Knowledge (XXG)

Zeolitic imidazolate framework

Source đź“ť

73:
ZIF glasses are a newly discovered type of material that has been garnering increasing interest in recent years, with around 13 different ZIFs, including ZIF-4, ZIF-62, and ZIF-76, being successfully prepared in their glassy state. In traditional materials science, glasses can be divided into three major families: inorganic, organic, and metallic. The chemical bonds that make up the structure of members of each family are mixed ionic/covalent bonds, covalent bonds, and metallic bonds, respectively. ZIF glasses, on the other hand, are an organic-inorganic coordinated glass discovered only recently, and have a completely different structure than the three traditional glass families. They thus represent a fourth type of glass.
20: 637:— anions and imidazolate-based ligands - or combining two types of linkers to change bond angles or pore size due to limitations in synthesizing methods and production. A large portion of changing linkers included adding functional groups with various polarities and symmetries to the imidazolate ligands to alter the ZIFs carbon dioxide adsorption ability without changing the transitional-metal cations. Compare this to MOFs, which have a much larger degree of variety in the types of their building units. 170:
promised applications achievable. The first intriguing one is that ZIF glass maintains the porous structure as its crystalline form after melt-quench process, which means it can be applied for applications such as gas separation and storage. The glassy form would also offer unique opportunities for easy processability and mass production. Last but not least, besides pure ZIF glass, composites based on it by tuning the composition and structure has the distinct advantage of a broad design space.
86:
disorder of the tetrahedral ligand environment around metal nodes in the ZIF glass was detected for the first time by performing zinc-67 nuclear magnetic resonance. This finding clearly showed that ZIF glasses are structurally very different from the other known glass types, overturning the traditional view that a glass structure has short-range order and long-range disorder, providing a broader view of what qualifies as a glass.
690: 561: 161:
would be significantly broken during the amorphization process. Bennett et al found certain members from MOF family (ZIF-4, etc.) can be made into a glassy state. Those carefully selected ZIF crystals are able to form a glassy solid after heating and cooling in an argon atmosphere. Moreover, the melting range can be tuned by their network topologies.
149:, have also been described to produce high-quality ZIF-8. Chemical vapor deposition is of particular promise due to the high degree of uniformity and aspect ratio control it can offer, and its ability to be integrated into traditional lithographic workflows for functional thin films (e.g. microelectronics). Environmentally-friendly synthesis based on 114:(DMF) is used. The heat applied decomposes the amide solvent to generate amines, which in turn generate the imidazolate from the imidazole species. Methanol, ethanol, isopropanol, and water have also been explored as alternative solvents for ZIF formation but require bases such as pyridine, TEA, sodium formate, and NaOH. Polymers such as 227:
ZIFs 68, 69, 70, 78, 81, 82, 95, and 100 have been found to have very high uptake capacity, meaning that they can store a lot of carbon dioxide, though their affinity to it is not always strong. Of those, 68, 69, and 70 show high affinities for carbon dioxide, evidenced by their adsorption isotherms,
223:
molecule is about 5.4 Angstroms in length, zeolites with a pore size of 4-5 Angstroms can be well-suited for carbon dioxide capture. However, other factors also need to be considered when determining how effective zeolites will be at carbon dioxide capture. The first is basicity, which can be created
72:
can be synthesized by the melt-quench method, and the first melt-quenched ZIF glass was firstly made and reported by Bennett et al. back in 2015. ZIFs remain porous even after forming glasses, recent studies have revealed that the linker modification can really modulate the melting behaviour of ZIFs.
61:
linkers. Since the metal-imidazole-metal angle is similar to the 145° Si-O-Si angle in zeolites, ZIFs have zeolite-like topologies. As of 2010, 105 ZIF topologies have been reported in the literature. Due to their robust porosity, resistance to thermal changes, and chemical stability, ZIFs are being
665:
Even in comparison with other materials, the ZIFs most attractive quality is still its hydrophobic properties. When compared to ZIFs in dry conditions, activated carbon was nearly identical with its uptake capacity. However, once the conditions were changed to wet, the activated carbon’s uptake was
640:
Despite these similarities with other MOFs, ZIFs have significant properties that distinguish these structures as uniquely applicable to carbon capture processes. Because ZIFs tend to resemble the crystalline framework of zeolites, their thermal and chemical stability are higher than those of other
626:
hybrids that combine organic and metal frameworks to create hybrid microporous and crystalline structures, they are much more restricted in their structure. Similar to MOFs, most ZIF properties are largely dependent on the properties of the metal clusters, ligands, and synthesis conditions in which
546:
Because ZIF’s are porous, chemically stable, thermally stable, and tunable, they are potentially a platform for drug delivery and controlled drug release. ZIF-8 is very stable in water and aqueous sodium hydroxide solutions but decompose quickly in acidic solutions, indicating a pH sensitivity that
276:
In addition to gas separations, ZIF’s have the potential to separate components of biofuels, specifically, water and ethanol. Of all of the ZIF’s that have been tested, ZIF-8 shows high selectivity. ZIF’s have also shown potential in separating other alcohols, like propanol and butanol, from water.
160:
Using the traditional melt-quench of metals or sintering of ceramics would cause the collapse of MOF structure as its thermal decomposing temperature is lower than its melting temperature. Moreover, the amorphous form of MOF can be achieved through pressurization or heating, but its network feature
85:
One notable discovery regarding the structure of ZIF glass was made by Rasmus et al. Before this research was published, the short-range structural order at the scale of the cation-ligand units remained unknown given the limitations of the analytical techniques available. The short-range structural
294:
reaction between benzaldehyde and malononitrile. ZIF’s have also been shown to work well in oxidation and epoxidation reactions; ZIF-9 has been shown to catalyze the aerobic oxidation of tetralin and the oxidation of many other small molecules. It can also catalyze reactions to produce hydrogen at
469:
ZIF’s are also good candidates for chemical sensors because of their tunable adsorbance properties. ZIF-8 exhibits sensitivity when exposed to the vapor of ethanol and water mixtures, and this response is dependent on the concentration of ethanol in the mixture. Additionally, ZIF’s are attractive
169:
The crystal form of ZIF, or MOF in general, is known for its porosity, but is difficult to mass-produce and incorporate in actual applications due to unavoidable intercrystalline defects. There are several interesting characters about ZIF glasses addressing those challenges to potentially realize
81:
The structure of melt-quenched ZIF glasses maintains a certain amount of short-range order, although the chemical configuration and coordination environments, after melting, lose long-range order completely. From a microscopic view, the linkages between metal nodes and organic ligands (e.g., Zn-N
1065:
Song, Jianbo; Frentzel-Beyme, Louis; Pallach, Roman; Kolodzeiski, Pascal; Koutsiano, Athanasios; Xue, Wenlong; Schmid, Rochus; Henke, Sebastian (April 2023). "Modulating Liquid–Liquid Transitions and Glass Formation in Zeolitic Imidazolate Frameworks by Decoration with Electron-Withdrawing Cyano
244:
ZIF-62 was made into a glassy membrane on the nanoporous alumina support for gas separation for the first time by Yuhan et al in 2020. The vitrification process effectively eliminates grain boundaries formation within the glass, and the molecular sieving ability of such membrane is significantly
157:) have been also reported as a feasible procedure for the preparation of ZIF-8 at an industrial scale. Working under stoichiometric conditions, ZIF-8 could be obtained in 10 hours and does not require the use of ligand excess, additives, organic solvents or cleaning steps. 669:
However, ZIFs tend to be expensive to synthesize. MOFs require synthesis methods with long reaction periods, high pressures, and high temperatures, which aren’t methods that are easy to scale-up. ZIFs do tend to be more affordable than commercially available non-ZIF MOFs.
