial Overview" 1104:
Over the years a lot of concerns have arisen regarding the
1012:
ground, in water) of its use. Timber preservatives include
2547:
Long-term Performance and Durability of Masonry Structures
2296:
Folman LB, Klein Gunnewiek PJ, Boddy L, De Boer W (2008).
1661:– via U.S. Department of Agriculture Forest Service. 1076:, impregnation using biopolymers from agricultural waste ( 173:
that form the wood structure. Cellulose is broken down by
2428:
Vane, C. H. (2003). "Monitoring Decay of Black Gum Wood (
1552:
Vane, C. H., et al. (2001). "The effect of fungal decay (
339:, which are difficult for fungi to decompose, as well as 3138:
Australian Pesticides and Veterinary Medicines Authority
2534:. APA – The Engineered Wood Association. 17 August 2022. 1832:
Supports Unique Mechanisms of Lignocellulose Conversion"
389:"White rot" redirects here. For the onion pathogen, see 102:
and colonize living trees. Excessive moisture above the
1521:
Mycelium running: how mushrooms can help save the world
602:
between two white-rot fungi was noted to be very rare.
535:
The second mechanism for breaking down lignin involves
3134:"New restrictions in place for arsenic-treated timber" 1476:"Chapter Six - Wood degradation in grapevine diseases" 335:
of many woody plants contains a high concentration of
2245:
Fukasawa Y, Gilmartin EC, Savoury M, Boddy L (2020).
898:
rotten trunk at an early age. However, the stands of
143:
used as indicator species for conservation projects.
3199:White, Robert H.; Ross, Robert J. (November 2014). 2036:"The Molecular Basis of Polysaccharide Cleavage by 773:
with case made of wood showing induced fungal decay
2708:Cedar: tree of life to the Northwest Coast Indians 1610:"Fungal Endophytes in Woody Roots of Douglas-Fir ( 1518: 743:, a linear polysaccharide composed of 1,4-linked 3218:Wasser, Zmitrovich I. V.; Engels, Tura (2014). 2395:Proceedings of the National Academy of Sciences 2132:Proceedings of the National Academy of Sciences 2094:Degrades Cellulose in Single Cellobiose Steps. 1125:residential use. Its use is also prohibited in 569:Another main food source of white-rot fungi is 433:. White-rot fungi show strong participation in 404:White-rot fungi are a type of fungi comprising 2883:Syofuna, A; Banana, A.Y; Nakabonge, G (2012). 1277:Microorganisms causing decay in trees and wood 1593: 1591: 781:fungus by storing it in a humid environment ( 751:. The findings from the study indicated that 8: 1384:: CS1 maint: multiple names: authors list ( 1256: 1254: 1252: 1250: 3202:Wood and Timber Condition Assessment Manual 2532:"EN 350: 2016 (updated) | APAwood - Europe" 1272: 1270: 2432:) During Growth of the Shiitake Mushroom ( 445:merit greater study of these saprotrophs. 3194:Mycorrhizal fungi and soil carbon storage 2900: 2859: 2785: 2775: 2613: 2603: 2321: 2226: 2201:Owens EM, Reddy CA, Grethlein HE (1994). 2161: 2151: 2063: 1989: 1918: 1865: 1855: 1785: 1775: 1633: 1450: 1432: 1361: 437:, culminating in the evolution of lignin 294:Wood decay fungus growing on rotting wood 3176:Fungal Strategies of Wood Decay in Trees 2848:Anais da Academia Brasileira de CiĂȘncias 2811:Sustainability of Construction Materials 1179: 2526: 2524: 2522: 1952:Applied and Environmental Microbiology 1756:Applied and Environmental Microbiology 1702:Applied Microbiology and Biotechnology 1377: 1193:. John Wiley & Sons. p. 106. 