Knowledge (XXG)

Poloxamer

Source 📝

83:= poloxamer with a polyoxypropylene molecular mass of 4000 g/mol and a 70% polyoxyethylene content). For the Pluronic and Synperonic tradenames, coding of these copolymers starts with a letter to define its physical form at room temperature (L = liquid, P = paste, F = flake (solid)) followed by two or three digits, The first digit (two digits in a three-digit number) in the numerical designation, multiplied by 300, indicates the approximate molecular weight of the hydrophobe; and the last digit x 10 gives the percentage polyoxyethylene content (e.g., L61 indicates a polyoxypropylene molecular mass of 1800 g/mol and a 10% 20: 890:. This aggregation is driven by the dehydration of the hydrophobic polyoxypropylene block that becomes progressively less soluble as the polymer concentration or temperature increases. The aggregation of several unimers occurs to minimize the interactions of the PPO blocks with the solvent. Thus, the core of the aggregates is made from the insoluble blocks (polyoxypropylene) while the soluble portion ( 1003: 1095: 902:
transformation are different compared to the dynamics of micellization. Two mechanisms were proposed for the sphere-to-rod transitions of block copolymer micelles, in which the micellar growth can occur by (A) fusion/fragmentation of micelles or (B) concomitant fusion/fragmentation of micelles and unimer exchange, followed by smoothing of the rod-like structures.
1172: 962:
In bioprocess applications, poloxamers are used in cell culture media for their cell cushioning effects because their addition leads to less stressful shear conditions for cells in reactors. There are grades of poloxamers commercially available specifically for cell culture, including Kolliphor P 188
1121:
Another effect of the polymers upon cancer cells is the inhibition of the production of ATP in multi-drug resistant (MDR) cancer cells. The polymers seem to inhibit respiratory proteins I and IV, and the effect on respiration seems to be selective for MDR cancer cells, which may be explained by the
870:
An important characteristic of poloxamer solutions is their temperature dependent self-assembling and thermo-gelling behavior. Concentrated aqueous solutions of poloxamers are liquid at low temperature and form a gel at higher temperature in a reversible process. The transitions that occur in these
958:
of two substances with different hydrophobicities. For this reason, these polymers are commonly used in industrial applications, cosmetics, and pharmaceuticals. They have also been evaluated for various drug delivery applications and were shown to sensitize drug-resistant cancers to chemotherapy.
1134:
Certain poloxamers such as P85 have been shown not only to be able to transport target genes to target cells, but also to increase gene expression. Certain poloxamers, such as P85 and L61, have also been shown to stimulate transcription of NF kappaB genes, although the mechanism by which this is
1104:
Work led by Kabanov has recently shown that some of these polymers, originally thought to be inert carrier molecules, have a very real effect on biological systems independently of the drug they are transporting. The poloxamers have been shown to incorporate into cellular membranes affecting the
1125:
The poloxamers have also been shown to enhance proto-apoptotic signaling, decrease anti-apoptoic defense in MDR cells, inhibit the glutathione/glutathione S-transferase detoxification system, induce the release of cytochrome C, increase reactive oxygen species in the cytoplasm, and abolish drug
897:
The mechanisms on the micellization at equilibrium have shown to depend on two relaxation times: (1) the first and fastest (tens of the microseconds scale) corresponds to the unimers exchange between micelles and the bulk solution and follows the Aniansson-Wall model (step-by-step insertion and
1117:
Poloxamers have been shown to preferentially target cancer cells, due to differences in the membrane of these cells when compared to noncancer cells. Poloxamers have also been shown to inhibit MDR proteins and other drug efflux transporters on the surface of cancer cells; the MDR proteins are
901:
Besides spherical micelles, elongated or worm-like micelles can also be formed. The final geometry will depend on the entropy costs of stretching the blocks, which is directly related to their composition (size and polyoxypropylene/polyoxyethylene ratio). The mechanisms involved in the shape
1249:
Patel, Dhruvi; Vaswani, Payal; Sengupta, Sumana; Ray, Debes; Bhatia, Dhiraj; Choudhury, Sharmistha Dutta; Aswal, Vinod K.; Kuperkar, Ketan; Bahadur, Pratap (February 2023). "Thermoresponsive phase behavior and nanoscale self-assembly generation in normal and reverse Pluronics®".