285:
ZIF’s also have great potential as heterogeneous catalysts; ZIF-8 has been shown to act as good catalysts for the transesterification of vegetable oils, the Friedel-Crafts acylation reaction between benzoyl chloride and anisole, and for the formation of carbonates. ZIF-8
261:
Much ZIF research focuses on the separation of hydrogen and carbon dioxide because a well-studied ZIF, ZIF-8, has a very high separation factor for hydrogen and carbon dioxide mixtures. It is also very good for the separation of hydrocarbon mixtures, like the following:
470:
materials for matrices for biosensors, like electrochemical biosensors, for in-vivo electrochemical measurements. They also have potential applications as luminescent probes for the detection of metal ions and small molecules. ZIF-8 luminescence is highly sensitive to
652:
required to reach saturation. MOFs are also less stable in moist and oxygen-rich environments due to metal-oxygen bonds performing hydrolysis. ZIFs, however, have nearly identical performance in dry vs humid conditions, showing much higher
2245:
LĂłpez-DomĂ­nguez, Pedro; LĂłpez-Periago, Ana M.; Fernández-Porras, Francisco J.; et al. (2017-03-01). "Supercritical CO2 for the synthesis of nanometric ZIF-8 and loading with hyperbranched aminopolymers. Applications in CO2 capture".
224:
by doing an alkali metal cation exchange. The second is the Si/Al ratio which impacts the cation exchange capacity. To get a higher adsorption capacity, there must be a lower Si/Al ratio in order to increase the cation exchange capacity.
253:, are much higher than Knudsen selectivities, and the excellent performance of the ZIF-62 glass membrane not only far exceeds the Robeson upper bound, but also exceeds most of other pure polycrystalline MOF materials reported so far. 673:
When combined with polymer-sorbent materials, research determined that hybrid polymer-ZIF sorbent membranes no longer following the upper bound of the Robeson plot, which is a plot of selectivity as a function of permeation for
989:
Bennett, Thomas D.; Tan, Jin-Chong; Yue, Yuanzheng; Baxter, Emma; Ducati, Caterina; Terrill, Nick J.; Yeung, Hamish H. -M.; Zhou, Zhongfu; Chen, Wenlin; Henke, Sebastian; Cheetham, Anthony K. (November 2015).
1887:
Yao, Jianfeng; He, Ming; Wang, Kun; et al. (2013-04-16). "High-yield synthesis of zeolitic imidazolate frameworks from stoichiometric metal and ligand precursor aqueous solutions at room temperature".
1466:
Huang, Xiao-Chun; Lin, Yan-Yong; Zhang, Jie-Peng; Chen, Xiao-Ming (2006-02-27). "Ligand-Directed Strategy for Zeolite-Type Metal–Organic Frameworks: Zinc(II) Imidazolates with Unusual Zeolitic Topologies".
1510:
Cravillon, Janosch; MĂĽnzer, Simon; Lohmeier, Sven-Jare; et al. (2009-04-28). "Rapid Room-Temperature Synthesis and Characterization of Nanocrystals of a Prototypical Zeolitic Imidazolate Framework".
137:, which allows nucleation reactions to proceed rapidly through acoustic generation of localized heat and pressure, has been explored as a way to shorten synthesis times. As with the case of zeolites, 1589:
Bennett, Thomas D.; Saines, Paul J.; Keen, David A.; et al. (2013-05-27). "Ball-Milling-Induced Amorphization of Zeolitic Imidazolate Frameworks (ZIFs) for the Irreversible Trapping of Iodine".
742:
Bennett, Thomas D.; Yue, Yuanzheng; Li, Peng; Qiao, Ang; Tao, Haizheng; Greaves, Neville G.; Richards, Tom; Lampronti, Giulio I.; Redfern, Simon A. T.; Blanc, Frédéric; Farha, Omar K. (2016-03-16).
2120:
Hillman, Febrian; Zimmerman, John M.; Paek, Seung-Min; et al. (2017-03-28). "Rapid microwave-assisted synthesis of hybrid zeolitic–imidazolate frameworks with mixed metals and mixed linkers".
644:
Perhaps the most important difference is the ZIFs' hydrophobic properties and water stability. A main issue with zeolites and MOFs, to a certain extent, was their adsorption of water along with CO
110:. A wide range of solvents, bases, and conditions have been explored, with an eye towards improving crystal functionality, morphology, and dispersity. Prototypically, an amide solvent such as 1546:
He, Ming; Yao, Jianfeng; Li, Lunxi; et al. (2013-10-01). "Synthesis of Zeolitic Imidazolate Framework-7 in a Water/Ethanol Mixture and Its Ethanol-Induced Reversible Phase Transition".
2708:
Wang, Sibo; Wang, Xinchen (2015-12-08). "Imidazolium Ionic Liquids, Imidazolylidene Heterocyclic Carbenes, and Zeolitic Imidazolate Frameworks for CO2 Capture and Photochemical Reduction".
141:
has also been of interest for the rapid synthesis of ZIFs. Both methods have been shown to reduce reaction times from days to hours, or from hours to minutes. Solvent-free methods, such as
666:
halved. When this saturation and regeneration tests were run at these conditions, ZIFs also showed minimal to no structural degradation, a good indication of the adsorbent’s re-usability.
2393:
Phan, Anh; Doonan, Christian J.; Uribe-Romo, Fernando J.; et al. (2010-01-19). "Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks".
2085:
Bux, Helge; Liang, Fangyi; Li, Yanshuo; et al. (2009). "Zeolitic Imidazolate Framework Membrane with Molecular Sieving Properties by Microwave-Assisted Solvothermal Synthesis".
1923:
Shieh, Fa-Kuen; Wang, Shao-Chun; Leo, Sin-Yen; Wu, Kevin C.-W. (2013-08-19). "Water-Based Synthesis of Zeolitic Imidazolate Framework-90 (ZIF-90) with a Controllable Particle Size".
2491:
Zhang, Kang; Nalaparaju, Anjaiah; Chen, Yifei; Jiang, Jianwen (2014-04-23). "Biofuel purification in zeolitic imidazolate frameworks: the significant role of functional groups".