1168:Compartmentalization of decay in trees 3152:"EUR-Lex - 32003L0002 - EN - EUR-Lex" 2240: 2238: 2196: 2194: 2183: 2181: 2029: 2027: 1741: 1739: 1672: 1670: 1668: 995:APA – The Engineered Wood Association 470:Lignin metabolism through peroxidases 204:replaced the general use of the term 7: 3055:International Journal of Toxicology 2038:Lytic Polysaccharide Monooxygenases 1046:light organic solvent preservatives 1036:, oil-based preservatives, such as 800:A special icing process applied to 258:zones. Most brown rot fungi have a 3242:Fungal tree pathogens and diseases 2819:10.1016/B978-0-08-100370-1.00007-X 2555:10.1016/B978-0-08-102110-1.00011-X 2228:10.1111/j.1574-6941.1994.tb00086.x 1264:. University of Edinburgh (2005?). 594:first and establishes a foothold. 25: 2954:Journal of Environmental Sciences 1262:Wood decay and wood-rotting fungi 705:polychlorinated dibenzo(p)dioxins 515:Lignin metabolism through laccase 2323:10.1111/j.1574-6941.2007.00425.x 1644:10.1111/j.1439-0329.2004.00367.x 1147: 986:(Taiwan cypress), among others. 902:are more naturally durable than 693:polycyclic aromatic hydrocarbons 372: 355: 2902:10.4067/S0718-221X2012000200003 2508:. bm-online.de. 6 November 2018 2506:"Mit Hilfe von VĂ€terchen Frost" 2413:Molecular biology and evolution 1978:Journal of Biological Chemistry 1118:Environmental Protection Agency 670:Current and future applications 111:in wood, and some others decay 2466:. mortalitas.eu. February 2016 2447:Journal of Hazardous Materials 1525:. Random House, Inc. pp.  1480:Advances in Botanical Research 1324:(PhD thesis). UmeĂ„ University. 1: 3002:10.1016/j.jclepro.2016.11.074 2990:Journal of Cleaner Production 2966:10.1016/S1001-0742(14)60621-5 2889:Maderas. Ciencia y tecnologĂ­a 2861:10.1590/0001-3765201720170485 582:White rot competitive ability 3041:. World Health Organization. 2266:10.1016/j.funeco.2020.100938 1572:Aspects of Tropical Mycology 2674:Wood Science and Technology 2639:Wood Science and Technology 1750:Phanerochaete chrysosporium 714:Phanerochaete chrysosporium 431:Phanerochaete chrysosporium 165:Brown-rot fungi break down 3268: 2777:10.3390/antibiotics9050225 2737:ir.library.oregonstate.edu 2605:10.3390/antibiotics9090535 2378:Biotechnology for biofuels 1488:10.1016/bs.abr.2021.05.007 1425:10.1038/s41598-021-93900-7 1286:. University of Minnesota. 1187:Harris, Samuel Y. (2001). 1078:biological modified timber 1018:alkaline copper quaternary 1004: 974:(Canary Islands juniper), 946:(kauri), and trees of the 388: 2686:10.1007/s00226-011-0459-2 2651:10.1007/s00226-011-0448-5 2302:FEMS Microbiology Ecology 2207:FEMS Microbiology Ecology 2090:Cellobiohydrolase 1 from 1714:10.1007/s00253-002-0930-y 1570:. In Isaac, Susan (ed.). 1014:chromated copper arsenate 983:Chamaecyparis taiwanensis 697:polychlorinated biphenyls 435:interspecific competition 2110:Journal of Biotechnology 909:Lagarostrobos franklinii 565:Hemicellulose metabolism 541:Botryobasidium botryosum 68:Dry rot and water damage 2349:, 336(6089), 1715–1719. 2153:10.1073/pnas.1323629111 2044:Nature Chemical Biology 1911:10.1126/science.1221748 1857:10.1073/pnas.0809575106 1810:Nature Chemical Biology 1566:Ryvarden, Leif (1993). 1318:Olsson, Jörgen (2008). 1066:thermally modified wood 298:Soft-rot fungi secrete 44:, a type of brown-rot). 