1277:
Pérez-Sánchez, Germán; Vicente, Filipa A.; Schaeffer, Nicolas; Cardoso, Inês S.; Ventura, Sónia P. M.; Jorge, Miguel; Coutinho, João A. P. (29 August 2019). "Rationalizing the Phase Behavior of Triblock Copolymers through Experiments and Molecular Simulations".
913:
chains will lead to clouding and/or macroscopic phase separation. This is due to the fact that hydrogen bonding between the polyoxyethylene and the water molecules breaks down at high temperature and polyoxyethylene becomes also insoluble in water.
1390:
Alexandridis, Paschalis; Alan Hatton, T (March 1995). "Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics, and modeling".
79:(for poloxamer) followed by three digits: the first two digits multiplied by 100 give the approximate molecular mass of the polyoxypropylene core, and the last digit multiplied by 10 gives the percentage polyoxyethylene content (e.g. 981:
and/or reduce aggregation. In the case of hydrophobic colloids, the poloxamer's interior hydrophobic block is absorbed into the colloid while the two hydrophilic tails remain suspended in solution, creating a steric barrier.
1510:
Alexandridis P, Hatton T (March 1995). "Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics, and modeling".
1427:
Tsui, Hung-Wei; Wang, Jing-Han; Hsu, Ya-Hui; Chen, Li-Jen (December 2010). "Study of heat of micellization and phase separation for Pluronic aqueous solutions by using a high sensitivity differential scanning calorimetry".
898:
expulsion of single polymer chains), and (2) the second and much slower one (in the millisecond range) is attributed to the formation and breakdown of whole micellar units leading to the final micellar size equilibration.
921:) or water structure breakers (salting-in). Salting-out salts increase the self-hydration of water through hydrogen bonding and reduce the hydration of the copolymers, thus reducing the critical micelle temperature and 937:
characterizing all these transitions have been constructed for most poloxamers using a great variety of experimental techniques (e.g. SAXS, Differential scanning calorimetry, viscosity measurements, light scattering).
1455:
Guo, Chen; Liu, Hui-Zhou; Chen, Jia-Yong (December 2000). "A Fourier transform infrared study on water-induced reverse micelle formation of block copoly(oxyethylene–oxypropylene–oxyethylene) in organic solvent".
1835:
de Castro KC, Coco JC, Dos Santos ÉM, Ataide JA, Martinez RM, do Nascimento MH, et al. (December 2022). "Pluronic® triblock copolymer-based nanoformulations for cancer therapy: A 10-year overview".
917:
The phase transitions can also be largely influenced by the use of additives such as salts and alcohols. The interactions with salts are related to their ability to act as water structure makers (
1314:
Oh, Kyung T; Bronich, Tatiana K; Kabanov, Alexander V (February 2004). "Micellar formulations for drug delivery based on mixtures of hydrophobic and hydrophilic Pluronic® block copolymers".
1147:
in the presence or absence of multi-walled carbon nanotubes (MWNTs) can became highly toxic to cultured cells. Moreover, toxicity correlated with the sonolytic degradation of the polymers.
954:
properties that make them useful in industrial applications. Among other things, they can be used to increase the water solubility of hydrophobic, oily substances or otherwise increase the
1228: 1013: 985:
When mixed with water, concentrated solutions of poloxamers can form hydrogels. These gels can be extruded easily, acting as a carrier for other particles, and used for
71:
Because the lengths of the polymer blocks can be customized, many different poloxamers exist that have slightly different properties. For the generic term
1118:
responsible for the efflux of drugs from the cells and hence increase the susceptibility of cancer cells to chemotherapeutic agents such as doxorubicin.
925:. Salting-in electrolytes reduce the water self-hydration and increase the polymer hydration, therefore increasing the critical micelle temperature and 886:) individual block copolymers (unimers) are present in solution. Above these values, aggregation of individual unimers occurs in a process called 1538:
Denkova AG, Mendes E, Coppens MO (2010). "Non-equilibrium dynamics of block copolymer micelles in solution: recent insights and open questions".