2013:
Seoane, Beatriz; Zamaro, Juan M.; Tellez, Carlos; Coronas, Joaquin (2012-04-02). "Sonocrystallization of zeolitic imidazolate frameworks (ZIF-7, ZIF-8, ZIF-11 and ZIF-20)".
106:
with acidic proton), a solvent, and base. Functionalized ImH linkers allow for control of ZIF structure. This process is ideal for generating monocrystalline materials for
82:
linkages) partially break at high temperature and the resulting undercoordinated metal ions have the potential to link with other neighboring organic ligands for exchange.
2542:
Guan, Yebin; Shi, Juanjuan; Xia, Ming; et al. (2017-11-30). "Monodispersed ZIF-8 particles with enhanced performance for CO2 adsorption and heterogeneous catalysis".
536: 502: 221: 1632:
Pan, Yichang; Liu, Yunyang; Zeng, Gaofeng; et al. (2011-02-01). "Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system".
874:
Phan, A.; Doonan, C. J.; Uribe-Romo, F. J.; et al. (2010). "Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks".
2582:
Chen, Binling; Yang, Zhuxian; Zhu, Yanqiu; Xia, Yongde (2014-09-23). "Zeolitic imidazolate framework materials: recent progress in synthesis and applications".
1303:
Banerjee, Rahul; Phan, Anh; Wang, Bo; et al. (2008-02-15). "High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture".
2624:
Basnayake, Sajani A.; Su, Jie; Zou, Xiadong; Balkus, Kenneth J. (2015-02-04). "Carbonate-Based Zeolitic Imidazolate Frame for Highly Selective CO2 Capture".
277:
Typically, water and ethanol (or other alcohols) are separated using distillation, however ZIF’s offer a potential lower-energy separation option.
2436:
Wang, Yuhan; Jin, Hua; Ma, Qiang; Mo, Kai; Mao, Haizhuo; Feldhoff, Armin; Cao, Xingzhong; Li, Yanshuo; Pan, Fusheng; Jiang, Zhongyi (2020-03-09).
1816:"Formate modulated solvothermal synthesis of ZIF-8 investigated using time-resolved in situ X-ray diffraction and scanning electron microscopy" 2377: 2155:
Bennett, Thomas D.; Cao, Shuai; Tan, Jin Chong; et al. (2011). "Facile Mechanosynthesis of Amorphous Zeolitic Imidazolate Frameworks".
2320:
Venna, Surendar R.; Carreon, Moises A. (2010-01-13). "Highly Permeable Zeolite Imidazolate Framework-8 Membranes for CO2/CH4 Separation".
909:
Zhang, J.-P.; Zhang, Y.-B.; Lin, J.-B.; Chen, X.-M. (2012). "Metal Azolate Frameworks: From Crystal Engineering to Functional Materials".
2760: 2058:
Cho, Hye-Young; Kim, Jun; Kim, Se-Na; Ahn, Wha-Seung (2013-03-15). "High yield 1-L scale synthesis of ZIF-8 via a sonochemical route".
1716:
Kida, Koji; Okita, Muneyuki; Fujita, Kosuke; et al. (2013-02-07). "Formation of high crystalline ZIF-8 in an aqueous solution".
2775: 2765: 1120:
Madsen, Rasmus S. K.; Qiao, Ang; Sen, Jishnu; Hung, Ivan; Chen, Kuizhi; Gan, Zhehong; Sen, Sabyasachi; Yue, Yuanzheng (2020-03-27).
723: 604: 571: 184:
ZIFs exhibit some properties relevant to carbon dioxide capture, while commercial technology still centers around amine solvents.
23:
The structure of a zeolitic imidazolate framework is made through three-dimensional assembly of metal(imidazolate)4 tetrahedra.
1677:"Size-controlled Synthesis of Zeolitic Imidazolate Framework-8 (ZIF-8) Crystals in an Aqueous System at Room Temperature" 2770: 150: 623: 2745: 648:. Water vapor is often found in carbon-rich exhaust gases, and MOFs would absorb the water, lowering the amount of CO 586: 1853:
Peralta, David; Chaplais, Gérald; Simon-Masseron, Angélique; Barthelet, Karin; Pirngruber, Gerhard D. (2012-05-01).
1753:"Room-temperature synthesis of ZIF-90 nanocrystals and the derived nano-composite membranes for hydrogen separation" 1252:
Hayashi, Hideki; CĂ´tĂ©, Adrien P.; Furukawa, Hiroyasu; et al. (2007-07-01). "Zeolite A imidazolate frameworks".
308:
The table below gives a more comprehensive list of ZIF’s that can act as catalysts for different organic reactions.
133:
Due to their promising material properties, significant interest lies in economical large-scale production methods.
19: 708: 179: 63: 582: 233: 146: 291: 538:
ions as well as acetone. ZIF nanoparticles can also sense fluorescently tagged single stranded pieces of DNA.
1791:"Solvothermal synthesis of mixed-ligand metal–organic framework ZIF-78 with controllable size and morphology" 2668:"Mixed-Metal Zeolitic Imidazolate Frameworks and their Selective Capture of Wet Carbon Dioxide over Methane" 703: 675: 31: 641:
MOFs, allowing them to work at a wider range in temperatures, making them suitable to chemical processes.
134: 99: 95: 2667: 107: 2551: 2500: 2449: 2203: 1375: 1312: 1261: 1198: 1133: 1075: 1013: 825: 119: 1421:"Synthesis of nanoparticles of zeolitic imidazolate framework ZIF-94 using inorganic deprotonators" 138: 1122:"Ultrahigh-field 67 Zn NMR reveals short-range disorder in zeolitic imidazolate framework glasses" 657:
selectivity over water, allowing the adsorbent to store more carbon before saturation is reached.
2473: 1854: 1448: 1344: 1003: 791: 507: 473: 946:"Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks" 194: 2725: 2690: 2641: 2599: 2524: 2516: 2465: 2418: 2410: 2373: 2345: 2337: 2302: 2294: 2227: 2219: 2172: 2137: 2102: 2040: 1995: 1987: 1948: 1940: 1905: 1835: 1772: 1733: 1698: 1657: 1649: 1614: 1606: 1571: 1563: 1528: 1492: 1484: 1440: 1401: 1393: 1336: 1328: 1285: 1277: 1234: 1216: 1167: 1149: 1099: 1091: 1047: 1029: 968: 926: 891: 853: 783: 775: 111: 2437: 2717: 2682: 2633: 2591: 2559: 2508: 2457: 2402: 2329: 2286: 2255: 2211: 2164: 2129: 2094: 2067: 2030: 2022: 1979: 1932: 1897: 1869: 1827: 1764: 1725: 1688: 1641: 1598: 1555: 1520: 1476: 1432: 1383: 1320: 1269: 1224: 1206: 1157: 1141: 1083: 1037: 1021: 960: 918: 883: 843: 833: 810: 765: 755: 42: 1364:"Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs" 945: 102:
techniques. Crystals slowly grow from a heated solution of a hydrated metal salt, an ImH (
2555: 2504: 2453: 2207: 1815: 1379: 1316: 1265: 1202: 1137: 1079: 1017: 829: 1966:
Nune, Satish K.; Thallapally, Praveen K.; Dohnalkova, Alice; et al. (2010-06-29).