3067:10.1080/10915810305087 2096:Nature Communications 1991:10.1074/jbc.M510424200 1614:) and Ponderosa Pine ( 1354:10.1093/dnares/dsaa011 1080:), covering wood with 774: 749:alpha-L-guluronic acid 532: 524: 401: 295: 162: 104:fibre saturation point 69: 61: 45: 3221:Wood-inhabiting fungi 2056:10.1038/nchembio.2029 1612:Pseudotsuga menziesii 1094:EN 350:2016 standards 991:EN 350:2016 standards 962:(Western red cedar), 769: 611:Hypholoma fasciculare 530: 522: 399: 293: 237:Phaeolus schweinitzii 221:Fibroporia vaillantii 200:in general. The term 158:Cubical brown rot on 157: 67: 51: 34:Wood decay caused by 33: 3140:. 22 September 2014. 3120:Government of Canada 1777:10.1128/AEM.00375-06 1568:"Tropical polypores" 1304:) by the ascomycete 1116:. In 1986, the U.S. 953:Chamaecyparis obtusa 904:second-growth stands 762:Induced fungal decay 551:Cellulose metabolism 324:Kretzschmaria deusta 274:regions such as the 98:(honey fungus), are 2931:10.1515/HF.2008.038 2314:2008FEMME..63..181F 2219:1994FEMME..14...19O 2144:2014PNAS..111.6287A 1903:2012Sci...336.1715F 1897:(6089): 1715–1719. 1848:2009PNAS..106.1954M 1768:2006ApEnM..72.4871V 1417:2021NatSR..1114585J 965:Thujopsis dolabrata 732:Pleurotus ostreatus 720:Trametes versicolor 427:Coriolus versicolor 243:Fomitopsis pinicola 224:(mine fungus), and 84:that digests moist 3252:Wood decomposition 2092:Trichoderma reesei 1405:Scientific Reports 1306:Hypocrea sulphurea 1282:2020-02-20 at the 1034:potassium silicate 968:(Hinoki asunaro), 956:(Hinoki cypress), 826:woodboring beetles 816:Natural durability 775: 726:Bjerkandere adusta 643:(360-300 mya) and 615:Resinicium bicolor 533: 525: 456:oxidative coupling 402: 296: 260:geographical range 227:Coniophora puteana 163: 80:is any species of 78:xylophagous fungus 70: 62: 46: 3186:978-3-540-67205-0 3156:Eur-lex.europa.eu 2464:"Gestocktes Holz" 2138:(17): 6287–6292. 1984:(14): 9517–9526. 1972:Pleurotus eryngii 1581:978-0-521-45050-8 1554:Agaricus bisporus 1536:978-1-58008-579-3 1200:978-0-471-33172-8 1042:pentachlorophenol 1007:Wood preservation 1001:Wood preservation 989:According to the 943:Agathis australis 931:Podocarpus totara 824:attacks, such as 745:beta-D-mannuronic 677:shiitake mushroom 545:Jappia argillacea 272:coniferous forest 252:tropical climates 215:Serpula lacrymans 175:hydrogen peroxide 54:Fomes fomentarius 37:Serpula lacrymans 16:(Redirected from 3259: 3228: 3226: 3214: 3212: 3210: 3190: 3160: 3159: 3148: 3142: 3141: 3130: 3124: 3123: 3111: 3105: 3104: 3101:Federal Register 3093: 3087: 3086: 3049: 3043: 3042: 3031: 3025: 3024: 3012: 3006: 3005: 2984: 2978: 2977: 2949: 2943: 2942: 2913: 2907: 2906: 2904: 2880: 2874: 2873: 2863: 2854:(4): 3031–3038. 2839: 2833: 2832: 2806: 2800: 2799: 2789: 2779: 2755: 2749: 2748: 2728: 2722: 2721: 2704: 2698: 2697: 2669: 2663: 2662: 2634: 2628: 2627: 2617: 2607: 2583: 2577: 2576: 2542: 2536: 2535: 2528: 2517: 2516: 2514: 2513: 2502: 2496: 2495: 2493: 2492: 2481: 2475: 2474: 2472: 2471: 2460: 2454: 2443: 2437: 2434:Lentinula edodes 2426: 2420: 2408: 2402: 2401:(25), 6428-6433. 2391: 2385: 2374: 2368: 2356: 2350: 2342: 2336: 2335: 2325: 2293: 2287: 2284: 2278: 2277: 2251: 2242: 2233: 2232: 2230: 2198: 2189: 2185: 2176: 2175: 2165: 2155: 2123: 2117: 2105: 2099: 2098:6, 10149 (2015). 2084: 2078: 2077: 2067: 2031: 2022: 2021:(27), 9923-9928. 