56:
was coined by BASF inventor, Irving Schmolka, who received the patent for these materials in 1973. Poloxamers are also known by the trade names
1105:
microviscosity of the membranes. The polymers seem to have the greatest effect when absorbed by the cell as an unimer rather than as a
905:
With higher increments of the temperature and/or concentration, other phenomena can occur such as the formation of highly ordered
2016: 926: 922: 883: 1186: 1682:"Pluronic® block-copolymers in medicine: from chemical and biological versatility to rationalisation and clinical advances" 909:(cubic, hexagonal and lamellar). Eventually, a complete dehydration of the polyoxypropylene blocks and the collapse of the 2001: 1982: 1930:"Generation of toxic degradation products by sonication of Pluronic® dispersants: implications for nanotoxicity testing" 1881:"Pluronic block copolymers: evolution of drug delivery concept from inert nanocarriers to biological response modifiers" 1074: 1021: 1046: 966:
In materials science, the poloxamer P123 has recently been used in the synthesis of mesoporous materials, including
1167:, Schmolka IR, "Polyoxyethylene-polyoxypropylene aqueous gels", published 1973-06-19, assigned to 1032: 1017: 1053: 1143:
Wang et al. reported that aqueous solutions of poloxamer 188 (Pluronic F-68) and poloxamer 407 (Pluronic F-127)
1135:
achieved is currently unknown, bar that P85 has been shown to induce phosphorylation of the inhibitory kappa.
1060: 977:, certain poloxamers such as Pluronic F-108 or Pluronic F-127, are used as steric stabilizers to prevent 978: 1164: 1042: 1547: 41: 1681: 1122:
difference in fuel sources between MDR and sensitive cells (fatty acids and glucose respectively).
49: 1861: 1817: 1719: 19: 2021: 1959: 1910: 1853: 1809: 1768: 1711: 1618: 967: 930: 1949: 1941: 1900: 1892: 1845: 1799: 1758: 1750: 1701: 1693: 1660: 1652: 1610: 1598: 1555: 1520: 1492: 1465: 1437: 1400: 1323: 1287: 1259: 87:
content). In the example given, poloxamer 181 (P181) = Pluronic L61 and Synperonic PE/L 61.
910: 891: 84: 1551: 1954: 1929: 1905: 1880: 1763: 1738: 1656: 1067: 934: 1469: 2010: 1865: 1821: 1524: 1404: 887: 80: 1723: 1739:"Polymeric drugs: Advances in the development of pharmacologically active polymers" 882:
At low temperatures and concentrations (below the critical micelle temperature and
1896: 1849: 1754: 1327: 1945: 1804: 1787: 1788:"Mini-Review of Poloxamer as a Biocompatible Polymer for Advanced Drug Delivery" 1643:
Feilden E (2016). "Robocasting of structural ceramic parts with hydrogel inks".
1599:"Spearheading a new era in complex colloid synthesis with TPM and other silanes" 986: 955: 947: 918: 876: 872: 45: 37: 1928:
Wang R, Hughes T, Beck S, Vakil S, Li S, Pantano P, Draper RK (November 2013).
1614: 1573: 1483:
Aniansson EA, Wall SN (May 1974). "Kinetics of step-wise micelle association".
1263: 1210: 1441: 1144: 951: 33: 1813: 1715: 1291: 906: 1963: 1914: 1857: 1772: 1665: 1622: 1496: 1706: 1697: 1106: 1031:
if you can. Unsourced or poorly sourced material may be challenged and
974: 1559: 1597:
Kamp, Marlous; Sacanna, Stefano; Dullens, Roel P. A. (13 May 2024).
18: 1458:
Colloids and Surfaces A: Physicochemical and Engineering Aspects
1393:
Colloids and Surfaces A: Physicochemical and Engineering Aspects
1168: 871:
systems depend on the polymer composition (molecular weight and
1187:"BASF - Product information the chemicals catalog - Pluronics" 996: 2002:
Poloxamer-188: A Revolutionary Approach to Healing Injury
1786:
Nugraha DH, Anggadiredja K, Rachmawati H (2023-01-16).
