Knowledge (XXG)

Zinc oxide nanoparticle

Source 📝

148:, individual cells, and their nuclei. Tissues can absorb them easily due to their size, which makes it difficult to detect them. However, human skin is an effective barrier to ZnO nanoparticles, for example, when used as a sunscreen, unless abrasions occur. ZnO nanoparticles may enter the system from accidental ingestion of small quantities when putting on sunscreen. When sunscreen is washed off, the ZnO nanoparticles can leach into runoff water and 17: 129:. They are also being investigated to kill harmful microorganisms in packaging, and in UV-protective materials such as textiles. Many companies do not label products that contain nanoparticles, making it difficult to make statements about production and pervasiveness in consumer products. 481:
Noorian, S. A., Hemmatinejad, N., & Navarro, J. A. (2020). Ligand modified cellulose fabrics as support of zinc oxide nanoparticles for UV protection and antimicrobial activities.
132:
Since ZnO nanoparticles are a relatively new material, there is concern over the potential hazards they can cause. Because they are very tiny, nanoparticles generally can
232:"Inventory of Engineered Nanoparticle-Containing Consumer Products Available in the Singapore Retail Market and Likelihood of Release into the Aquatic Environment" 450:
Iosub, Cristina Ş.; Olăreţ, Elena; Grumezescu, Alexandru Mihai; Holban, Alina M.; Andronescu, Ecaterina (2017), "Toxicity of nanostructures—a general approach",
339:
Keller, Arturo A.; McFerran, Suzanne; Lazareva, Anastasiya; Suh, Sangwon (2013-06-01). "Global life cycle releases of engineered nanomaterials".
602: 467: 504:"One-Pot Synthesis of Cu 2 O/ZnO Nanoparticles at Present of Folic Acid to Improve UV-Protective Effect of Cotton Fabrics" 110: 607: 20: 75: 99: 91: 114: 95: 67: 23:
images of four samples of zinc oxide nanoparticles from different vendors, showing differences in size and shape
46:. The exact physical and chemical properties of zinc oxide nanoparticles depend on the different ways they are 145: 59: 55: 71: 181:
Kumar, Surabhi Siva; Venkateswarlu, Putcha; Rao, Vanka Ranga; Rao, Gollapalli Nageswara (2013-05-07).
348: 297: 282: 194: 79: 63: 612: 283:"Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world" 372: 321: 161: 47: 43: 578: 560: 463: 432: 414: 364: 313: 263: 212: 152:. As of 2011 there were no known human illnesses resulting from any engineered nanoparticles. 122: 109:
ZnO nanoparticles are believed to be one of the three most produced nanomaterials, along with
541:"Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory" 568: 552: 536: 515: 455: 422: 406: 356: 305: 253: 243: 202: 149: 133: 87: 16: 503: 352: 301: 198: 573: 540: 459: 427: 394: 258: 231: 137: 51: 596: 539:; McGinnis, Sean P.; Vejerano, Eric P.; Kuiken, Todd; Vance, Marina E. (2015-08-21). 126: 31: 376: 325: 82:, microwave-assisted combustion method, two-step mechanochemical–thermal synthesis, 39: 281:
Piccinno, Fabiano; Gottschalk, Fadri; Seeger, Stefan; Nowack, Bernd (2012-09-01).
490: 230:
Zhang, Yuanyuan; Leu, Yu-Rui; Aitken, Robert J.; Riediker, Michael (2015-07-24).
183:"Synthesis, characterization and optical properties of zinc oxide nanoparticles" 395:"Engineered Nanoparticles in Consumer Products: Understanding a New Ingredient" 360: 309: 103: 35: 564: 418: 368: 317: 216: 248: 118: 83: 582: 436: 267: 207: 182: 556: 410: 141: 502:
Noorian, Seyyed Abbas; Hemmatinejad, Nahid; Bashari, Azadeh (May 2015).
520: 38:(ZnO) that have diameters less than 100 nanometers. They have a large 125:
but possess a large enough bandgap to be completely transparent to
236:
International Journal of Environmental Research and Public Health
98:
using solution concentration, pH, and washing medium. ZnO is a
