Knowledge (XXG)

Quantum Zeno effect

Source 📝

676: 31: 299:, not a paradox at all. The absorption of a photon at some wavelength, the release of a photon (for example one that has escaped from some mode of a fiber), or even the relaxation of a particle as it enters some region, are all processes that can be interpreted as measurement. Such a measurement suppresses the transition, and is called the Zeno effect in the scientific literature. 291:) as it leaves some region of space. In the 20th century, the trapping (confinement) of a particle in some region by its observation outside the region was considered as nonsensical, indicating some non-completeness of quantum mechanics. Even as late as 2001, confinement by absorption was considered as a paradox. Later, similar effects of the suppression of 196:. In this sense, for the qubit correction, it is sufficient to determine whether the decoherence has already occurred or not. All these can be considered as applications of the Zeno effect. By its nature, the effect appears only in systems with distinguishable quantum states, and hence is inapplicable to classical phenomena and macroscopic bodies. 128:). If one wants to make the measurement process more and more frequent, one has to correspondingly decrease the time duration of the measurement itself. But the request that the measurement last only a very short time implies that the energy spread of the state in which reduction occurs becomes increasingly large. However, the deviations from the 550:
time, the faster it will collapse. So in the decoherence picture, a perfect implementation of the quantum Zeno effect corresponds to the limit where a quantum system is continuously coupled to the environment, and where that coupling is infinitely strong, and where the "environment" is an infinitely large source of thermal randomness.
640:
It is still an open question how closely one can approach the limit of an infinite number of interrogations due to the Heisenberg uncertainty involved in shorter measurement times. It has been shown, however, that measurements performed at a finite frequency can yield arbitrarily strong Zeno effects.
132:
law for small times is crucially related to the inverse of the energy spread, so that the region in which the deviations are appreciable shrinks when one makes the measurement process duration shorter and shorter. An explicit evaluation of these two competing requests shows that it is inappropriate,
549:
for a brief period of time, and continuous strong coupling is equivalent to frequent "measurement". The time it takes for the wave function to "collapse" is related to the decoherence time of the system when coupled to the environment. The stronger the coupling is, and the shorter the decoherence
58:
Sometimes this effect is interpreted as "a system cannot change while you are watching it". One can "freeze" the evolution of the system by measuring it frequently enough in its known initial state. The meaning of the term has since expanded, leading to a more technical definition, in which time
34:
With the increasing number of measurements the wave function tends to stay in its initial form. In the animation, a free time evolution of a wave function, depicted on the left, is in the central part interrupted by occasional position measurements that localize the wave function in one of nine
302:
In order to cover all of these phenomena (including the original effect of suppression of quantum decay), the Zeno effect can be defined as a class of phenomena in which some transition is suppressed by an interaction – one that allows the interpretation of the resulting state in the terms
148:
Unstable quantum systems are predicted to exhibit a short-time deviation from the exponential decay law. This universal phenomenon has led to the prediction that frequent measurements during this nonexponential period could inhibit decay of the system, one form of the quantum Zeno effect.
303:'transition did not yet happen' and 'transition has already occurred', or 'The proposition that the evolution of a quantum system is halted' if the state of the system is continuously measured by a macroscopic device to check whether the system is still in its initial state. 219:
tends to infinity; that is, that continual observations will prevent motion. Alan and I tackled one or two theoretical physicists with this, and they rather pooh-poohed it by saying that continual observation is not possible. But there is nothing in the standard books (e.g.,
355:. If measurements are made periodically, with some finite interval between each one, at each measurement, the wave function collapses to an eigenstate of the measurement operator. Between the measurements, the system evolves away from this eigenstate into a 90:, which states that because an arrow in flight is not seen to move during any single instant, it cannot possibly be moving at all. In the quantum Zeno effect an unstable state seems frozen – to not 'move' – due to a constant series of observations. 516:, since probabilities are proportional to squared amplitudes, and amplitudes behave linearly. Thus, in the limit of a large number of short intervals, with a measurement at the end of every interval, the probability of making the transition to 648:
The interpretation of experiments in terms of the "Zeno effect" helps describe the origin of a phenomenon. Nevertheless, such an interpretation does not bring any principally new features not described with the
610:
observed the quantum Zeno effect for an unstable quantum system, as originally proposed by Sudarshan and Misra. They also observed an anti-Zeno effect. Ultracold sodium atoms were trapped in an accelerating
656:
Even more, the detailed description of experiments with the "Zeno effect", especially at the limit of high frequency of measurements (high efficiency of suppression of transition, or high reflectivity of a
67:, among other factors. As an outgrowth of study of the quantum Zeno effect, it has become clear that applying a series of sufficiently strong and fast pulses with appropriate symmetry can also 599:
pulses during the RF pulse. As expected, the ultraviolet pulses suppressed the evolution of the system into the excited state. The results were in good agreement with theoretical models.
113:
of a particle, without the need of an observer in any conventional sense. However, there is controversy over the interpretation of the effect, sometimes referred to as the "
78:
The first rigorous and general derivation of the quantum Zeno effect was presented in 1974 by Degasperis, Fonda, and Ghirardi, although it had previously been described by
545:, the collapse of the wave function is not a discrete, instantaneous event. A "measurement" is equivalent to strongly coupling the quantum system to the noisy thermal 1491:
Kouznetsov, D.; Oberst, H.; Neumann, A.; Kuznetsova, Y.; Shimizu, K.; Bisson, J.-F.; Ueda, K.; Brueck, S. R. J. (2006). "Ridged atomic mirrors and atomic nanoscope".
626:
demonstrated a quantum Zeno effect as the modulation of the rate of quantum tunnelling in an ultracold lattice gas by the intensity of light used to image the atoms.
514: 595:. After the pulse was applied, the ions were monitored for photons emitted due to relaxation. The ion trap was then regularly "measured" by applying a sequence of 215:
times a second, then, even if the state is not a stationary one, the probability that the system will be in the same state after, say, one second, tends to one as
1573:
Echanobe, J.; Del Campo, A.; Muga, J. G. (2008). "Disclosing hidden information in the quantum Zeno effect: Pulsed measurement of the quantum time of arrival".