2010: 2004: 2003: 1993: 1965: 1959: 1947: 1941: 1940: 1922: 1886: 1880: 1879: 1869: 1859: 1842:(6): 1954–1959. 1823: 1817: 1816:(10), 1123-1128. 1806: 1800: 1799: 1789: 1779: 1762:(7): 4871–4877. 1743: 1734: 1733: 1693: 1687: 1684: 1678: 1674: 1663: 1662: 1660: 1658: 1637: 1622:Forest Pathology 1605: 1599: 1595: 1586: 1585: 1563: 1557: 1550: 1541: 1540: 1524: 1511: 1505: 1504: 1503: 1502: 1471: 1465: 1464: 1454: 1436: 1396: 1390: 1389: 1383: 1375: 1365: 1332: 1326: 1325: 1315: 1309: 1302:Prunus armeniaca 1298: 1287: 1274: 1265: 1258: 1245: 1242: 1236: 1235: 1233: 1232: 1226: 1220:. Archived from 1219: 1211: 1205: 1204: 1184: 1157: 1152: 1151: 1150: 977:Cedrus atlantica 971:Juniperus cedrus 950:family, such as 900:old-growth trees 887:sesquiterpenoids 834:marine organisms 711:when studied in 656:P. chrysosporium 617:, on sterilized 391:Allium white rot 376: 359: 264:Tropic of Cancer 218:(true dry rot), 88:, causing it to 57:is a stem decay 21: 18:Wood-decay fungi 3267: 3266: 3262: 3261: 3260: 3258: 3257: 3256: 3232: 3231: 3224: 3217: 3208: 3206: 3198: 3187: 3172: 3169: 3167:Further reading 3164: 3163: 3150: 3149: 3145: 3132: 3131: 3127: 3113: 3112: 3108: 3103:. 9 April 2003. 3095: 3094: 3090: 3051: 3050: 3046: 3033: 3032: 3028: 3014: 3013: 3009: 2986: 2985: 2981: 2951: 2950: 2946: 2915: 2914: 2910: 2882: 2881: 2877: 2841: 2840: 2836: 2829: 2808: 2807: 2803: 2757: 2756: 2752: 2730: 2729: 2725: 2718: 2706: 2705: 2701: 2680:(5): 991–1002. 2671: 2670: 2666: 2636: 2635: 2631: 2585: 2584: 2580: 2565: 2544: 2543: 2539: 2530: 2529: 2520: 2511: 2509: 2504: 2503: 2499: 2490: 2488: 2483: 2482: 2478: 2469: 2467: 2462: 2461: 2457: 2453:(1-3), 191-199. 2444: 2440: 2430:Nyssa sylvatica 2427: 2423: 2409: 2405: 2392: 2388: 2375: 2371: 2361:Nature genetics 2357: 2353: 2343: 2339: 2295: 2294: 2290: 2285: 2281: 2249: 2244: 2243: 2236: 2200: 2199: 2192: 2186: 2179: 2125: 2124: 2120: 2106: 2102: 2085: 2081: 2033: 2032: 2025: 2011: 2007: 1967: 1966: 1962: 1958:(7), 2381-2386. 1948: 1944: 1888: 1887: 1883: 1830:Postia placenta 1825: 1824: 1820: 1807: 1803: 1745: 1744: 1737: 1695: 1694: 1690: 1685: 1681: 1675: 1666: 1656: 1654: 1635:10.1.1.180.5697 1616:Pinus ponderosa 1607: 1606: 1602: 1596: 1589: 1582: 1565: 1564: 1560: 1551: 1544: 1537: 1513: 1512: 1508: 1500: 1498: 1473: 1472: 1468: 1398: 1397: 1393: 1376: 1334: 1333: 1329: 1317: 1316: 1312: 1299: 1290: 1284:Wayback Machine 1275: 1268: 1259: 1248: 1243: 1239: 1230: 1228: 1224: 1217: 1213: 1212: 1208: 1201: 1186: 1185: 1181: 1176: 1153: 1148: 1146: 1143: 1102: 1082:copper sheathes 1009: 1003: 980:(Atlas cedar), 818: 764: 754:Fungalia trogii 672: 637: 584: 579: 567: 553: 517: 500:Postia placenta 497: 493: 488:Fenton reaction 485: 481: 472: 451: 443:mycoremediation 394: 387: 386: 385: 384: 383: 377: 368: 367: 366: 360: 349: 288: 276:Rocky Mountains 254:or in southern 184: 180: 152: 28: 23: 22: 15: 12: 11: 5: 3265: 3263: 3255: 3254: 3249: 3244: 3234: 3233: 3230: 3229: 3215: 3196: 3191: 3185: 3168: 3165: 3162: 3161: 3143: 3125: 3106: 3088: 3061:(2): 109–128. 3044: 3026: 3007: 2979: 2944: 2925:(3): 264–269. 2908: 2895:(2): 155–163. 2875: 2834: 2827: 2801: 2750: 2723: 2716: 2699: 2664: 2645:(5): 851–870. 2629: 2578: 2563: 2537: 2518: 2497: 2476: 2455: 2438: 2421: 2403: 2386: 2369: 2351: 2337: 2308:(2): 181–191. 2288: 2279: 2254:Fungal Ecology 2234: 2190: 2177: 2118: 2100: 2079: 2050:(4): 298–303. 