1028: 75:, these copolymers are commonly named with the letter 929:. The different salts have been categorized by the 933:according to their ‘salting-out’ power. Different 16:Polyoxyethylene-polyoxypropylene block co-polymer 1737:Li J, Yu F, Chen Y, Oupický D (December 2015). 1385: 1383: 1381: 1379: 1377: 1375: 1373: 1371: 1369: 1367: 1365: 1363: 1361: 1359: 1357: 1355: 1353: 1351: 1349: 1347: 1345: 1343: 1341: 1339: 1337: 1027:Please review the contents of the article and 1981:Karmarkar AB, Gonjari ID, Hosmani AH (2008). 8: 1792:Brazilian Journal of Pharmaceutical Sciences 1574:"Poloxamers for Pharmaceutical Applications" 1126:sequestering within cytoplasmic vesicles. 1879:Batrakova EV, Kabanov AV (September 2008). 94: 1953: 1904: 1803: 1762: 1705: 1664: 1645:Journal of the European Ceramic Society 1244: 1242: 1156: 44:(poly(propylene oxide)) flanked by two 1680:Pitto-Barry A, Barry NP (2014-04-15). 1422: 1420: 1418: 1416: 1414: 7: 1309: 1307: 1305: 1303: 1301: 1113:On multi drug resistant cancer cells 1983:"Poloxamers and their applications" 1280:The Journal of Physical Chemistry C 1139:Potential degradation by sonication 894:) forms the shell of the micelles. 866:Micellization and phase transitions 1657:10.1016/j.jeurceramsoc.2016.03.001 14: 1485:The Journal of Physical Chemistry 52:(poly(ethylene oxide)). The word 1093: 1001: 1029:add the appropriate references 950:structures, the polymers have 927:critical micelle concentration 923:critical micelle concentration 884:critical micelle concentration 1: 1897:10.1016/j.jconrel.2008.04.013 1885:Journal of Controlled Release 1850:10.1016/j.jconrel.2022.12.017 1838:Journal of Controlled Release 1755:10.1016/j.jconrel.2015.09.043 1743:Journal of Controlled Release 1470:10.1016/S0927-7757(00)00457-X 1328:10.1016/j.jconrel.2003.10.018 1316:Journal of Controlled Release 1946:10.3109/17435390.2012.736547 1805:10.1590/s2175-97902022e21125 1525:10.1016/0927-7757(94)03028-X 1405:10.1016/0927-7757(94)03028-X 25:with a = 2–130 and b = 15–67 1430:Colloid and Polymer Science 1252:Colloid and Polymer Science 1014:reliable medical references 91:Common poloxamer properties 2038: 1615:10.1038/s41570-024-00603-4 1264:10.1007/s00396-022-05039-0 1987:Pharmacy Student Articles 1442:10.1007/s00396-010-2308-5 1130:On nuclear factor kappa B 1020:or relies too heavily on 62:Kolliphor (pharma grade), 1603:Nature Reviews Chemistry 1292:10.1021/acs.jpcc.9b04099 1191:BASF Corporation Website 1513:Colloids and Surfaces A 36:composed of a central 32:are nonionic triblock 26: 2017:Non-ionic surfactants 1215:BASF Pharma Solutions 22: 1169:BASF Wyandotte Corp. 1552:2010SMat....6.2351D 1497:10.1021/j100603a016 1286:(34): 21224–21236. 1698:10.1039/C4PY00039K 27: 1692:(10): 3291–3297. 1686:Polymer Chemistry 1651:(10): 2525–2533. 1546:(11): 2351–2357. 1491:(10): 1024–1030. 1436:(18): 1687–1696. 