1229: 1186: 1162: 1121: 1042: 991: 848: 2754: 2477: 2191: 1790: 1452: 1420: 713: 695: 2071: 1873: 1348: 795: 630:
Most ZIF alterations up to this point have involved changing the linkers — bridging
228:
which show steep uptakes at low pressures. One liter of ZIF can hold 83 liters of CO
287: 2686: 1814:
Cravillon, Janosch; Schröder, Christian A.; Bux, Helge; et al. (2011-12-12).
2563: 299: 58: 39: 2368:
Smit, Bernard; Reimer, Jeffrey A.; Oldenburg, Curtis M.; Bourg, Ian C. (2014).
2259: 1187:"Exceptional chemical and thermal stability of zeolitic imidazolate frameworks" 811:"Exceptional chemical and thermal stability of zeolitic imidazolate frameworks" 295:
room temperature, specifically the dehydrogenation of dimethylamine borane and
685: 127: 123: 2603: 2520: 2469: 2414: 2341: 2298: 2223: 2141: 2044: 1991: 1944: 1909: 1839: 1776: 1737: 1702: 1653: 1610: 1567: 1532: 1488: 1444: 1397: 1332: 1281: 1220: 1153: 1095: 1033: 779: 1324: 1211: 1145: 838: 689: 245:
improved. The value of the ideal selectivities of several gas pairs, e.g. CO
142: 115: 103: 2729: 2721: 2694: 2645: 2528: 2461: 2422: 2349: 2306: 2231: 2176: 2106: 1999: 1952: 1936: 1661: 1618: 1602: 1575: 1559: 1496: 1480: 1405: 1340: 1289: 1238: 1171: 1103: 1051: 972: 930: 895: 857: 787: 1419:
Madhav, Dharmjeet; Malankowska, Magdalena; Coronas, Joaquin (2020-11-06).
2192:"Chemical vapour deposition of zeolitic imidazolate framework thin films" 1693: 1676: 1675:
Tanaka, Shunsuke; Kida, Koji; Okita, Muneyuki; et al. (2012-10-05).
1362:
Wang, Bo; CĂ´tĂ©, Adrien P.; Furukawa, Hiroyasu; et al. (2008-05-08).
1087: 760: 743: 188: 2190:
Stassen, Ivo; Styles, Mark; Grenci, Gianluca; et al. (2016-03-01).
1388: 1363: 992:"Hybrid glasses from strong and fragile metal-organic framework liquids" 2595: 2512: 2133: 2035: 2026: 1901: 1831: 1768: 1729: 1645: 1436: 1025: 718: 35: 2637: 2406: 2333: 2290: 2168: 2098: 1524: 1185:
Park, Kyo Sung; Ni, Zheng; CĂ´tĂ©, Adrien P.; et al. (2006-07-05).
964: 922: 887: 770: 2215: 1983: 1273: 631: 296: 50: 2274: 1967: 589:. Statements consisting only of original research should be removed. 2275:"Porous Inorganic Membranes for CO2 Capture: Present and Prospects" 1752: 1968:"Synthesis and properties of nano zeolitic imidazolate frameworks" 1008: 547:
could aid in the development of ZIF-based drug-release platforms.
187:
Zeolites are known to have tunable pores – ranging between 3-12
54: 46: 2666:
Nguyen, Nhung T. T.; Lo, Tien N. H.; Kim, Jaheon (2016-04-04).
116:
poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide)
554: 191:– which allows them to separate carbon dioxide. Because a 2363: 2361: 2359: 1855:"Synthesis and adsorption properties of ZIF-76 isomorphs" 209: 578: 2372:(1 ed.). Hackensack, NJ: Imperial College Press. 510: 476: 197: 744:"Melt-Quenched Glasses of Metal–Organic Frameworks" 290:can also be used to enhance the performance in the 530: 496: 215: 130:, imparting particle-size and morphology control. 2370:Introduction to Carbon Capture and Sequestration 458:Degradation of methyl orange and orange II dyes 1191:Proceedings of the National Academy of Sciences 403:Hydrogenation of cyclohexene and phenylacetene 34:(MOFs) that are topologically isomorphic with 1751:Yang, Tingxu; Chung, Tai-Shung (2013-04-23). 8: 2619: 2617: 2615: 2613: 2661: 2659: 2657: 2655: 2438:"A MOF Glass Membrane for Gas Separation" 2034: 1692: 1387: 1228: 1210: 1161: 1041: 1007: 984: 982: 847: 837: 769: 759: 605:Learn how and when to remove this message 521: 516: 511: 509: 487: 482: 477: 475: 414:Asymmetric hydrogenation of acetophonone 353:gold, silver, and platinum nanoparticles 342:gold and silver core shell nanoparticles 208: 203: 198: 196: 2322:Journal of the American Chemical Society 2157:Journal of the American Chemical Society 2087:Journal of the American Chemical Society 1115: 1113: 1068:Journal of the American Chemical Society 748:Journal of the American Chemical Society 378:platinum and titanium dioxide nanotubes 310: 18: 1469:Angewandte Chemie International Edition 734: 661:ZIFs vs commercially available products 124:poly-(diallyldimethylammonium chloride) 62:investigated for applications such as 2577: 2575: 2573: 7: 2060:Microporous and Mesoporous Materials 1862:Microporous and Mesoporous Materials 869: 867: 2493:Physical Chemistry Chemical Physics 551:Comparing ZIFs with other compounds 126:have been found to act as crystal 14: 724:Hydrogen-bonded organic framework 16:Class of metal-organic frameworks 2584:Journal of Materials Chemistry A 2122:Journal of Materials Chemistry A 1757:Journal of Materials Chemistry A 688: 559: 232:. This could also be useful for 108:single-crystal X-ray diffraction 2273:Pera-Titus, Marc (2014-01-22). 