2023: 2005: 1960: 1942: 1881: 1818: 1801: 1735: 1688: 1679: 1664: 1628:(4): 255–271. 1600: 1587: 1580: 1558: 1542: 1535: 1506: 1466: 1391: 1327: 1310: 1288: 1266: 1246: 1237: 1206: 1199: 1178: 1177: 1175: 1172: 1171: 1170: 1165: 1163:Snag (ecology) 1159: 1158: 1142: 1139: 1135:European Union 1122:soil pollution 1101: 1098: 1005:Main article: 1002: 999: 844:converts into 817: 814: 763: 760: 671: 668: 636: 633: 628:bacteriostatic 583: 580: 578: 575: 566: 563: 552: 549: 516: 513: 504:secondary loss 495: 491: 483: 479: 471: 468: 450: 447: 410:basidiomycetes 406:agaricomycetes 378: 371: 370: 369: 361: 354: 353: 352: 351: 350: 348: 345: 307:fixed nitrogen 287: 284: 182: 178: 151: 148: 59:plant pathogen 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3264: 3253: 3250: 3248: 3245: 3243: 3240: 3239: 3237: 3223: 3222: 3216: 3204: 3203: 3197: 3195: 3192: 3188: 3182: 3178: 3177: 3171: 3170: 3166: 3157: 3153: 3147: 3144: 3139: 3135: 3129: 3126: 3121: 3117: 3110: 3107: 3102: 3098: 3092: 3089: 3084: 3080: 3076: 3072: 3068: 3064: 3060: 3056: 3048: 3045: 3040: 3036: 3030: 3027: 3022: 3021:cfpub.epa.gov 3018: 3015:US EPA, ORD. 3011: 3008: 3003: 2999: 2996:: 2093–2099. 2995: 2991: 2983: 2980: 2975: 2971: 2967: 2963: 2959: 2955: 2948: 2945: 2940: 2936: 2932: 2928: 2924: 2920: 2919:Holzforschung 2912: 2909: 2903: 2898: 2894: 2890: 2886: 2879: 2876: 2871: 2867: 2862: 2857: 2853: 2849: 2845: 2838: 2835: 2830: 2828:9780081009956 2824: 2820: 2816: 2812: 2805: 2802: 2797: 2793: 2788: 2783: 2778: 2773: 2769: 2765: 2761: 2754: 2751: 2746: 2742: 2738: 2734: 2727: 2724: 2719: 2717:0-88894-437-3 2713: 2709: 2703: 2700: 2695: 2691: 2687: 2683: 2679: 2675: 2668: 2665: 2660: 2656: 2652: 2648: 2644: 2640: 2633: 2630: 2625: 2621: 2616: 2611: 2606: 2601: 2597: 2593: 2589: 2582: 2579: 2574: 2570: 2566: 2564:9780081021101 2560: 2556: 2552: 2548: 2541: 2538: 2533: 2527: 2525: 2523: 2519: 2507: 2501: 2498: 2487:. eisbuche.de 2486: 2480: 2477: 2465: 2459: 2456: 2452: 2448: 2442: 2439: 2435: 2431: 2425: 2422: 2418: 2414: 2407: 2404: 2400: 2396: 2390: 2387: 2383: 2379: 2373: 2370: 2367:(4), 410-415. 2366: 2362: 2355: 2352: 2348: 2341: 2338: 2333: 2329: 2324: 2319: 2315: 2311: 2307: 2303: 2299: 2292: 2289: 2283: 2280: 2275: 2271: 2267: 2263: 2259: 2255: 2248: 2241: 2239: 2235: 2229: 2224: 2220: 2216: 2212: 2208: 2204: 2197: 2195: 2191: 2184: 2182: 2178: 2173: 2169: 2164: 2159: 2154: 2149: 2145: 2141: 2137: 2133: 2129: 2122: 2119: 2116:(3), 199-210. 2115: 2111: 2104: 2101: 2097: 2093: 2089: 2083: 2080: 2075: 2071: 2066: 2061: 2057: 2053: 2049: 2045: 2041: 2039: 2030: 2028: 2024: 2020: 2016: 2009: 2006: 2001: 1997: 1992: 1987: 1983: 1979: 1975: 1973: 1964: 1961: 1957: 1953: 1946: 1943: 1938: 1934: 1930: 1926: 1921: 1916: 1912: 1908: 1904: 1900: 1896: 1892: 1885: 1882: 1877: 1873: 1868: 1863: 1858: 1853: 1849: 1845: 1841: 1837: 1833: 1831: 1822: 1819: 1815: 1811: 1805: 1802: 1797: 1793: 1788: 1783: 1778: 1773: 1769: 1765: 1761: 1757: 1753: 1751: 1742: 1740: 1736: 1731: 1727: 1723: 1719: 1715: 1711: 1708:(5): 582–94. 