1102: 1101: 1078: 993:Biological effect 975:colloidal science 946:Because of their 931:Hofmeister series 863: 862: 23:General structure 2029: 1990: 1968: 1967: 1957: 1940:(7): 1272–1281. 1925: 1919: 1918: 1908: 1876: 1870: 1869: 1832: 1826: 1825: 1807: 1783: 1777: 1776: 1766: 1734: 1728: 1727: 1709: 1677: 1671: 1670: 1668: 1640: 1634: 1633: 1631: 1629: 1594: 1588: 1587: 1585: 1584: 1570: 1564: 1563: 1560:10.1039/C001175B 1535: 1529: 1528: 1507: 1501: 1500: 1480: 1474: 1473: 1464:(1–2): 193–202. 1452: 1446: 1445: 1424: 1409: 1408: 1387: 1332: 1331: 1322:(2–3): 411–422. 1311: 1296: 1295: 1274: 1268: 1267: 1246: 1237: 1236: 1225: 1219: 1218: 1207: 1201: 1200: 1198: 1197: 1183: 1177: 1176: 1175: 1171: 1161: 1097: 1096: 1088: 1085: 1079: 1077: 1036: 1005: 1004: 997: 95: 42:polyoxypropylene 2037: 2036: 2032: 2031: 2030: 2028: 2027: 2026: 2007: 2006: 1997: 1980: 1977: 1975:Further reading 1972: 1971: 1927: 1926: 1922: 1878: 1877: 1873: 1834: 1833: 1829: 1785: 1784: 1780: 1736: 1735: 1731: 1679: 1678: 1674: 1642: 1641: 1637: 1627: 1625: 1596: 1595: 1591: 1582: 1580: 1572: 1571: 1567: 1537: 1536: 1532: 1509: 1508: 1504: 1482: 1481: 1477: 1454: 1453: 1449: 1426: 1425: 1412: 1389: 1388: 1335: 1313: 1312: 1299: 1276: 1275: 1271: 1248: 1247: 1240: 1227: 1226: 1222: 1209: 1208: 1204: 1195: 1193: 1185: 1184: 1180: 1173: 1163: 1162: 1158: 1153: 1141: 1132: 1115: 1098: 1094: 1089: 1083: 1080: 1037: 1026: 1022:primary sources 1006: 1002: 995: 944: 911:polyoxyethylene 892:polyoxyethylene 868: 851: 847: 843: 824: 820: 816: 797: 793: 789: 770: 766: 762: 743: 739: 735: 716: 712: 708: 689: 685: 681: 646: 642: 638: 619: 615: 611: 576: 572: 568: 549: 545: 541: 522: 518: 514: 495: 491: 487: 468: 464: 460: 425: 421: 417: 398: 394: 390: 323: 319: 315: 280: 276: 272: 237: 233: 229: 210: 206: 202: 183: 179: 175: 156: 152: 148: 129: 125: 121: 93: 85:polyoxyethylene 50:polyoxyethylene 24: 17: 12: 11: 5: 2035: 2033: 2025: 2024: 2019: 2009: 2008: 2005: 2004: 1996: 1995:External links 1993: 1992: 1991: 1976: 1973: 1970: 1969: 1934:Nanotoxicology 1920: 1871: 1827: 1778: 1729: 1672: 1635: 1609:(6): 433–453. 1589: 1565: 1530: 1502: 1475: 1447: 1410: 1333: 1297: 1269: 1238: 1220: 1202: 1178: 1155: 1154: 1152: 1149: 1140: 1137: 1131: 1128: 1114: 1111: 1100: 1099: 1092: 1090: 1009: 1007: 1000: 994: 991: 943: 940: 935:phase diagrams 879:molar ratio). 867: 864: 861: 860: 858: 855: 852: 849: 845: 841: 838: 834: 833: 831: 828: 825: 822: 818: 814: 811: 807: 806: 804: 801: 798: 795: 791: 787: 784: 780: 779: 777: 774: 771: 768: 764: 760: 757: 753: 752: 750: 747: 744: 741: 737: 733: 730: 726: 725: 723: 720: 717: 714: 710: 706: 703: 699: 698: 696: 693: 690: 687: 683: 679: 676: 672: 671: 669: 666: 663: 660: 656: 655: 653: 650: 647: 644: 640: 636: 633: 629: 628: 626: 623: 620: 617: 613: 609: 606: 602: 601: 599: 596: 593: 590: 586: 585: 583: 580: 577: 574: 570: 566: 563: 559: 558: 556: 553: 550: 547: 543: 539: 536: 532: 531: 529: 526: 523: 520: 516: 512: 509: 505: 504: 502: 499: 496: 493: 489: 485: 