2072:10.1016/j.micromeso.2012.11.012 1874:10.1016/j.micromeso.2011.12.009 944:Yaghi, Omar M. (January 2010). 622:While ZIFs are a subset of the 28:Zeolitic imidazolate frameworks 2746:Pore characterizations of ZIFs 1925:Chemistry – A European Journal 1591:Chemistry – A European Journal 809:Park, KS; et al. (2006). 465:Sensing and electronic devices 174:Applications to carbon capture 1: 2687:10.1021/acs.inorgchem.6b00814 2395:Accounts of Chemical Research 953:Accounts of Chemical Research 333:Oxidation of aldehyde groups 257:Other separation applications 2564:10.1016/j.apsusc.2017.06.183 531:{\displaystyle {\ce {Cd2+}}} 497:{\displaystyle {\ce {Cu2+}}} 151:supercritical carbon dioxide 139:microwave-assisted synthesis 94:ZIFs are mainly prepared by 585:the claims made and adding 345:Reduction of 4-nitrophenol 216:{\displaystyle {\ce {CO2}}} 2792: 2761:Carbon capture and storage 2260:10.1016/j.jcou.2017.01.019 2248:Journal of CO2 Utilization 709:Covalent organic framework 358:Hydrogenation of n-hexene 180:carbon capture and storage 177: 425:Knoevenagel condensation 234:pressure-swing adsorption 147:chemical vapor deposition 40:tetrahedrally-coordinated 2776:Metal-organic frameworks 2766:Sustainable technologies 1425:New Journal of Chemistry 422:iron oxide microspheres 411:ruthenium nanoparticles 389:palladium nanoparticles 370:Hydrogenation of alkene 292:Knoevenagel condensation 269:Ethylene- propylene = 10 32:metal-organic frameworks 2544:Applied Surface Science 1972:Chemical Communications 1634:Chemical Communications 1325:10.1126/science.1152516 1212:10.1073/pnas.0602439103 1146:10.1126/science.aaz0251 839:10.1073/pnas.0602439103 704:Metal-organic framework 676:membrane gas separation 367:platinum nanoparticles 320:Reaction (s) Catalyzed 272:Ethylene- propane = 167 38:. ZIFs are composed of 2722:10.1002/anie.201507145 2462:10.1002/ange.201915807 1937:10.1002/chem.201301560 1603:10.1002/chem.201300216 1560:10.1002/cplu.201300193 1513:Chemistry of Materials 1481:10.1002/anie.200503778 532: 498: 400:iridium nanoparticles 381:Degradation of phenol 217: 135:Sonochemical synthesis 64:carbon dioxide capture 30:(ZIFs) are a class of 24: 996:Nature Communications 533: 499: 317:Additional Materials 218: 112:N,N-dimethylformamide 22: 1694:10.1246/cl.2012.1337 1088:10.1021/jacs.3c01933 761:10.1021/jacs.5b13220 508: 474: 195: 120:polyvinylpyrrolidone 2771:Crystal engineering 2675:Inorganic Chemistry 2626:Inorganic Chemistry 2590:(40): 16811–16831. 2556:2017ApSS..423..349G 2505:2014PCCP...16.9643Z 2454:2020AngCh.132.4395W 2208:2016NatMa..15..304S 2163:(37): 14546–14549. 2093:(44): 16000–16001. 1931:(34): 11139–11142. 1431:(46): 20449–20457. 1389:10.1038/nature06900 1380:2008Natur.453..207W 1317:2008Sci...319..939B 1266:2007NatMa...6..501H 1203:2006PNAS..10310186P 1197:(27): 10186–10191. 1138:2020Sci...367.1473M 1132:(6485): 1473–1476. 1080:2023JAChS.145.9723S 1018:2015NatCo...6.8079B 830:2006PNAS..10310186P 824:(27): 10186–10191. 627:they were created. 526: 492: 392:Aminocarbonylation 328:gold nanoparticles 266:Ethane-propane = 80 211: 2596:10.1039/C4TA02984D 2513:10.1039/C4CP00739E 2134:10.1039/C6TA11170J 2027:10.1039/C2CE06382D 1902:10.1039/C3CE27093A 1832:10.1039/C1CE06002C 1769:10.1039/C3TA10928C 1730:10.1039/C2CE26847G 1646:10.1039/C0CC05002D 1437:10.1039/D0NJ04402D 1026:10.1038/ncomms9079 570:possibly contains 528: 512: 494: 478: 213: 199: 25: 2710:Angewandte Chemie 2681:(12): 6201–6207. 2638:10.1021/ic5027174 2448:(11): 4395–4399. 2442:Angewandte Chemie 2407:10.1021/ar900116g 2379:978-1-78326-328-8 2334:10.1021/ja909263x 2291:10.1021/cr400237k 2169:10.1021/ja206082s 2128:(13): 6090–6099. 2099:10.1021/ja907359t 1687:(10): 1337–1339. 1681:Chemistry Letters 1597:(22): 7049–7055. 1554:(10): 1222–1225. 1525:10.1021/cm900166h 1475:(10): 1557–1559. 1374:(7192): 207–211. 1311:(5865): 939–943. 1074:(16): 9273–9284. 965:10.1021/ar900116g 923:10.1021/cr200139g 888:10.1021/ar900116g 754:(10): 3484–3492. 615: 614: 607: 572:original research 515: 481: 462: 461: 455:Molybdenum Oxide 202: 2783: 2734: 2733: 2716:(7): 2308–2320. 2705: 2699: 2698: 2672: 2663: 2650: 2649: 2632:(4): 1816–1821. 2621: 2608: 2607: 2579: 2568: 2567: 2539: 2533: 2532: 2488: 2482: 2481: 2433: 2427: 2426: 2390: 2384: 2383: 2365: 2354: 2353: 2317: 2311: 2310: 2285:(2): 1413–1492. 2279:Chemical Reviews 2270: 2264: 2263: 2242: 2236: 2235: 2216:10.1038/nmat4509 2196:Nature Materials 2187: 2181: 2180: 2152: 2146: 2145: 2117: 2111: 2110: 2082: 2076: 2075: 2055: 2049: 2048: 2038: 2010: 2004: 2003: 1984:10.1039/C002088E 1963: 1957: 1956: 1920: 1914: 1913: 1884: 1878: 1877: 1859: 1850: 1844: 1843: 1811: 1805: 1804: 1802: 1801: 1787: 1781: 1780: 1748: 1742: 1741: 1713: 1707: 1706: 1696: 1672: 1666: 1665: 1629: 1623: 1622: 1586: 1580: 1579: 1543: 1537: 1536: 1519:(8): 1410–1412. 