1707: 1703: 1699: 1692: 1689: 1683: 1680: 1673: 1671: 1669: 1665: 1653: 1649: 1645: 1641: 1636: 1631: 1627: 1623: 1619: 1617: 1613: 1604: 1601: 1594: 1592: 1588: 1583: 1577: 1573: 1569: 1562: 1559: 1555: 1549: 1547: 1543: 1538: 1532: 1528: 1523: 1522: 1516: 1515:Stamets, Paul 1510: 1507: 1497: 1493: 1489: 1485: 1481: 1477: 1470: 1467: 1462: 1458: 1453: 1448: 1444: 1440: 1435: 1430: 1426: 1422: 1418: 1414: 1410: 1406: 1402: 1395: 1392: 1387: 1381: 1373: 1369: 1364: 1359: 1355: 1351: 1347: 1343: 1339: 1331: 1328: 1323: 1322: 1314: 1311: 1307: 1303: 1297: 1295: 1293: 1289: 1285: 1281: 1278: 1273: 1271: 1267: 1263: 1257: 1255: 1253: 1251: 1247: 1241: 1238: 1227:on 2022-01-24 1223: 1216: 1210: 1207: 1202: 1196: 1192: 1191: 1183: 1180: 1173: 1169: 1166: 1164: 1161: 1160: 1156: 1145: 1140: 1138: 1136: 1132: 1128: 1123: 1119: 1115: 1111: 1107: 1099: 1097: 1095: 1091: 1087: 1083: 1079: 1075: 1071: 1067: 1063: 1059: 1055: 1051: 1050:propiconazole 1047: 1043: 1039: 1035: 1031: 1027: 1023: 1019: 1015: 1008: 1000: 998: 996: 992: 987: 985: 984: 979: 978: 973: 972: 967: 966: 961: 960: 959:Thuja plicata 955: 954: 949: 945: 944: 939: 938: 933: 932: 927: 923: 922: 918:(ipil), some 917: 916: 915:Intsia bijuga 912:(Huon pine), 911: 910: 905: 901: 896: 892: 888: 884: 880: 876: 872: 868: 864: 863:plicatic acid 860: 856: 852: 847: 843: 839: 835: 831: 827: 823: 815: 813: 811: 807: 803: 798: 796: 792: 788: 784: 780: 772: 771:Ballpoint pen 768: 761: 759: 756: 755: 750: 746: 742: 738: 734: 733: 728: 727: 722: 721: 716: 715: 710: 706: 702: 698: 694: 690: 686: 682: 678: 669: 667: 663: 659: 657: 653: 648: 646: 642: 641:Carboniferous 634: 632: 629: 625: 620: 616: 612: 607: 603: 601: 595: 592: 591: 581: 576: 574: 572: 571:hemicellulose 564: 562: 559: 550: 548: 546: 542: 538: 531:Hemicellulose 529: 521: 514: 512: 510: 505: 501: 489: 477: 469: 467: 465: 461: 460:phenylpropane 457: 448: 446: 444: 440: 436: 432: 428: 424: 419: 415: 411: 407: 398: 392: 382: 375: 365: 362:White rot on 358: 346: 344: 342: 338: 334: 328: 326: 325: 320: 319: 314: 313: 308: 303: 302: 292: 285: 283: 281: 277: 273: 269: 265: 262:north of the 261: 257: 253: 247: 245: 244: 239: 238: 233: 229: 228: 223: 222: 217: 216: 211: 207: 203: 199: 194: 192: 188: 176: 172: 168: 167:hemicellulose 161: 156: 149: 147: 144: 140: 137: 136:hemicellulose 133: 129: 125: 121: 116: 114: 110: 109:carbohydrates 105: 101: 97: 96: 91: 87: 83: 79: 75: 66: 60: 56: 55: 50: 43: 39: 38: 32: 19: 3220: 3207:. Retrieved 3201: 3179:. Springer. 3175: 3155: 3146: 3137: 3128: 3119: 3109: 3100: 3091: 3058: 3054: 3047: 3038: 3029: 3020: 3010: 2993: 2989: 2982: 2957: 2953: 2947: 2922: 2918: 2911: 2892: 2888: 2878: 2851: 2847: 2837: 2810: 2804: 2767: 2763: 2753: 2736: 2726: 2707: 2702: 2677: 2673: 2667: 2642: 2638: 2632: 2595: 2591: 2581: 2546: 2540: 2510:. Retrieved 2500: 2489:. Retrieved 2479: 2468:. Retrieved 2458: 2450: 2446: 2441: 2433: 2429: 2424: 2416: 2412: 2406: 2398: 2394: 2389: 2381: 2377: 2372: 2364: 2360: 2354: 2346: 2340: 2305: 2301: 2291: 2282: 2257: 2253: 2213:(1): 19–24. 2210: 2206: 2135: 2131: 2121: 2113: 2109: 2103: 2095: 2091: 2087: 2082: 2047: 2043: 2037: 2018: 2014: 2008: 1981: 1977: 1971: 1963: 1955: 1951: 1945: 1894: 1890: 1884: 1839: 1835: 1829: 1821: 1813: 1809: 1804: 1759: 1755: 1749: 1705: 1701: 1697: 1691: 1682: 1655:. Retrieved 1625: 1621: 1615: 1611: 1603: 1571: 1561: 1553: 1520: 1509: 1499:, retrieved 1479: 1469: 1434:10138/332607 1411:(1): 14585. 