482: 478: 477: 475: 472: 469: 466: 462: 458: 455: 451: 450: 448: 445: 442: 439: 435: 434: 432: 429: 426: 423: 419: 415: 412: 408: 407: 405: 402: 399: 396: 392: 388: 385: 381: 380: 378: 375: 372: 369: 365: 364: 362: 359: 356: 353: 349: 348: 346: 343: 340: 337: 333: 332: 330: 327: 324: 321: 317: 313: 310: 306: 305: 303: 300: 297: 294: 290: 289: 287: 284: 281: 278: 274: 270: 267: 263: 262: 260: 257: 254: 251: 247: 246: 244: 241: 238: 235: 231: 227: 224: 220: 219: 217: 214: 211: 208: 204: 200: 197: 193: 192: 190: 187: 184: 181: 177: 173: 170: 166: 165: 163: 160: 157: 154: 150: 146: 143: 139: 138: 136: 133: 130: 127: 123: 119: 116: 112: 111: 108: 105: 102: 99: 92: 89: 55: 15: 13: 10: 9: 6: 4: 3: 2: 2034: 2023: 2020: 2018: 2015: 2014: 2012: 2003: 1999: 1998: 1994: 1988: 1984: 1979: 1978: 1974: 1965: 1961: 1956: 1951: 1947: 1943: 1939: 1935: 1931: 1924: 1921: 1916: 1912: 1907: 1902: 1898: 1894: 1891:(2): 98–106. 1890: 1886: 1882: 1875: 1872: 1867: 1863: 1859: 1855: 1851: 1847: 1843: 1839: 1831: 1828: 1823: 1819: 1815: 1811: 1806: 1801: 1797: 1793: 1789: 1782: 1779: 1774: 1770: 1765: 1760: 1756: 1752: 1748: 1744: 1740: 1733: 1730: 1725: 1721: 1717: 1713: 1708: 1703: 1699: 1695: 1691: 1687: 1683: 1676: 1673: 1667: 1666:10044/1/29973 1662: 1658: 1654: 1650: 1646: 1639: 1636: 1624: 1620: 1616: 1612: 1608: 1604: 1600: 1593: 1590: 1579: 1575: 1569: 1566: 1561: 1557: 1553: 1549: 1545: 1541: 1534: 1531: 1526: 1522: 1519:(1–2): 1–46. 1518: 1514: 1506: 1503: 1498: 1494: 1490: 1486: 1479: 1476: 1471: 1467: 1463: 1459: 1451: 1448: 1443: 1439: 1435: 1431: 1423: 1421: 1419: 1417: 1415: 1411: 1406: 1402: 1399:(1–2): 1–46. 1398: 1394: 1386: 1384: 1382: 1380: 1378: 1376: 1374: 1372: 1370: 1368: 1366: 1364: 1362: 1360: 1358: 1356: 1354: 1352: 1350: 1348: 1346: 1344: 1342: 1340: 1338: 1334: 1329: 1325: 1321: 1317: 1310: 1308: 1306: 1304: 1302: 1298: 1293: 1289: 1285: 1281: 1273: 1270: 1265: 1261: 1257: 1253: 1245: 1243: 1239: 1234: 1230: 1224: 1221: 1216: 1212: 1206: 1203: 1192: 1188: 1182: 1179: 1170: 1166: 1160: 1157: 1150: 1148: 1146: 1138: 1136: 1129: 1127: 1123: 1119: 1112: 1110: 1108: 1091: 1087: 1076: 1073: 1069: 1066: 1062: 1059: 1055: 1052: 1048: 1045: –  1044: 1040: 1039:Find sources: 1034: 1030: 1024: 1023: 1019: 1015: 1010:This article 1008: 999: 998: 992: 990: 988: 983: 980: 976: 971: 969: 964: 960: 957: 953: 949: 941: 939: 936: 932: 928: 924: 920: 915: 912: 908: 903: 899: 895: 893: 889: 888:micellization 885: 880: 878: 874: 865: 859: 856: 853: 839: 836: 835: 832: 829: 826: 812: 809: 808: 805: 802: 799: 785: 782: 781: 778: 775: 772: 758: 755: 754: 751: 748: 745: 731: 728: 727: 724: 721: 718: 704: 701: 700: 697: 694: 691: 677: 674: 673: 670: 667: 664: 661: 658: 657: 654: 651: 648: 634: 631: 630: 627: 624: 621: 607: 604: 603: 600: 597: 594: 591: 588: 587: 584: 581: 578: 564: 561: 560: 557: 554: 551: 537: 534: 533: 530: 527: 524: 510: 507: 506: 503: 500: 497: 483: 480: 479: 476: 473: 470: 456: 