535: 487: 466: 444: 422: 400: 378: 353: 329: 251: 1353: 558:
Experimentally, strong suppression of the evolution of a quantum system due to environmental coupling has been observed in a number of microscopic systems.
1925: 1093:
Ghirardi, G. C.; Omero, C.; Rimini, A.; Weber, T. (1979). "Small Time Behaviour of Quantum Nondecay Probability and Zeno's Paradox in Quantum Mechanics".
2763: 280:
is applied to various transitions, and sometimes these transitions may be very different from a mere "decay" (whether exponential or non-exponential).
260:. It was later shown that the quantum Zeno effect of a single system is equivalent to the indetermination of the quantum state of a single system. 211:
t is easy to show using standard theory that if a system starts in an eigenstate of some observable, and measurements are made of that observable
168:. Frequent measurement prohibits the transition. It can be a transition of a particle from one half-space to another (which could be used for an 2666:
Home, D.; Whitaker, M. A. B. (1987). "The many-worlds and relative states interpretations of quantum mechanics, and the quantum Zeno paradox".
797: 675: 1830: 1806: 1782: 1752: 1643: 1299: 1265: 1014: 983: 813:
Nakanishi, T.; Yamane, K.; Kitano, M. (2001). "Absorption-free optical control of spin systems: the quantum Zeno effect in optical pumping".
2529:
Streed, E.; Mun, J.; Boyd, M.; Campbell, G.; Medley, P.; Ketterle, W.; Pritchard, D. (2006). "Continuous and Pulsed Quantum Zeno Effect".
1629: 2793: 2233: 923:
Degasperis, A.; Fonda, L.; Ghirardi, G. C. (1974). "Does the lifetime of an unstable system depend on the measuring apparatus?".
2291:
Fischer, M.; Gutiérrez-Medina, B.; Raizen, M. (2001). "Observation of the Quantum Zeno and Anti-Zeno Effects in an Unstable System".
2476:
Layden, D.; Martin-Martinez, E.; Kempf, A. (2015). "Perfect Zeno-like effect through imperfect measurements at a finite frequency".
1946: 664:
It was shown that the quantum Zeno effect persists in the many-worlds and relative-states interpretations of quantum mechanics.
1352:
Raizen, M. G.; Wilkinson, S. R.; Bharucha, C. F.; Fischer, M. C.; Madison, K. W.; Morrow, P. R.; Niu, Q.; Sundaram, B. (1997).
751: 695: 569:
observed the quantum Zeno effect for a two-level atomic system that was interrogated during its evolution. Approximately 5,000
1285: 1921: 1892: 1850: 59:
evolution can be suppressed not only by measurement: the quantum Zeno effect is the suppression of unitary time evolution in
1006: 615:, and the loss due to tunneling was measured. The evolution was interrupted by reducing the acceleration, thereby stopping 1251: 607: 546: 2354:
Patil, Y. S.; Chakram, S.; Vengalattore, M. (2015). "Measurement-Induced Localization of an Ultracold Lattice Gas".
1897:"The quantum Zeno effect of a single system is equivalent to the indetermination of the quantum state of a single system" 2788: 335:
of some measurement operator. Say the system under free time evolution will decay with a certain probability into state
1000: 1896: 1138:
Kraus, K. (1981-08-01). "Measuring processes in quantum mechanics I. Continuous observation and the watchdog effect".
1394: 1770: 1257: 868:
Facchi, P.; Lidar, D. A.; Pascazio, S. (2004). "Unification of dynamical decoupling and the quantum Zeno effect".
2709: 705: 133:
without taking into account this basic fact, to deal with the actual occurrence and emergence of Zeno's effect.
1952: 1853:(April 1997). "Quantum Zeno Effect and the Impossibility of Determining the Quantum State of a Single System". 224:'s) to this effect, so that at least the paradox shows up an inadequacy of Quantum Theory as usually presented. 2755: 2531: 2293: 1032: 650: 125: 87: 1684:
Franson, J.; Jacobs, B.; Pittman, T. (2006). "Quantum computing using single photons and the Zeno effect".
619:. The group observed suppression or enhancement of the decay rate, depending on the regime of measurement. 1978: 256: 83: 2023: 720: 356: 121: 98: 2707:
Leibfried, D.; Blatt, R.; Monroe, C.; Wineland, D. (2003). "Quantum dynamics of single trapped ions".
164:, the interaction mentioned is called "measurement" because its result can be interpreted in terms of 2718: 2677: 2668: 2640: 2603: 2550: 2495: 2434: 2415:
Kominis, I. K. (2009). "Quantum Zeno effect explains magnetic-sensitive radical-ion-pair reactions".
2373: 2312: 2250: 2198: 2143: 2106: 2069: 2032: 1987: 1862: 1798: 1744: 1705: 1594: 1547: 1502: 1493: 1436: 1370: 1326: 1208: 1147: 1104: 1051: 975: 934: 889: 834: 760: 140:, in which the time evolution of a system is affected by its continuous coupling to the environment. 55:
to be slowed down by measuring it frequently enough with respect to some chosen measurement setting.
2132:
Kouznetsov, D.; Oberst, H. (2005). "Reflection of Waves from a Ridged Surface and the Zeno Effect".
793: 2748: 1317: 725: 710: 700: 630: 542: 165: 114: 72: 2574: 2540: 2511: 2485: 2458: 2424: 2363: 2336: 2302: 2214: 2188: 2159: 2003: 1721: 1695: 1610: 1584: 1518: 1426: 1417: 1386: 1232: 1198: 1171: 1120: 1095: 1075: 1041: 950: 925: 905: 879: 850: 824: 623: 64: 1917: 1888: 1846: 1774: 30: 35:
sectors. On the right, a series of very frequent measurements leads to the quantum Zeno effect.
2594: 2566: 2450: 2397: 2389: 2328: 2266: 2241: 2179: 2097: 2060: 1942: 1826: 1816: 1802: 1778: 1748: 1686: 1639: 1575: 1538: 1470: 1452: 1334: 1295: 1261: 1224: 1163: 1067: 1010: 979: 870: 815: 776: 715: 616: 562: 161: 129: 48: 2095:
Peřina, J. (2004). "Quantum Zeno effect in cascaded parametric down-conversion with losses".