1507: 1501: 1500: 1463: 1457: 1456: 1416: 1410: 1409: 1391: 1359: 1353: 1352: 1300: 1294: 1293: 1274:10.1038/nmat1927 1254:Nature Materials 1249: 1243: 1242: 1232: 1214: 1182: 1176: 1175: 1165: 1117: 1108: 1107: 1062: 1056: 1055: 1045: 1011: 986: 977: 976: 950: 941: 935: 934: 917:(2): 1001–1033. 906: 900: 899: 871: 862: 861: 851: 841: 815: 806: 800: 799: 773: 763: 739: 698: 693: 692: 610: 603: 599: 596: 590: 587:inline citations 563: 562: 555: 537: 535: 534: 529: 527: 525: 520: 513: 503: 501: 500: 495: 493: 491: 486: 479: 444:Conversion of CO 356:Oxidation of CO 331:Oxidation of CO 311: 222: 220: 219: 214: 212: 210: 207: 200: 77:Glassy structure 43:transition metal 2791: 2790: 2786: 2785: 2784: 2782: 2781: 2780: 2751: 2750: 2742: 2737: 2707: 2706: 2702: 2670: 2665: 2664: 2653: 2623: 2622: 2611: 2581: 2580: 2571: 2541: 2540: 2536: 2499:(20): 9643–55. 2490: 2489: 2485: 2435: 2434: 2430: 2392: 2391: 2387: 2380: 2367: 2366: 2357: 2319: 2318: 2314: 2272: 2271: 2267: 2244: 2243: 2239: 2189: 2188: 2184: 2154: 2153: 2149: 2119: 2118: 2114: 2084: 2083: 2079: 2057: 2056: 2052: 2012: 2011: 2007: 1978:(27): 4878–80. 1965: 1964: 1960: 1922: 1921: 1917: 1886: 1885: 1881: 1857: 1852: 1851: 1847: 1813: 1812: 1808: 1799: 1797: 1789: 1788: 1784: 1750: 1749: 1745: 1715: 1714: 1710: 1674: 1673: 1669: 1631: 1630: 1626: 1588: 1587: 1583: 1545: 1544: 1540: 1509: 1508: 1504: 1465: 1464: 1460: 1418: 1417: 1413: 1361: 1360: 1356: 1302: 1301: 1297: 1251: 1250: 1246: 1184: 1183: 1179: 1119: 1118: 1111: 1064: 1063: 1059: 988: 987: 980: 948: 943: 942: 938: 908: 907: 903: 873: 872: 865: 813: 808: 807: 803: 741: 740: 736: 732: 694: 687: 684: 663: 656: 651: 647: 635: 620: 611: 600: 594: 591: 576: 564: 560: 553: 544: 506: 505: 472: 471: 467: 447: 440: 436: 303: 283: 259: 252: 248: 242: 231: 193: 192: 182: 176: 167: 156: 92: 79: 57:) connected by 17: 12: 11: 5: 2789: 2787: 2779: 2778: 2773: 2768: 2763: 2753: 2752: 2749: 2748: 2741: 2740:External links 2738: 2736: 2735: 2700: 2651: 2609: 2569: 2534: 2483: 2428: 2385: 2378: 2355: 2312: 2265: 2237: 2202:(3): 304–310. 2182: 2147: 2112: 2077: 2050: 2005: 1958: 1915: 1879: 1845: 1826:(2): 492–498. 1806: 1782: 1743: 1708: 1667: 1624: 1581: 1538: 1502: 1458: 1411: 1354: 1295: 1260:(7): 501–506. 1244: 1177: 1109: 1057: 978: 936: 901: 876:Acc. Chem. Res 863: 801: 733: 731: 728: 727: 726: 721: 716: 711: 706: 700: 699: 683: 680: 662: 659: 654: 649: 645: 633: 619: 616: 613: 612: 567: 565: 558: 552: 549: 543: 540: 524: 519: 490: 485: 466: 463: 460: 459: 456: 453: 449: 448: 445: 442: 438: 434: 431: 427: 426: 423: 420: 416: 415: 412: 409: 405: 404: 401: 398: 394: 393: 390: 387: 383: 382: 379: 376: 372: 371: 368: 365: 361: 360: 354: 351: 347: 346: 343: 340: 336: 335: 329: 326: 322: 321: 318: 315: 301: 282: 279: 274: 273: 270: 267: 258: 255: 250: 246: 241: 240:Gas separation 238: 229: 206: 178:Main article: 175: 172: 166: 163: 154: 91: 88: 78: 75: 15: 13: 10: 9: 6: 4: 3: 2: 2788: 2777: 2774: 2772: 2769: 2767: 2764: 2762: 2759: 2758: 2756: 2747: 2744: 2743: 2739: 2731: 2727: 2723: 2719: 2715: 2711: 2704: 2701: 2696: 2692: 2688: 2684: 2680: 2676: 2669: 2662: 2660: 2658: 2656: 2652: 2647: 2643: 2639: 2635: 2631: 2627: 2620: 2618: 2616: 2614: 2610: 2605: 2601: 2597: 2593: 2589: 2585: 2578: 2576: 2574: 2570: 2565: 2561: 2557: 2553: 2549: 2545: 2538: 2535: 2530: 2526: 2522: 2518: 2514: 2510: 2506: 2502: 2498: 2494: 2487: 2484: 2479: 2475: 2471: 2467: 2463: 2459: 2455: 2451: 2447: 2443: 2439: 2432: 2429: 2424: 2420: 2416: 2412: 2408: 2404: 2400: 2396: 2389: 2386: 2381: 2375: 2371: 2364: 2362: 2360: 2356: 2351: 2347: 2343: 2339: 2335: 2331: 2327: 2323: 2316: 2313: 2308: 2304: 2300: 2296: 2292: 2288: 2284: 2280: 2276: 2269: 2266: 2261: 2257: 2253: 2249: 2241: 2238: 2233: 2229: 2225: 2221: 2217: 2213: 2209: 2205: 2201: 2197: 2193: 2186: 2183: 2178: 2174: 2170: 2166: 2162: 2158: 2151: 2148: 2143: 2139: 2135: 2131: 2127: 2123: 2116: 2113: 2108: 2104: 2100: 2096: 2092: 2088: 2081: 2078: 2073: 2069: 2065: 2061: 2054: 2051: 2046: 2042: 2037: 2032: 2028: 2024: 2020: 2016: 2009: 2006: 2001: 1997: 1993: 1989: 1985: 1981: 1977: 1973: 1969: 1962: 1959: 1954: 1950: 1946: 1942: 1938: 1934: 1930: 1926: 1919: 1916: 1911: 1907: 1903: 1899: 1895: 1891: 1883: 1880: 1875: 1871: 1867: 1863: 1856: 1849: 1846: 1841: 1837: 1833: 1829: 1825: 1821: 1817: 1810: 1807: 1796: 1792: 1786: 1783: 1778: 1774: 1770: 1766: 1762: 1758: 1754: 1747: 1744: 1739: 1735: 1731: 1727: 1723: 1719: 1712: 1709: 1704: 1700: 1695: 1690: 1686: 1682: 1678: 1671: 1668: 1663: 1659: 1655: 1651: 1647: 1643: 1640:(7): 2071–3. 