453: 452: 449: 446: 443: 440: 437: 436: 433: 430: 427: 413: 410: 409: 406: 403: 400: 386: 383: 382: 379: 376: 373: 370: 367: 366: 363: 360: 357: 354: 351: 350: 347: 344: 341: 338: 335: 334: 331: 328: 325: 311: 308: 307: 304: 301: 298: 295: 292: 291: 288: 285: 282: 268: 265: 264: 261: 258: 255: 252: 249: 248: 245: 242: 239: 225: 222: 221: 218: 215: 212: 198: 195: 194: 191: 188: 185: 171: 168: 167: 164: 161: 158: 144: 141: 140: 137: 134: 131: 117: 114: 113: 109: 106: 103: 100: 97: 96: 90: 88: 86: 82: 78: 74: 69: 67: 63: 59: 53: 51: 47: 43: 39: 35: 31: 21: 1986: 1937: 1933: 1923: 1888: 1884: 1874: 1841: 1837: 1830: 1795: 1791: 1781: 1746: 1742: 1732: 1689: 1685: 1675: 1648: 1644: 1638: 1626:. Retrieved 1606: 1602: 1592: 1581:. Retrieved 1577: 1568: 1543: 1539: 1533: 1516: 1512: 1505: 1488: 1484: 1478: 1461: 1457: 1450: 1433: 1429: 1396: 1392: 1319: 1315: 1283: 1279: 1272: 1258:(2): 75–92. 1255: 1251: 1232: 1229:"Synperonic" 1223: 1214: 1211:"Poloxamers" 1205: 1194:. Retrieved 1190: 1181: 1159: 1142: 1133: 1124: 1120: 1116: 1103: 1081: 1071: 1064: 1057: 1050: 1038: 1018:verification 1011: 984: 972: 965: 961: 945: 916: 904: 900: 896: 881: 869: 76: 72: 70: 65: 61: 57: 29: 28: 1844:: 802–822. 1749:: 369–382. 1707:10454/11223 1578:BASF Pharma 1540:Soft Matter 1084:August 2018 1043:"Poloxamer" 1012:needs more 987:robocasting 979:coalescence 956:miscibility 948:amphiphilic 919:salting-out 877:hydrophobic 873:hydrophilic 46:hydrophilic 38:hydrophobic 2011:Categories 1583:2022-06-11 1196:2008-12-09 1165:US 3740421 1151:References 1054:newspapers 952:surfactant 907:mesophases 66:Synperonic 48:chains of 34:copolymers 30:Poloxamers 1866:254851024 1822:256177315 1814:2175-9790 1716:1759-9962 1145:sonicated 98:Polaxamer 73:poloxamer 54:poloxamer 40:chain of 2022:Polymers 1964:23030523 1915:18534704 1858:36521691 1773:26410809 1724:98592847 1623:38740891 58:Pluronic 1955:3657567 1906:2678942 1764:4656093 1628:15 July 1548:Bibcode 1107:micelle 1068:scholar 1033:removed 110:Source 104:MW (Da) 101:Formula 2000:Video 1962:  1952:  1913:  1903:  1864:  1856:  1820:  1812:  1771:  1761:  1722:  1714:  1621:  1174:  1070:  1063:  1056:  1049:  1041:  968:SBA-15 963:Bio. 857:>24 830:>24 803:>24 776:>24 749:>24 695:>24 668:>24 1862:S2CID 1818:S2CID 1720:S2CID 1233:Croda 1075:JSTOR 1061:books 854:14600 827:13000 800:11400 722:18-23 719:12600 652:12-18 625:12-18 598:12-18 582:12-18 555:18-23 528:12-18 501:12-18 474:12-18 447:12-18 1960:PMID 1911:PMID 1854:PMID 1810:ISSN 1769:PMID 1712:ISSN 1630:2024 1619:PMID 1047:news 1016:for 942:Uses 837:F108 773:8400 746:4700 702:F127 692:7700 665:6600 649:6500 632:P105 622:4600 595:4150 579:3400 552:1900 525:5900 508:P104 498:4200 471:2900 444:2200 431:7-12 428:5750 411:P123 404:7-12 401:4950 384:P103 377:7-12 374:2650 361:7-12 358:1850 342:5000 336:L122 326:3650 299:2750 283:2500 259:7-12 256:1630 240:4400 223:L121 213:3800 196:L101 186:2750 159:2000 132:1100 81:P407 