1408: 1404: 1394: 1380:cite journal 1345: 1342:DNA Research 1341: 1330: 1320: 1313: 1305: 1301: 1240: 1229:. Retrieved 1222:the original 1209: 1189: 1182: 1155:Fungi portal 1112:contents of 1103: 1058:imidacloprid 1054:tebuconazole 1022:copper azole 1010: 988: 981: 975: 969: 963: 957: 951: 948:Cupressaceae 941: 937:Vitex lucens 935: 929: 919: 913: 907: 883:thujaplicins 837: 819: 809: 799: 783:fungal decay 782: 776: 752: 741:alginic acid 730: 724: 718: 712: 673: 664: 660: 655: 649: 638: 624:bactericidal 614: 610: 608: 604: 596: 588: 585: 568: 554: 544: 540: 534: 499: 473: 452: 449:Biochemistry 430: 426: 423:carbon cycle 418:saprotrophic 403: 329: 322: 318:Ceratocystis 316: 310: 299: 297: 248: 241: 235: 232:sulfur shelf 225: 219: 213: 205: 201: 197: 195: 164: 145: 141: 127: 123: 119: 117: 93: 77: 73: 71: 52: 42:true dry rot 41: 35: 3039:www.who.int 2960:: S32–S35. 2813:: 129–157. 2764:Antibiotics 2592:Antibiotics 2549:: 311–336. 2419:(1), 35-44. 1920:10261/60626 1657:22 December 1260:J. Deacon, 851:polyphenols 838:extractives 737:biosorption 652:Polyporales 464:side chains 414:ascomycetes 412:, and some 379:... and on 3236:Categories 3209:31 January 2770:(5): 225. 2598:(9): 535. 2512:2020-03-31 2491:2020-03-31 2485:"Eisbuche" 2470:2020-03-31 2384:(1), 1-13. 2260:: 100938. 1501:2023-03-29 1231:2018-02-28 1174:References 1133:, and the 1086:hinokitiol 940:(puriri), 934:(totara), 921:Eucalyptus 881:and other 879:hinokitiol 875:tropolones 867:flavonoids 509:tryptophan 476:peroxidase 439:catabolism 312:Chaetomium 95:Armillaria 74:wood-decay 3247:Dead wood 3035:"Arsenic" 2745:1957/7736 2573:116669346 2276:. 100938. 2274:216224049 1698:Pleurotus 1652:1437-4781 1630:CiteSeerX 1496:238920143 1443:2045-2322 1131:Australia 924:species ( 891:α-cadinol 871:mesquitol 846:heartwood 810:ice-beech 779:parasitic 635:Evolution 600:Mutualism 590:Pleurotus 558:histidine 523:Cellulose 347:White rot 301:cellulase 280:Himalayas 256:temperate 202:brown rot 171:cellulose 150:Brown rot 132:cellulose 128:white rot 120:brown rot 100:parasitic 3083:20986621 3075:12745992 2974:25078835 2939:97166844 2870:29236851 2796:32370037 2694:15869687 2659:16934998 2624:32847132 2332:18199083 2172:24733907 2074:26928935 2000:16443605 1937:37121590 1929:22745431 1876:19193860 1796:16820482 1730:45444911 1722:11956739 1517:(2005). 1461:34272417 1372:32531032 1280:Archived 1141:See also 1110:chromium 1074:tung oil 1048:(LOSP), 1038:creosote 1024:(CuAz), 926:ironbark 859:gmelinol 830:termites 709:azo dyes 490:: Fe + H 286:Soft rot 187:molecule 124:soft rot 40:(called 2787:7277147 2615:7558063 2347:Science 2310:Bibcode 2215:Bibcode 2163:4035949 2140:Bibcode 2065:4817220 1899:Bibcode 1891:Science 1867:2644145 1844:Bibcode 1787:1489383 1764:Bibcode 1452:8285386 1413:Bibcode 1363:7406137 1106:arsenic 1090:tannins 1026:borates 1020:(ACQ), 1016:(CCA), 993:by the 855:lignans 842:sapwood 689:lindane 645:Permian 577:Ecology 537:laccase 341:suberin 337:tannins 278:or the 210:Dry rot 206:dry rot 198:dry rot 3183:  3081:  3073:  2972:  2937:  2868:  2825:  2794:  2784:  2714:  2692:  2657:  2622:  2612:  2571:  2561:  2330:  2272:  2170:  2160:  2072:  2062:  1998:  1935:  1927:  1874:  1864:  1794:  1784:  1728:  1720:  1650:  1632:  1598:14-23. 1578:  1533:  1494:  1459:  1449:  1441:  1370:  1360:  1197:  1127:Canada 1100:Safety 1030:sodium 895:timber 889:(e.g. 877:(e.g. 869:(e.g. 857:(e.g. 832:, and 822:insect 795:vacuum 791:resins 729:, and 707:, and 462:alkyl 400:Lignin 321:, and 268:boreal 240:, and 191:hyphae 126:, and 113:lignin 82:fungus 3225:(PDF) 3079:S2CID 2935:S2CID 2690:S2CID 2655:S2CID 2569:S2CID 2270:S2CID 2250:(PDF) 2188:1–10. 