1639: 1635: 1628: 1625: 1620: 1616: 1612: 1608: 1604: 1600: 1596: 1592: 1585: 1582: 1577: 1573: 1569: 1565: 1561: 1557: 1553: 1549: 1542: 1539: 1534: 1530: 1526: 1522: 1518: 1514: 1506: 1503: 1498: 1494: 1490: 1486: 1482: 1478: 1474: 1470: 1462: 1459: 1454: 1450: 1446: 1442: 1438: 1434: 1430: 1426: 1422: 1415: 1412: 1407: 1403: 1399: 1395: 1390: 1385: 1381: 1377: 1373: 1369: 1365: 1358: 1355: 1350: 1346: 1342: 1338: 1334: 1330: 1326: 1322: 1318: 1314: 1310: 1306: 1299: 1296: 1291: 1287: 1283: 1279: 1275: 1271: 1267: 1263: 1259: 1255: 1248: 1245: 1240: 1236: 1231: 1226: 1222: 1218: 1213: 1208: 1204: 1200: 1196: 1192: 1188: 1181: 1178: 1173: 1169: 1164: 1159: 1155: 1151: 1147: 1143: 1139: 1135: 1131: 1127: 1123: 1116: 1114: 1110: 1105: 1101: 1097: 1093: 1089: 1085: 1081: 1077: 1073: 1069: 1061: 1058: 1053: 1049: 1044: 1039: 1035: 1031: 1027: 1023: 1019: 1015: 1010: 1005: 1001: 997: 993: 985: 983: 979: 974: 970: 966: 962: 958: 954: 947: 940: 937: 932: 928: 924: 920: 916: 912: 905: 902: 897: 893: 889: 885: 881: 877: 870: 868: 864: 859: 855: 850: 845: 840: 835: 831: 827: 823: 819: 812: 805: 802: 797: 793: 789: 785: 781: 777: 772: 767: 762: 757: 753: 749: 745: 738: 735: 729: 725: 722: 720: 717: 715: 714:Omar M. Yaghi 712: 710: 707: 705: 702: 701: 697: 696:Energy portal 691: 686: 681: 679: 677: 671: 667: 660: 658: 642: 638: 636: 628: 625: 617: 609: 606: 598: 588: 584: 580: 574: 573: 568:This section 566: 557: 556: 550: 548: 542:Drug delivery 541: 539: 522: 517: 488: 483: 464: 457: 454: 451: 450: 443: 432: 429: 428: 424: 421: 418: 417: 413: 410: 407: 406: 402: 399: 396: 395: 391: 388: 385: 384: 380: 377: 374: 373: 369: 366: 363: 362: 359: 355: 352: 349: 348: 344: 341: 338: 337: 334: 330: 327: 324: 323: 319: 316: 314:ZIF Material 313: 312: 309: 306: 305:hydrolysis. 304: 298: 293: 289: 288:nanoparticles 280: 278: 271: 268: 265: 264: 263: 256: 254: 239: 237: 235: 225: 204: 190: 185: 181: 173: 171: 164: 162: 158: 152: 148: 144: 140: 136: 131: 129: 125: 121: 117: 113: 109: 105: 101: 97: 89: 87: 83: 76: 74: 71: 67: 65: 60: 56: 52: 48: 44: 41: 37: 33: 29: 21: 2713: 2709: 2703: 2678: 2674: 2629: 2625: 2587: 2583: 2547: 2543: 2537: 2496: 2492: 2486: 2445: 2441: 2431: 2401:(1): 58–67. 2398: 2394: 2388: 2369: 2328:(1): 76–78. 2325: 2321: 2315: 2282: 2278: 2268: 2251: 2247: 2240: 2199: 2195: 2185: 2160: 2156: 2150: 2125: 2121: 2115: 2090: 2086: 2080: 2063: 2059: 2053: 2018: 2015:CrystEngComm 2014: 2008: 1975: 1971: 1961: 1928: 1924: 1918: 1896:(18): 3601. 1893: 1890:CrystEngComm 1889: 1882: 1865: 1861: 1848: 1823: 1820:CrystEngComm 1819: 1809: 1798:. Retrieved 1795:ResearchGate 1794: 1785: 1763:(19): 6081. 1760: 1756: 1746: 1721: 1718:CrystEngComm 1717: 1711: 1684: 1680: 1670: 1637: 1633: 1627: 1594: 1590: 1584: 1551: 1548:ChemPlusChem 1547: 1541: 1516: 1512: 1505: 1472: 1468: 1461: 1428: 1424: 1414: 1371: 1367: 1357: 1308: 1304: 1298: 1257: 1253: 1247: 1194: 1190: 1180: 1129: 1125: 1071: 1067: 1060: 999: 995: 959:(1): 58–67. 956: 952: 939: 914: 910: 904: 882:(1): 58–67. 879: 875: 821: 817: 804: 751: 747: 737: 672: 668: 664: 643: 639: 629: 621: 618:ZIFs vs MOFs 601: 592: 569: 545: 468: 357: 332: 307: 284: 275: 260: 243: 226: 186: 183: 168: 165:Applications 159: 143:ball-milling 132: 100:hydrothermal 96:solvothermal 93: 84: 80: 69: 68: 27: 26: 2550:: 349–353. 2254:: 147–155. 2066:: 180–184. 2036:11336/53044 2021:(9): 3103. 1724:(9): 1794. 1002:(1): 8079. 128:dispersants 70:ZIF glasses 59:imidazolate 45:ions (e.g. 2755:Categories 1800:2017-05-01 771:2160/43170 730:References 579:improve it 2604:2050-7496 2521:1463-9084 2478:226676528 2470:0044-8249 2415:1520-4898 2342:0002-7863 2299:0009-2665 2224:1476-1122 2142:2050-7496 2045:1466-8033 1992:1364-548X 1945:1521-3765 1910:1466-8033 1840:1466-8033 1777:2050-7496 1738:1466-8033 1703:0366-7022 1654:1364-548X 1611:1521-3765 1568:2192-6506 1533:0897-4756 1489:1521-3773 1453:229232268 1445:1144-0546 1398:0028-0836 1333:0036-8075 1282:1476-1122 1221:0027-8424 1154:0036-8075 1096:1520-5126 1066:Groups". 1034:2041-1723 1009:1409.3980 911:Chem. Rev 780:0002-7863 583:verifying 441:nanorods 281:Catalysis 189:Angstroms 104:imidazole 90:Synthesis 2730:26683833 2695:27248714 2646:25650775 2529:24727907 2423:19877580 2350:20014839 2307:24299113 2232:26657328 2177:21848328 2107:19842668 2000:20585703 1953:23832867 1662:21206942 1619:23576441 1576:31986784 1497:16440383 1406:18464739 1349:22210227 1341:18276887 1290:17529969 1239:16798880 1172:32217725 1104:37070213 1052:26314784 973:19877580 931:21939178 896:19877580 858:16798880 796:30519423 788:26885940 682:See also 595:May 2017 36:zeolites 2552:Bibcode 2501:Bibcode 2450:Bibcode 2204:Bibcode 1868:: 1–7. 