1792: 1189:
Belavkin, V.; Staszewski, P. (1992). "Nondemolition observation of a free quantum particle".
969: 203:
recalled Turing's formulation of the quantum Zeno effect in a letter to fellow mathematician
2726: 2685: 2648: 2611: 2558: 2503: 2442: 2381: 2320: 2258: 2206: 2151: 2114: 2077: 2040: 1995: 1934: 1870: 1713: 1602: 1555: 1510: 1460: 1444: 1378: 1361: 1291: 1216: 1155: 1112: 1059: 942: 897: 842: 768: 634: 292: 288: 247: 193: 173: 2274: 492: 403:. When the superposition state is measured, it will again collapse, either back into state 242:
As a result of Turing's suggestion, the quantum Zeno effect is also sometimes known as the
1281: 801: 612: 584: 1536:
Allcock, J. (1969). "The time of arrival in quantum mechanics I. Formal considerations".
284: 2722: 2681: 2644: 2607: 2554: 2499: 2438: 2377: 2316: 2254: 2202: 2147: 2110: 2073: 2036: 1991: 1866: 1709: 1598: 1551: 1506: 1440: 1374: 1330: 1212: 1151: 1108: 1055: 938: 893: 838: 764: 645:
at MIT observed the dependence of the Zeno effect on measurement pulse characteristics.
82:. The comparison with Zeno's paradox is due to a 1977 article by Baidyanath Misra & 2177:
Panov, A. D. (2001). "Quantum Zeno effect in spontaneous decay with distant detector".
2134: 1822: 1763: 1465: 1412: 1315:
Khalfin, L. A. (1958). "Contribution to the decay theory of a quasi-stationary state".
681: 603: 520: 472: 451: 429: 407: 385: 363: 338: 314: 60: 52: 2689: 2210: 2081: 2058:
Thun, K.; Peřina, J.; Křepelka, J. (2002). "Quantum Zeno effect in Raman scattering".
2044: 136:
Closely related (and sometimes not distinguished from the quantum Zeno effect) is the
2782: 2652: 2615: 2515: 2007: 1725: 1614: 1559: 1514: 1175: 1124: 954: 658: 592: 580: 273: 230: 185: 169: 2340: 2218: 2163: 1522: 1236: 1079: 909: 854: 2578: 2462: 2385: 2118: 1390: 690: 588: 576: 94: 2562: 2324: 1063: 188:
to another. It can be a transition from the subspace without decoherent loss of a
63:
provided by a variety of sources: measurement, interactions with the environment,
2021:
Yamane, K.; Ito, M.; Kitano, M. (2001). "Quantum Zeno effect in optical fibers".
596: 200: 149:
Subsequently, it was predicted that measurements applied more slowly could also
79: 2507: 2446: 1717: 1606: 901: 846: 749:
Sudarshan, E. C. G.; Misra, B. (1977). "The Zeno's paradox in quantum theory".
2744: 2730: 2155: 1874: 1002:
The Quantum Challenge: Modern Research on the Foundations of Quantum Mechanics
671: 332: 221: 204: 102: 2393: 2262: 1456: 1220: 1167: 2631: 1635: 571: 181: 2570: 2454: 2401: 2332: 1474: 1071: 120:
Another crucial problem related to the effect is strictly connected to the
117:" in traversing the interface between microscopic and macroscopic objects. 17: 2270: 1938: 1228: 2545: 2307: 2193: 1700: 1663: 1203: 1046: 884: 829: 184:
from one mode to another, and it can be a transition of an atom from one
1659: 2629:
Petrosky, T.; Tasaki, S.; Prigogine, I. (1991). "Quantum Zeno effect".
2592:
Petrosky, T.; Tasaki, S.; Prigogine, I. (1990). "Quantum zeno effect".
1999: 1818:
Quantum Measurements and New Concepts for Experiments with Trapped Ions
1354:"Experimental evidence for non-exponential decay in quantum tunnelling" 1159: 1116: 946: 269: 1448: 1338: 780: 633:
and proposed to be part of birds' magnetic compass sensory mechanism (
1815:
Wunderlich, C.; Balzer, C. (2003). Bederson, B.; Walther, H. (eds.).
772: 177: 1821:. Advances in Atomic, Molecular, and Optical Physics. Vol. 49. 1431: 587:
pulse was applied, which, if applied alone, would cause the entire
237:
R. O. Gandy and C. E. M. Yates, eds. (Elsevier, 2001), p. 267.
2490: 2429: 2368: 1589: 1382: 661:) usually do not behave as expected for an idealized measurement. 189: 93:
According to the reduction postulate, each measurement causes the
794:
https://phys.org/news/2015-10-zeno-effect-verifiedatoms-wont.html
1413:"A general framework for the Quantum Zeno and anti-Zeno effects" 566: 2232:
Itano, W.; Heinzen, D.; Bollinger, J.; Wineland, D. (1990).
105:
of the measurement basis. In the context of this effect, an
1631:
Quantum computing: a short course from theory to experiment
1030:
Facchi, P.; Pascazio, S. (2002). "Quantum Zeno subspaces".