64:and 1950:PMC 1942:doi 1901:PMC 1893:doi 1889:130 1846:doi 1842:353 1800:doi 1759:PMC 1751:doi 1747:219 1702:hdl 1694:doi 1661:hdl 1653:doi 1611:doi 1556:doi 1521:doi 1493:doi 1466:doi 1462:175 1438:doi 1434:288 1401:doi 1324:doi 1288:doi 1284:123 1260:doi 1256:301 973:In 850:132 848:PEO 844:PPO 842:132 840:PEO 823:118 821:PEO 817:PPO 815:118 813:PEO 810:F98 796:103 794:PEO 790:PPO 788:103 786:PEO 783:F88 767:PEO 763:PPO 759:PEO 756:F68 740:PEO 736:PPO 732:PEO 729:F38 715:100 713:PEO 709:PPO 707:100 705:PEO 686:PEO 682:PPO 678:PEO 675:F87 659:F77 643:PEO 639:PPO 635:PEO 616:PEO 612:PPO 608:PEO 605:P85 589:P75 573:PEO 569:PPO 565:PEO 562:P65 546:PEO 542:PPO 538:PEO 535:L35 519:PEO 515:PPO 511:PEO 492:PEO 488:PPO 484:PEO 481:P84 465:PEO 461:PPO 457:PEO 454:L64 438:L44 422:PEO 418:PPO 414:PEO 395:PEO 391:PPO 387:PEO 368:L63 352:L43 345:1-7 320:PEO 316:PPO 312:PEO 309:L92 302:1-7 293:L72 286:1-7 277:PEO 273:PPO 269:PEO 266:L62 250:L42 234:PEO 230:PPO 226:PEO 207:PEO 203:PPO 199:PEO 180:PEO 176:PPO 172:PEO 169:L81 153:PEO 149:PPO 145:PEO 142:L61 135:1-7 126:PEO 122:PPO 118:PEO 115:L31 107:HLB 2013:: 1985:. 1958:. 1948:. 1936:. 1932:. 1909:. 1899:. 1887:. 1883:. 1860:. 1852:. 1840:. 1816:. 1808:. 1798:. 1796:58 1794:. 1790:. 1767:. 1757:. 1745:. 1741:. 1718:. 1710:. 1700:. 1688:. 1684:. 1659:. 1649:36 1647:. 1617:. 1605:. 1601:. 1576:. 1554:. 1542:. 1517:96 1515:. 1489:78 1487:. 1460:. 1432:. 1413:^ 1397:96 1395:. 1336:^ 1320:94 1318:. 1300:^ 1282:. 1254:. 1241:^ 1231:. 1213:. 1189:. 1109:. 1035:. 989:. 970:. 846:50 819:45 792:39 769:76 765:29 761:76 742:42 738:16 734:42 711:65 688:61 684:40 680:61 645:37 641:56 637:37 618:26 614:40 610:26 575:18 571:25 567:18 548:11 544:16 540:11 521:27 517:61 513:27 494:19 490:43 486:19 467:13 463:30 459:13 424:20 420:69 416:20 397:17 393:60 389:17 322:14 318:50 314:14 275:30 232:68 205:59 178:43 151:30 124:16 68:. 60:, 1989:. 1966:. 1944:: 1938:7 1917:. 1895:: 1868:. 1848:: 1824:. 1802:: 1775:. 1753:: 1726:. 1704:: 1696:: 1690:5 1669:. 1663:: 1655:: 1632:. 1613:: 1607:8 1586:. 1562:. 1558:: 1550:: 1544:6 1527:. 1523:: 1499:. 1495:: 1472:. 1468:: 1444:. 1440:: 1407:. 1403:: 1330:. 1326:: 1294:. 1290:: 1266:. 1262:: 1235:. 1217:. 1199:. 1086:) 1082:( 1072:· 1065:· 1058:· 1051:· 1025:. 875:/ 662:- 592:- 441:- 371:- 355:- 339:- 329:- 296:- 279:8 271:8 253:- 243:1 236:5 228:5 216:1 209:4 201:4 189:2 182:3 174:3 162:3 155:2 147:2 128:2 120:2 77:P

Index


copolymers
hydrophobic
polyoxypropylene
hydrophilic
polyoxyethylene
P407
polyoxyethylene
hydrophilic
hydrophobic
critical micelle concentration
micellization
polyoxyethylene
mesophases
polyoxyethylene
salting-out
critical micelle concentration
critical micelle concentration
Hofmeister series
phase diagrams
amphiphilic
surfactant
miscibility
SBA-15
colloidal science
coalescence
robocasting
reliable medical references
verification
primary sources

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.