1933:S2CID 1726:S2CID 1527:83–84 1492:S2CID 1348:(2). 1225:(PDF) 1218:(PDF) 1062:epoxy 806:grain 802:beech 787:cells 619:beech 364:birch 3211:2015 3181:ISBN 3071:PMID 2970:PMID 2866:PMID 2823:ISBN 2792:PMID 2712:ISBN 2620:PMID 2559:ISBN 2328:PMID 2168:PMID 2070:PMID 1996:PMID 1925:PMID 1872:PMID 1792:PMID 1718:PMID 1659:2022 1648:ISSN 1576:ISBN 1531:ISBN 1457:PMID 1439:ISSN 1386:link 1368:PMID 1195:ISBN 1108:and 1040:and 1032:and 828:and 747:and 681:CAHs 626:and 613:and 543:and 429:and 333:bark 169:and 134:and 86:wood 3063:doi 2998:doi 2994:142 2962:doi 2927:doi 2897:doi 2856:doi 2815:doi 2782:PMC 2772:doi 2741:hdl 2682:doi 2647:doi 2610:PMC 2600:doi 2551:doi 2451:109 2399:115 2318:doi 2262:doi 2223:doi 2158:PMC 2148:doi 2136:111 2060:PMC 2052:doi 2019:111 1986:doi 1982:281 1915:hdl 1907:doi 1895:336 1862:PMC 1852:doi 1840:106 1782:PMC 1772:doi 1710:doi 1700:". 1640:doi 1484:doi 1447:PMC 1429:hdl 1421:doi 1358:PMC 1350:doi 1114:CCA 1070:mud 1068:), 928:), 885:), 873:), 865:), 701:PCP 685:DDT 683:), 381:oak 160:oak 90:rot 76:or 3238:: 3154:. 3136:. 3118:. 3099:. 3077:. 3069:. 3059:22 3057:. 3037:. 3019:. 2992:. 2968:. 2958:25 2956:. 2933:. 2923:62 2921:. 2893:14 2891:. 2887:. 2864:. 2852:89 2850:. 2846:. 2821:. 2790:. 2780:. 2766:. 2762:. 2739:. 2735:. 2688:. 2678:46 2676:. 2653:. 2643:46 2641:. 2618:. 2608:. 2594:. 2590:. 2567:. 2557:. 2521:^ 2449:, 2417:34 2415:, 2397:, 2382:10 2380:, 2365:47 2363:, 2326:. 2316:. 2306:63 2304:. 2300:. 2268:. 2258:45 2256:. 2252:. 2237:^ 2221:. 2211:14 2209:. 2205:. 2193:^ 2180:^ 2166:. 2156:. 2146:. 2134:. 2130:. 2114:63 2112:, 2068:. 2058:. 2048:12 2046:. 2042:. 2026:^ 2017:, 1994:. 1980:. 1976:. 1956:62 1954:, 1931:. 1923:. 1913:. 1905:. 1893:. 1870:. 1860:. 1850:. 1838:. 1834:. 1814:13 1812:, 1790:. 1780:. 1770:. 1760:72 1758:. 1754:. 1738:^ 1724:. 1716:. 1706:58 1704:. 1667:^ 1646:. 1638:. 1626:34 1624:. 1620:. 1618:)" 1590:^ 1545:^ 1529:. 1490:, 1478:, 1455:. 1445:. 1437:. 1427:. 1419:. 1409:11 1407:. 1403:. 1382:}} 1378:{{ 1366:. 1356:. 1346:27 1344:. 1340:. 1291:^ 1269:^ 1249:^ 1137:. 1129:, 1088:, 1072:, 1060:, 1044:, 1028:, 861:, 853:, 812:. 723:, 717:, 703:, 699:, 695:, 691:, 687:, 408:, 327:. 315:, 282:. 246:. 234:, 177:(H 122:, 72:A 3213:. 3189:. 3158:. 3122:. 3085:. 3065:: 3023:. 3004:. 3000:: 2976:. 2964:: 2941:. 2929:: 2905:. 2899:: 2872:. 2858:: 2831:. 2817:: 2798:. 2774:: 2768:9 2747:. 2743:: 2720:. 2696:. 2684:: 2661:. 2649:: 2626:. 2602:: 2596:9 2575:. 2553:: 2515:. 2494:. 2473:. 2334:. 2320:: 2312:: 2264:: 2231:. 2225:: 2217:: 2174:. 2150:: 2142:: 2088:. 2076:. 2054:: 2040:" 2002:. 1988:: 1939:. 1917:: 1909:: 1901:: 1878:. 1854:: 1846:: 1798:. 1774:: 1766:: 1752:" 1732:. 1712:: 1642:: 1584:. 1539:. 1486:: 1463:. 1431:: 1423:: 1415:: 1388:) 1374:. 1352:: 1234:. 1203:. 1056:- 1052:- 496:2 494:O 492:2 484:2 482:O 480:2 393:. 183:2 181:O 179:2 20:)

Index

Wood-decay fungi

Serpula lacrymans

Fomes fomentarius
plant pathogen

fungus
wood
rot
Armillaria
parasitic
fibre saturation point
carbohydrates
lignin
cellulose
hemicellulose

oak
hemicellulose
cellulose
hydrogen peroxide
molecule
hyphae
Dry rot
Serpula lacrymans
Fibroporia vaillantii
Coniophora puteana
sulfur shelf
Phaeolus schweinitzii

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