283:
One realization refers to the observation of an object (
2756:"How the quantum Zeno effect impacts Schrodinger's cat" 176:) as in the time-of-arrival problem, a transition of a 523: 495: 475: 454: 432: 410: 388: 366: 341: 317: 447:. However, its probability of collapsing into state 1287:
Foundations and Interpretation of Quantum Mechanics
1902:. In F. De Martini, G. Denardo and Y. Shih (ed.). 1762: 1660:"Quantum computer solves problem, without running" 529: 508: 481: 460: 438: 416: 394: 372: 347: 323: 254:, and in particular the rule sometimes called the 425:as in the first measurement, or away into state 971:Alan Turing: Life and Legacy of a Great Thinker 209: 629:The quantum Zeno effect is used in commercial 622:In 2015, Mukund Vengalattore and his group at 1765:Mathematical Foundations of Quantum Mechanics 252:mathematical foundations of quantum mechanics 8: 1741:Mathematische Grundlagen der Quantenmechanik 1486: 1484: 246:. The idea is implicit in the early work of 968:Hofstadter, D. (2004). Teuscher, C. (ed.). 744: 742: 264:Various realizations and general definition 2751:which demonstrates the Quantum Zeno effect 1976:Mielnik, B. (1994). "The screen problem". 2544: 2489: 2428: 2367: 2306: 2192: 1699: 1588: 1464: 1430: 1202: 1045: 883: 828: 522: 500: 494: 474: 453: 431: 409: 387: 365: 340: 316: 307:Periodic measurement of a quantum system 29: 1253:Testing Quantum Mechanics on New Ground 738: 153:decay rates, a phenomenon known as the 1927:Quantum Measurement of a Single System 268:The treatment of the Zeno effect as a 7: 1794:Quantum Measurements and Decoherence 1411:Chaudhry, Adam Zaman (2016-07-13). 999:Greenstein, G.; Zajonc, A. (2005). 272:is not limited to the processes of 575:ions were stored in a cylindrical 469:after a very short amount of time 192:to a state with a qubit lost in a 122:time–energy indeterminacy relation 25: 2766:from the original on 17 June 2017 583:to below 250 mK. A resonant 674: 207:, shortly after Turing's death: 1007:Jones & Bartlett Publishers 752:Journal of Mathematical Physics 696:Interference (wave propagation) 2747:A computer program written in 2386:10.1103/PhysRevLett.115.140402 2119:10.1016/j.physleta.2004.03.026 1906:. Wiley-VCH. pp. 539–544. 1628:Stolze, J.; Suter, D. (2008). 591:population to migrate into an 86:.The name comes by analogy to 51:systems allowing a particle's 27:Quantum measurement phenomenon 1: 2563:10.1103/PhysRevLett.97.260402 2325:10.1103/PhysRevLett.87.040402 2211:10.1016/S0375-9601(01)00094-9 2082:10.1016/S0375-9601(02)00629-1 2045:10.1016/S0030-4018(01)01192-0 1064:10.1103/PhysRevLett.89.080401 608:University of Texas at Austin 311:Consider a system in a state 2653:10.1016/0378-4371(91)90048-H 2616:10.1016/0375-9601(90)90173-L 1560:10.1016/0003-4916(69)90251-6 2690:10.1088/0305-4470/20/11/036 295:was considered an expected 2810: 2794:Quantum mechanical entropy 2508:10.1103/PhysRevA.91.022106 2447:10.1103/PhysRevE.80.056115 1771:Princeton University Press 1718:10.1103/PhysRevA.70.062302 1607:10.1103/PhysRevA.77.032112 1515:10.1088/0953-4075/39/7/005 1258:Cambridge University Press 902:10.1103/PhysRevA.69.032314 847:10.1103/PhysRevA.65.013404 554:Experiments and discussion 2731:10.1103/RevModPhys.75.281 2710:Reviews of Modern Physics 2156:10.1007/s10043-005-0363-9 1875:10.1103/PhysRevA.55.R2499 706:Observer effect (physics) 2263:10.1103/PhysRevA.41.2295 1761:von Neumann, J. (1955). 1739:von Neumann, J. (1932). 1221:10.1103/PhysRevA.45.1347 155:quantum anti-Zeno effect 2532:Physical Review Letters 2356:Physical Review Letters 2294:Physical Review Letters 1791:Menskey, M. B. (2000). 1033:Physical Review Letters 653:of the quantum system. 276:. In general, the term 126:indeterminacy principle 1979:Foundations of Physics 1933:. Wiley-Interscience. 