1376:Bibcode 1313:Bibcode 1305:Science 1262:Bibcode 1230:1502432 1199:Bibcode 1163:7325427 1134:Bibcode 1126:Science 1076:Bibcode 1043:4560802 1014:Bibcode 849:1502432 826:Bibcode 719:Zeolite 577:Please 452:ZIF-65 2728:  2693:  2644:  2602:  2527:  2519:  2476:  2468:  2421:  2413:  2376:  2348:  2340:  2305:  2297:  2230:  2222:  2175:  2140:  2105:  2043:  1998:  1990:  1951:  1943:  1908:  1838:  1775:  1736:  1701:  1660:  1652:  1617:  1609:  1574:  1566:  1531:  1495:  1487:  1451:  1443:  1404:  1396:  1368:Nature 1347:  1339:  1331:  1288:  1280:  1237:  1227:  1219:  1170:  1160:  1152:  1102:  1094:  1050:  1040:  1032:  971:  929:  894:  856:  846:  794:  786:  778:  504:, and 430:ZIF-8 419:ZIF-8 408:ZIF-8 397:ZIF-8 386:ZIF-8 375:ZIF-8 364:ZIF-8 350:ZIF-8 339:ZIF-8 325:ZIF-8 122:, and 2671:(PDF) 2474:S2CID 1858:(PDF) 1449:S2CID 1345:S2CID 1004:arXiv 949:(PDF) 814:(PDF) 792:S2CID 153:(scCO 2726:PMID 2691:PMID 2642:PMID 2600:ISSN 2525:PMID 2517:ISSN 2466:ISSN 2419:PMID 2411:ISSN 2374:ISBN 2346:PMID 2338:ISSN 2303:PMID 2295:ISSN 2228:PMID 2220:ISSN 2173:PMID 2138:ISSN 2103:PMID 2041:ISSN 1996:PMID 1988:ISSN 1949:PMID 1941:ISSN 1906:ISSN 1836:ISSN 1773:ISSN 1734:ISSN 1699:ISSN 1658:PMID 1650:ISSN 1615:PMID 1607:ISSN 1572:PMID 1564:ISSN 1529:ISSN 1493:PMID 1485:ISSN 1441:ISSN 1402:PMID 1394:ISSN 1337:PMID 1329:ISSN 1286:PMID 1278:ISSN 1235:PMID 1217:ISSN 1168:PMID 1150:ISSN 1100:PMID 1092:ISSN 1048:PMID 1030:ISSN 969:PMID 927:PMID 892:PMID 854:PMID 818:PNAS 784:PMID 776:ISSN 2718:doi 2683:doi 2634:doi 2592:doi 2560:doi 2548:423 2509:doi 2458:doi 2446:132 2403:doi 2330:doi 2326:132 2287:doi 2283:114 2256:doi 2212:doi 2165:doi 2161:133 2130:doi 2095:doi 2091:131 2068:doi 2064:169 2031:hdl 2023:doi 1980:doi 1933:doi 1898:doi 1870:doi 1866:153 1828:doi 1765:doi 1726:doi 1689:doi 1642:doi 1599:doi 1556:doi 1521:doi 1477:doi 1433:doi 1384:doi 1372:453 1321:doi 1309:319 1270:doi 1225:PMC 1207:doi 1195:103 1158:PMC 1142:doi 1130:367 1084:doi 1072:145 1038:PMC 1022:doi 961:doi 919:doi 915:112 884:doi 844:PMC 834:doi 822:103 766:hdl 756:doi 752:138 624:MOF 581:by 437:GeO 236:. 145:or 98:or 2757:: 2724:. 2714:55 2712:. 2689:. 2679:55 2677:. 2673:. 2654:^ 2640:. 2630:54 2628:. 2612:^ 2598:. 2586:. 2572:^ 2558:. 2546:. 2523:. 2515:. 2507:. 2497:16 2495:. 2472:. 2464:. 2456:. 2444:. 2440:. 2417:. 2409:. 2399:43 2397:. 2358:^ 2344:. 2336:. 2324:. 2301:. 2293:. 2281:. 2277:. 2252:18 2250:. 2226:. 2218:. 2210:. 2200:15 2198:. 2194:. 2171:. 2159:. 2136:. 2124:. 2101:. 2089:. 2062:. 2039:. 2029:. 2019:14 2017:. 1994:. 1986:. 1976:46 1974:. 1970:. 1947:. 1939:. 1929:19 1927:. 1904:. 1894:15 1892:. 1864:. 1860:. 1834:. 1824:14 1822:. 1818:. 1793:. 1771:. 1759:. 1755:. 1732:. 1722:15 1720:. 1697:. 1685:41 1683:. 1679:. 1656:. 1648:. 1638:47 1636:. 1613:. 1605:. 1595:19 1593:. 1570:. 1562:. 1552:78 1550:. 1527:. 1517:21 1515:. 1491:. 1483:. 1473:45 1471:. 1447:. 1439:. 1429:44 1427:. 1423:. 1400:. 1392:. 1382:. 1370:. 1366:. 1343:. 1335:. 1327:. 1319:. 1307:. 1284:. 1276:. 1268:. 1256:. 1233:. 1223:. 1215:. 1205:. 1193:. 1189:. 1166:. 1156:. 1148:. 1140:. 1128:. 1124:. 1112:^ 1098:. 1090:. 1082:. 1070:. 1046:. 1036:. 1028:. 1020:. 1012:. 998:. 994:. 981:^ 967:. 957:43 955:. 951:. 925:. 913:. 890:. 880:43 878:. 866:^ 852:. 842:. 832:. 820:. 816:. 790:. 782:. 774:. 764:. 750:. 746:. 678:. 653:CO 514:Cd 480:Cu 433:Zn 300:BH 297:Na 249:/N 201:CO 118:, 66:. 55:Zn 53:, 51:Co 49:, 47:Fe 2732:. 2720:: 2697:. 2685:: 2648:. 2636:: 2606:. 2594:: 2588:2 2566:. 2562:: 2554:: 2531:. 2511:: 2503:: 2480:. 2460:: 2452:: 2425:. 2405:: 2382:. 2352:. 2332:: 2309:. 2289:: 2262:. 2258:: 2234:. 2214:: 2206:: 2179:. 2167:: 2144:. 2132:: 2126:5 2109:. 2097:: 2074:. 2070:: 2047:. 2033:: 2025:: 2002:. 1982:: 1955:. 1935:: 1912:. 1900:: 1876:. 1872:: 1842:. 1830:: 1803:. 1779:. 1767:: 1761:1 1740:. 1728:: 1705:. 1691:: 1664:. 1644:: 1621:. 1601:: 1578:. 1558:: 1535:. 1523:: 1499:. 1479:: 1455:. 1435:: 1408:. 1386:: 1378:: 1351:. 1323:: 1315:: 1292:. 1272:: 1264:: 1258:6 1241:. 1209:: 1201:: 1174:. 1144:: 1136:: 1106:. 1086:: 1078:: 1054:. 1024:: 1016:: 1006:: 1000:6 975:. 963:: 933:. 921:: 898:. 886:: 860:. 836:: 828:: 798:. 768:: 758:: 655:2 650:2 646:2 634:2 632:O 608:) 602:( 597:) 593:( 575:. 523:+ 518:2 489:+ 484:2 446:2 439:4 435:2 302:4 251:2 247:2 230:2 205:2 155:2

Index


metal-organic frameworks
zeolites
tetrahedrally-coordinated
transition metal
Fe
Co
Zn
imidazolate
carbon dioxide capture
solvothermal
hydrothermal
imidazole
single-crystal X-ray diffraction
N,N-dimethylformamide
poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide)
polyvinylpyrrolidone
poly-(diallyldimethylammonium chloride)
dispersants
Sonochemical synthesis
microwave-assisted synthesis
ball-milling
chemical vapor deposition
supercritical carbon dioxide
carbon capture and storage
Angstroms
pressure-swing adsorption
nanoparticles
Knoevenagel condensation
Na

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