1904:Quantum Interferometry 1801:. §4.1.1, pp. 315 ff. 1140:Foundations of Physics 531: 510: 483: 462: 440: 418: 396: 374: 349: 325: 240: 84:E. C. George Sudarshan 36: 2234:"Quantum Zeno effect" 2024:Optics Communications 1939:10.1002/9783527617128 721:Wavefunction collapse 606:and his group at the 532: 511: 509:{\displaystyle t^{2}} 484: 463: 441: 419: 397: 375: 350: 326: 33: 2669:Journal of Physics A 1494:Journal of Physics B 651:Schrödinger equation 631:atomic magnetometers 521: 493: 473: 452: 430: 408: 386: 364: 359:state of the states 339: 315: 88:Zeno's arrow paradox 2789:Quantum measurement 2723:2003RvMP...75..281L 2682:1987JPhA...20.3339H 2645:1991PhyA..170..306P 2608:1990PhLA..151..109P 2555:2006PhRvL..97z0402S 2500:2015PhRvA..91b2106L 2439:2009PhRvE..80e6115K 2378:2015PhRvL.115n0402P 2317:2001PhRvL..87d0402F 2255:1990PhRvA..41.2295I 2203:2001PhLA..281....9P 2148:2005OptRv..12..363K 2111:2004PhLA..325...16P 2074:2002PhLA..299...19T 2037:2001OptCo.192..299Y 1992:1994FoPh...24.1113M 1867:1997PhRvA..55.2499A 1710:2004PhRvA..70f2302F 1599:2008PhRvA..77c2112E 1552:1969AnPhy..53..253A 1507:2006JPhB...39.1605K 1441:2016NatSR...629497C 1375:1997Natur.387..575W 1331:1958JETP....6.1053K 1318:Soviet Physics JETP 1213:1992PhRvA..45.1347B 1152:1981FoPh...11..547K 1109:1979NCimA..52..421G 1056:2002PhRvL..89h0401F 939:1974NCimA..21..471D 894:2004PhRvA..69c2314F 839:2001PhRvA..65a3404N 765:1977JMP....18..756M 711:Quantum decoherence 701:Measurement problem 489:is proportional to 257:reduction postulate 235:Mathematical Logic, 166:classical mechanics 115:measurement problem 43:(also known as the 41:quantum Zeno effect 2000:10.1007/BF02057859 1922:Yoshihisa Yamamoto 1893:Yoshihisa Yamamoto 1861:(5): R2499–R2502. 1851:Yoshihisa Yamamoto 1666:. 22 February 2006 1418:Scientific Reports 1250:Ghose, P. (1999). 1160:10.1007/bf00726936 1117:10.1007/BF02770851 1096:Il Nuovo Cimento A 947:10.1007/BF02731351 926:Il Nuovo Cimento A 800:2018-09-25 at the 624:Cornell University 543:decoherence theory 527: 506: 479: 458: 436: 414: 392: 370: 345: 321: 199:The mathematician 109:can simply be the 71:a system from its 49:quantum-mechanical 47:) is a feature of 37: 2676:(11): 3339–3345. 2595:Physics Letters A 2478:Physical Review A 2242:Physical Review A 2180:Physics Letters A 2098:Physics Letters A 2061:Physics Letters A 1832:978-0-12-003849-7 1808:978-0-7923-6227-2 1784:978-0-691-02893-4 1754:978-3-540-59207-5 1687:Physical Review A 1645:978-3-527-40787-3 1576:Physical Review A 1539:Annals of Physics 1449:10.1038/srep29497 1301:978-981-02-4614-3 1267:978-0-521-02659-8 1016:978-0-7637-2470-2 985:978-3-540-20020-8 871:Physical Review A 816:Physical Review A 716:Quantum Darwinism 617:quantum tunneling 565:and his group at 563:David J. Wineland 530:{\displaystyle B} 482:{\displaystyle t} 461:{\displaystyle B} 439:{\displaystyle B} 417:{\displaystyle A} 395:{\displaystyle B} 373:{\displaystyle A} 348:{\displaystyle B} 324:{\displaystyle A} 162:quantum mechanics 130:exponential decay 65:stochastic fields 16:(Redirected from 2801: 2775: 2773: 2771: 2734: 2694: 2693: 2663: 2657: 2656: 2626: 2620: 2619: 2589: 2583: 2582: 2548: 2546:cond-mat/0606430 2526: 2520: 2519: 2493: 2473: 2467: 2466: 2432: 2412: 2406: 2405: 2371: 2351: 2345: 2344: 2310: 2308:quant-ph/0104035 2288: 2282: 2281: 2279: 2273:. Archived from 2249:(5): 2295–2300. 2238: 2229: 2223: 2222: 2196: 2194:quant-ph/0101031 2174: 2168: 2167: 2142:(5): 1605–1623. 2129: 2123: 2122: 2092: 2086: 2085: 2055: 2049: 2048: 2031:(3–6): 299–307. 2018: 2012: 2011: 1986:(8): 1113–1129. 1973: 1967: 1966: 1964: 1963: 1957: 1951:. Archived from 1932: 1914: 1908: 1907: 1901: 1895:(October 1996). 1885: 1879: 1878: 1843: 1837: 1836: 1812: 1788: 1768: 1758: 1736: 1730: 1729: 1703: 1701:quant-ph/0408097 1681: 1675: 1674: 1672: 1671: 1656: 1650: 1649: 1634:(2nd ed.). 1625: 1619: 1618: 1592: 1570: 1564: 1563: 1533: 1527: 1526: 1501:(7): 1605–1623. 1488: 1479: 1478: 1468: 1434: 1408: 1402: 1401: 1399: 1393:. Archived from 1358: 1349: 1343: 1342: 1312: 1306: 1305: 1292:World Scientific 1278: 1272: 1271: 1247: 1241: 1240: 1206: 1204:quant-ph/0512138 1197:(3): 1347–1356. 1186: 1180: 1179: 1146:(7–8): 547–576. 1135: 1129: 1128: 1090: 1084: 1083: 1049: 1047:quant-ph/0201115 1027: 1021: 1020: 996: 990: 989: 965: 959: 958: 920: 914: 913: 887: 885:quant-ph/0303132 865: 859: 858: 832: 830:quant-ph/0103034 810: 804: 791: 785: 784: 773:10.1063/1.523304 746: 726:Zeno's paradoxes 684: 679: 678: 641:In 2006, Streed 635:magnetoreception 574: 536: 534: 533: 528: 515: 513: 512: 507: 505: 504: 488: 486: 485: 480: 467: 465: 464: 459: 445: 443: 442: 437: 423: 421: 420: 415: 401: 399: 398: 393: 379: 377: 376: 371: 354: 352: 351: 346: 330: 328: 327: 322: 293:Raman scattering 289:quantum particle 248:John von Neumann 238: 194:quantum computer 174:atomic nanoscope 21: 2809: 2808: 2804: 2803: 2802: 2800: 2799: 2798: 2779: 2778: 2769: 2767: 2754: 2741: 2706: 2703: 2701:Further reading 2698: 2697: 2665: 2664: 2660: 2628: 2627: 2623: 2591: 2590: 2586: 2528: 2527: 2523: 2475: 2474: 2470: 2414: 2413: 2409: 2353: 2352: 2348: 2290: 2289: 2285: 2277: 2236: 2231: 2230: 2226: 2176: 2175: 2171: 2131: 2130: 2126: 2094: 2093: 2089: 2057: 2056: 2052: 2020: 2019: 2015: 1975: 1974: 1970: 1961: 1959: 1955: 1949: 1930: 1916: 1915: 1911: 1899: 1887: 1886: 1882: 1845: 1844: 1840: 1833: 1825:. p. 315. 1814: 1809: 1790: 1785: 1760: 1755: 1747:. Chapter V.2. 1738: 1737: 1733: 1683: 1682: 1678: 1669: 1667: 1658: 1657: 1653: 1646: 1627: 1626: 1622: 1572: 1571: 1567: 1535: 1534: 1530: 1490: 1489: 1482: 1410: 1409: 1405: 1397: 1356: 1351: 1350: 1346: 1314: 1313: 1309: 1302: 1294:. p. 341. 1280: 1279: 1275: 1268: 1260:. p. 114. 1249: 1248: 1244: 1188: 1187: 1183: 1137: 1136: 1132: 1092: 1091: 1087: 1029: 1028: 1024: 1017: 1009:. p. 237. 998: 997: 993: 986: 967: 966: 962: 922: 921: 917: 867: 866: 862: 812: 811: 807: 802:Wayback Machine 792: 788: 748: 747: 740: 735: 730: 680: 673: 670: 613:optical lattice 570: 556: 519: 518: 496: 491: 490: 471: 470: 450: 449: 428: 427: 406: 405: 384: 383: 362: 361: 337: 336: 331:, which is the 313: 312: 309: 266: 239: 228: 146: 138:watchdog effect 61:quantum systems 28: 23: 22: 15: 12: 11: 5: 2807: 2805: 2797: 2796: 2791: 2781: 2780: 2777: 2776: 2752: 2740: 2739:External links 2737: 2736: 2735: 2717:(1): 281–324. 2702: 2699: 2696: 2695: 2658: 2621: 2584: 2539:(26): 260402. 2521: 2468: 2407: 2362:(14): 140402. 2346: 2283: 2280:on 2004-07-20. 2224: 2169: 2135:Optical Review 2124: 2087: 2050: 2013: 1968: 1947: 1909: 1880: 1838: 1831: 1823:Academic Press 1807: 1783: 1753: 1731: 1676: 1651: 1644: 1638:. p. 99. 1620: 1565: 1546:(2): 253–285. 1528: 1480: 1403: 1400:on 2010-03-31. 1344: 1307: 1300: 1273: 1266: 1242: 1181: 1130: 1085: 1022: 1015: 991: 984: 978:. p. 54. 960: 933:(3): 471–484. 915: 860: 805: 786: 759:(4): 756–763. 737: 736: 734: 731: 729: 728: 723: 718: 713: 708: 703: 698: 693: 687: 686: 685: 682:Physics portal 669: 666: 604:Mark G. Raizen 555: 552: 538:goes to zero. 526: 503: 499: 478: 457: 435: 413: 391: 369: 344: 320: 308: 305: 265: 262: 244:Turing paradox 226: 145: 142: 53:time evolution 45:Turing paradox 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2806: 2795: 2792: 2790: 2787: 2786: 2784: 2765: 2761: 2757: 2753: 2750: 2746: 2743: 2742: 2738: 2732: 2728: 2724: 2720: 2716: 2712: 2711: 2705: 2704: 2700: 2691: 2687: 2683: 2679: 2675: 2671: 2670: 2662: 2659: 2654: 2650: 2646: 2642: 2638: 2634: 2633: 2625: 2622: 2617: 2613: 2609: 2605: 2601: 2597: 2596: 2588: 2585: 2580: 2576: 2572: 2568: 2564: 2560: 2556: 2552: 2547: 2542: 2538: 2534: 2533: 2525: 2522: 2517: 2513: 2509: 2505: 2501: 2497: 2492: 2487: 2484:(2): 022106. 2483: 2479: 2472: 2469: 2464: 2460: 2456: 2452: 2448: 2444: 2440: 2436: 2431: 2426: 2423:(5): 056115. 2422: 2418: 2411: 2408: 2403: 2399: 2395: 2391: 2387: 2383: 2379: 2375: 2370: 2365: 2361: 2357: 2350: 2347: 2342: 2338: 2334: 2330: 2326: 2322: 2318: 2314: 2309: 2304: 2301:(4): 040402. 2300: 2296: 2295: 2287: 2284: 2276: 2272: 2268: 2264: 2260: 2256: 2252: 2248: 2244: 2243: 2235: 2228: 2225: 2220: 2216: 2212: 2208: 2204: 2200: 2195: 2190: 2186: 2182: 2181: 2173: 2170: 2165: 2161: 2157: 2153: 2149: 2145: 2141: 2137: 2136: 2128: 2125: 2120: 2116: 2112: 2108: 2104: 2100: 2099: 2091: 2088: 2083: 2079: 2075: 2071: 2067: 2063: 2062: 2054: 2051: 2046: 2042: 2038: 2034: 2030: 2026: 2025: 2017: 2014: 2009: 2005: 2001: 1997: 1993: 1989: 1985: 1981: 1980: 1972: 1969: 1958:on 2021-12-04 1954: 1950: 1948:9780471283089 1944: 1940: 1936: 1929: 1928: 1923: 1919: 1913: 1910: 1905: 1898: 1894: 1890: 1884: 1881: 1876: 1872: 1868: 1864: 1860: 1856: 1852: 1848: 1842: 1839: 1834: 1828: 1824: 1820: 1819: 1810: 1804: 1800: 1796: 1795: 1786: 1780: 1776: 1772: 1767: 1766: 1756: 1750: 1746: 1742: 1735: 1732: 1727: 1723: 1719: 1715: 1711: 1707: 1702: 1697: 1694:(6): 062302. 1693: 1689: 1688: 1680: 1677: 1665: 1661: 1655: 1652: 1647: 1641: 1637: 1633: 1632: 1624: 1621: 1616: 1612: 1608: 1604: 1600: 1596: 1591: 1586: 1583:(3): 032112. 1582: 1578: 1577: 1569: 1566: 1561: 1557: 1553: 1549: 1545: 1541: 1540: 1532: 1529: 1524: 1520: 1516: 1512: 1508: 1504: 1500: 1496: 1495: 1487: 1485: 1481: 1476: 1472: 1467: 1462: 1458: 1454: 1450: 1446: 1442: 1438: 1433: 1428: 1424: 1420: 1419: 1414: 1407: 1404: 1396: 1392: 1388: 1384: 1383:10.1038/42418 1380: 1376: 1372: 1369:(6633): 575. 1368: 1364: 1363: 1355: 1348: 1345: 1340: 1336: 1332: 1328: 1324: 1320: 1319: 1311: 1308: 1303: 1297: 1293: 1289: 1288: 1283: 1277: 1274: 1269: 1263: 1259: 1255: 1254: 1246: 1243: 1238: 1234: 1230: 1226: 1222: 1218: 1214: 1210: 1205: 1200: 1196: 1192: 1185: 1182: 1177: 1173: 1169: 1165: 1161: 1157: 1153: 1149: 1145: 1141: 1134: 1131: 1126: 1122: 1118: 1114: 1110: 1106: 1102: 1098: 1097: 1089: 1086: 1081: 1077: 1073: 1069: 1065: 1061: 1057: 1053: 1048: 1043: 1040:(8): 080401. 1039: 1035: 1034: 1026: 1023: 1018: 1012: 1008: 1004: 1003: 995: 992: 987: 981: 977: 973: 972: 964: 961: 956: 952: 948: 944: 940: 936: 932: 928: 927: 919: 916: 911: 907: 903: 899: 895: 891: 886: 881: 878:(3): 032314. 877: 873: 872: 864: 861: 856: 852: 848: 844: 840: 836: 831: 826: 823:(1): 013404. 822: 818: 817: 809: 806: 803: 799: 795: 790: 787: 782: 778: 774: 770: 766: 762: 758: 754: 753: 745: 743: 739: 732: 727: 724: 722: 719: 717: 714: 712: 709: 707: 704: 702: 699: 697: 694: 692: 689: 688: 683: 677: 672: 667: 665: 662: 660: 659:ridged mirror 654: 652: 646: 644: 638: 636: 632: 627: 625: 620: 618: 614: 609: 605: 600: 598: 594: 593:excited state 590: 586: 582: 578: 573: 568: 564: 559: 553: 551: 548: 544: 541:According to 539: 537: 524: 501: 497: 476: 468: 455: 446: 433: 424: 411: 402: 389: 380: 367: 358: 357:superposition 342: 334: 318: 306: 304: 300: 298: 294: 290: 286: 281: 279: 275: 274:quantum decay 271: 263: 261: 259: 258: 253: 249: 245: 236: 232: 231:Andrew Hodges 225: 223: 218: 214: 208: 206: 202: 197: 195: 191: 187: 186:quantum state 183: 179: 175: 171: 170:atomic mirror 167: 163: 158: 156: 152: 143: 141: 139: 134: 131: 127: 124:(part of the 123: 118: 116: 112: 108: 104: 100: 96: 91: 89: 85: 81: 76: 75:environment. 74: 70: 66: 62: 56: 54: 50: 46: 42: 32: 19: 2768:. Retrieved 2759: 2714: 2708: 2673: 2667: 2661: 2636: 2630: 2624: 2602:(3–4): 109. 2599: 2593: 2587: 2536: 2530: 2524: 2481: 2477: 2471: 2420: 2417:Phys. Rev. E 2416: 2410: 2359: 2355: 2349: 2298: 2292: 2286: 2275:the original 2246: 2240: 2227: 2184: 2178: 2172: 2139: 2133: 2127: 2105:(1): 16–20. 2102: 2096: 2090: 2068:(1): 19–30. 2065: 2059: 2053: 2028: 2022: 2016: 1983: 1977: 1971: 1960:. Retrieved 1953:the original 1926: 1912: 1903: 1883: 1858: 1855:Phys. Rev. A 1854: 1841: 1817: 1793: 1764: 1740: 1734: 1691: 1685: 1679: 1668:. Retrieved 1654: 1630: 1623: 1580: 1574: 1568: 1543: 1537: 1531: 1498: 1492: 1425:(1): 29497. 1422: 1416: 1406: 1395:the original 1366: 1360: 1347: 1322: 1316: 1310: 1286: 1276: 1252: 1245: 1194: 1191:Phys. Rev. A 1190: 1184: 1143: 1139: 1133: 1100: 1094: 1088: 1037: 1031: 1025: 1001: 994: 970: 963: 930: 924: 918: 875: 869: 863: 820: 814: 808: 789: 756: 750: 691:Einselection 663: 655: 647: 642: 639: 628: 621: 601: 589:ground-state 581:laser-cooled 577:Penning trap 560: 557: 540: 517: 448: 426: 404: 382: 360: 310: 301: 296: 285:Zeno's arrow 282: 277: 267: 255: 243: 241: 234: 216: 212: 210: 198: 159: 154: 150: 147: 137: 135: 119: 110: 106: 95:wavefunction 92: 77: 68: 57: 44: 40: 38: 1282:Auletta, G. 597:ultraviolet 547:environment 278:Zeno effect 201:Robin Gandy 144:Description 107:observation 80:Alan Turing 18:Zeno effect 2783:Categories 2639:(2): 306. 1962:2021-12-04 1918:Orly Alter 1889:Orly Alter 1847:Orly Alter 1773:. p.  1670:2013-09-21 1432:1604.06561 1103:(4): 421. 733:References 333:eigenstate 229:Quoted by 205:Max Newman 111:absorption 103:eigenstate 73:decohering 2632:Physica A 2516:119628035 2491:1410.3826 2430:0806.0739 2394:0031-9007 2369:1411.2678 2008:121708226 1759:See also 1726:119071343 1636:Wiley-VCH 1615:118335567 1590:0712.0670 1457:2045-2322 1176:121902392 1168:0015-9018 1125:124911216 955:120279111 602:In 2001, 561:In 1989, 287:, or any 182:waveguide 2764:Archived 2760:phys.org 2745:Zeno.qcl 2571:17280408 2455:20365051 2402:26551797 2341:11178428 2333:11461604 2219:18357530 2187:(1): 9. 2164:55565166 1924:(2001). 1799:Springer 1745:Springer 1664:Phys.Org 1523:16653364 1475:27405268 1325:: 1053. 1284:(2000). 1237:14637898 1080:29178016 1072:12190448 976:Springer 910:38253718 855:56052019 798:Archived 668:See also 227:—  99:collapse 69:decouple 2770:18 June 2719:Bibcode 2678:Bibcode 2641:Bibcode 2604:Bibcode 2579:2414199 2551:Bibcode 2496:Bibcode 2463:9848948 2435:Bibcode 2374:Bibcode 2313:Bibcode 2271:9903355 2251:Bibcode 2199:Bibcode 2144:Bibcode 2107:Bibcode 2070:Bibcode 2033:Bibcode 1988:Bibcode 1863:Bibcode 1706:Bibcode 1595:Bibcode 1548:Bibcode 1503:Bibcode 1466:4942788 1437:Bibcode 1391:4246387 1371:Bibcode 1339:4318804 1327:Bibcode 1229:9907114 1209:Bibcode 1148:Bibcode 1105:Bibcode 1052:Bibcode 935:Bibcode 890:Bibcode 835:Bibcode 781:7342282 761:Bibcode 270:paradox 250:on the 151:enhance 2577:  2569:  2514:  2461:  2453:  2400:  2392:  2339:  2331:  2269:  2217:  2162:  2006:  1945:  1829:  1805:  1781:  1751:  1724:  1642:  1613:  1521:  1473:  1463:  1455:  1389:  1362:Nature 1337:  1298:  1264:  1235:  1227:  1174:  1166:  1123:  1078:  1070:  1013:  982:  953:  908:  853:  779:  643:et al. 297:effect 178:photon 172:in an 101:to an 2575:S2CID 2541:arXiv 2512:S2CID 2486:arXiv 2459:S2CID 2425:arXiv 2364:arXiv 2337:S2CID 2303:arXiv 2278:(PDF) 2237:(PDF) 2215:S2CID 2189:arXiv 2160:S2CID 2004:S2CID 1956:(PDF) 1931:(PDF) 1900:(PDF) 1722:S2CID 1696:arXiv 1611:S2CID 1585:arXiv 1519:S2CID 1427:arXiv 1398:(PDF) 1387:S2CID 1357:(PDF) 1233:S2CID 1199:arXiv 1172:S2CID 1121:S2CID 1076:S2CID 1042:arXiv 951:S2CID 906:S2CID 880:arXiv 851:S2CID 825:arXiv 222:Dirac 190:qubit 180:in a 2772:2017 2567:PMID 2451:PMID 2398:PMID 2390:ISSN 2329:PMID 2267:PMID 1943:ISBN 1920:and 1891:and 1849:and 1827:ISBN 1803:ISBN 1779:ISBN 1749:ISBN 1640:ISBN 1471:PMID 1453:ISSN 1335:OSTI 1296:ISBN 1262:ISBN 1225:PMID 1164:ISSN 1068:PMID 1011:ISBN 980:ISBN 777:OSTI 579:and 567:NIST 381:and 39:The 2749:QCL 2727:doi 2686:doi 2649:doi 2637:170 2612:doi 2600:151 2559:doi 2504:doi 2443:doi 2382:doi 2360:115 2321:doi 2259:doi 2207:doi 2185:281 2152:doi 2115:doi 2103:325 2078:doi 2066:299 2041:doi 2029:192 1996:doi 1935:doi 1871:doi 1789:); 1775:366 1714:doi 1603:doi 1556:doi 1511:doi 1461:PMC 1445:doi 1379:doi 1367:387 1217:doi 1156:doi 1113:doi 1060:doi 943:doi 898:doi 843:doi 769:doi 637:). 233:in 160:In 97:to 2785:: 2762:. 2758:. 2725:. 2715:75 2713:. 2684:. 2674:20 2672:. 2647:. 2635:. 2610:. 2598:. 2573:. 2565:. 2557:. 2549:. 2537:97 2535:. 2510:. 2502:. 2494:. 2482:91 2480:. 2457:. 2449:. 2441:. 2433:. 2421:80 2419:. 2396:. 2388:. 2380:. 2372:. 2358:. 2335:. 2327:. 2319:. 2311:. 2299:87 2297:. 2265:. 2257:. 2247:41 2245:. 2239:. 2213:. 2205:. 2197:. 2183:. 2158:. 2150:. 2140:12 2138:. 2113:. 2101:. 2076:. 2064:. 2039:. 2027:. 2002:. 1994:. 1984:24 1982:. 1941:. 1869:. 1859:55 1857:. 1813:; 1797:. 1777:. 1769:. 1743:. 1720:. 1712:. 1704:. 1692:70 1690:. 1662:. 1609:. 1601:. 1593:. 1581:77 1579:. 1554:. 1544:53 1542:. 1517:. 1509:. 1499:39 1497:. 1483:^ 1469:. 1459:. 1451:. 1443:. 1435:. 1421:. 1415:. 1385:. 1377:. 1365:. 1359:. 1333:. 1321:. 1290:. 1256:. 1231:. 1223:. 1215:. 1207:. 1195:45 1193:. 1170:. 1162:. 1154:. 1144:11 1142:. 1119:. 1111:. 1101:52 1099:. 1074:. 1066:. 1058:. 1050:. 1038:89 1036:. 1005:. 974:. 949:. 941:. 931:21 929:. 904:. 896:. 888:. 876:69 874:. 849:. 841:. 833:. 821:65 819:. 796:. 775:. 767:. 757:18 755:. 741:^ 585:RF 572:Be 157:. 2774:. 2733:. 2729:: 2721:: 2692:. 2688:: 2680:: 2655:. 2651:: 2643:: 2618:. 2614:: 2606:: 2581:. 2561:: 2553:: 2543:: 2518:. 2506:: 2498:: 2488:: 2465:. 2445:: 2437:: 2427:: 2404:. 2384:: 2376:: 2366:: 2343:. 2323:: 2315:: 2305:: 2261:: 2253:: 2221:. 2209:: 2201:: 2191:: 2166:. 2154:: 2146:: 2121:. 2117:: 2109:: 2084:. 2080:: 2072:: 2047:. 2043:: 2035:: 2010:. 1998:: 1990:: 1965:. 1937:: 1877:. 1873:: 1865:: 1835:. 1811:. 1787:. 1757:. 1728:. 1716:: 1708:: 1698:: 1673:. 1648:. 1617:. 1605:: 1597:: 1587:: 1562:. 1558:: 1550:: 1525:. 1513:: 1505:: 1477:. 1447:: 1439:: 1429:: 1423:6 1381:: 1373:: 1341:. 1329:: 1323:6 1304:. 1270:. 1239:. 1219:: 1211:: 1201:: 1178:. 1158:: 1150:: 1127:. 1115:: 1107:: 1082:. 1062:: 1054:: 1044:: 1019:. 988:. 957:. 945:: 937:: 912:. 900:: 892:: 882:: 857:. 845:: 837:: 827:: 783:. 771:: 763:: 525:B 502:2 498:t 477:t 456:B 434:B 412:A 390:B 368:A 343:B 319:A 217:N 213:N 20:)

Index

Zeno effect

quantum-mechanical
time evolution
quantum systems
stochastic fields
decohering
Alan Turing
E. C. George Sudarshan
Zeno's arrow paradox
wavefunction
collapse
eigenstate
measurement problem
time–energy indeterminacy relation
indeterminacy principle
exponential decay
quantum mechanics
classical mechanics
atomic mirror
atomic nanoscope
photon
waveguide
quantum state
qubit
quantum computer
Robin Gandy
Max Newman
Dirac
Andrew Hodges

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.