50:. Some possible ways to produce ZnO nano-particles are 483:International journal of biological macromolecules 117:. The most common use of ZnO nanoparticles is in 121:. They are used because they effectively absorb 491:https://doi.org/10.1016/j.ijbiomac.2019.10.276 8: 572: 519: 426: 257: 247: 206: 15: 173: 535:Hull, Matthew S.; Rejeski, David Jr; 7: 388: 386: 545:Beilstein Journal of Nanotechnology 460:10.1016/b978-0-323-46142-9.00029-3 14: 399:Environmental Health Perspectives 452:Nanostructures for Novel Therapy 341:Journal of Nanoparticle Research 290:Journal of Nanoparticle Research 106:of 3.37 eV at room temperature. 42:relative to their size and high 508:Photochemistry and Photobiology 393:Kessler, Rebecca (2011-03-01). 454:, Elsevier, pp. 793–809, 111:titanium dioxide nanoparticles 1: 115:silicon dioxide nanoparticles 603:Nanoparticles by composition 21:Scanning electron microscope 60:electrochemical depositions 629: 187:International Nano Letters 134:travel throughout the body 100:wide-bandgap semiconductor 92:electrophoretic deposition 361:10.1007/s11051-013-1692-4 310:10.1007/s11051-012-1109-9 136:, and have been shown in 68:chemical vapor deposition 150:travel up the food chain 28:Zinc oxide nanoparticles 249:10.3390/ijerph120808717 96:precipitation processes 208:10.1186/2228-5326-3-30 24: 72:thermal decomposition 19: 557:10.3762/bjnano.6.181 537:Hochella, Michael F. 411:10.1289/ehp.119-a120 56:hydrothermal methods 608:Sunscreening agents 353:2013JNR....15.1692K 302:2012JNR....14.1109P 199:2013INL.....3...30K 146:blood–brain barrier 162:ZnO nanostructures 76:combustion methods 44:catalytic activity 25: 521:10.1111/php.12420 140:to penetrate the 123:ultraviolet light 620: 587: 586: 576: 551:(1): 1769–1780. 532: 526: 525: 523: 499: 493: 479: 473: 472: 447: 441: 440: 430: 405:(3): A120–A125. 390: 381: 380: 336: 330: 329: 287: 278: 272: 271: 261: 251: 242:(8): 8717–8743. 227: 221: 220: 210: 178: 88:co-precipitation 628: 627: 623: 622: 621: 619: 618: 617: 593: 592: 591: 590: 534: 533: 529: 501: 500: 496: 480: 476: 470: 449: 448: 444: 392: 391: 384: 338: 337: 333: 285: 280: 279: 275: 229: 228: 224: 180: 179: 175: 170: 158: 12: 11: 5: 626: 624: 616: 615: 610: 605: 595: 594: 589: 588: 527: 514:(3): 510–517. 494: 474: 468: 442: 382: 331: 273: 222: 172: 171: 169: 166: 165: 164: 157: 154: 138:animal studies 64:sol–gel method 52:laser ablation 13: 10: 9: 6: 4: 3: 2: 625: 614: 611: 609: 606: 604: 601: 600: 598: 584: 580: 575: 570: 566: 562: 558: 554: 550: 546: 542: 538: 531: 528: 522: 517: 513: 509: 505: 498: 495: 492: 489:, 1215-1226. 488: 484: 478: 475: 471: 469:9780323461429 465: 461: 457: 453: 446: 443: 438: 434: 429: 424: 420: 416: 412: 408: 404: 400: 396: 389: 387: 383: 378: 374: 370: 366: 362: 358: 354: 350: 346: 342: 335: 332: 327: 323: 319: 315: 311: 307: 303: 299: 295: 291: 284: 277: 274: 269: 265: 260: 255: 250: 245: 241: 237: 233: 226: 223: 218: 214: 209: 204: 200: 196: 192: 188: 184: 177: 174: 167: 163: 160: 159: 155: 153: 151: 147: 143: 139: 135: 130: 128: 127:visible light 124: 120: 116: 112: 107: 105: 101: 97: 93: 89: 85: 81: 77: 73: 69: 65: 61: 57: 53: 49: 45: 41: 37: 33: 32:nanoparticles 29: 22: 18: 548: 544: 530: 511: 507: 497: 486: 482: 477: 451: 445: 402: 398: 344: 340: 334: 293: 289: 276: 239: 235: 225: 190: 186: 176: 131: 108: 40:surface area 27: 26: 347:(6): 1692. 296:(9): 1109. 84:anodization 48:synthesized 613:Zinc oxide 597:Categories 168:References 104:energy gap 80:ultrasound 36:zinc oxide 565:2190-4286 419:0091-6765 369:1388-0764 318:1388-0764 217:2228-5326 193:(1): 30. 119:sunscreen 583:26425429 437:21356630 377:97011693 326:55419088 268:26213957 156:See also 142:placenta 102:with an 574:4578396 428:3060016 349:Bibcode 298:Bibcode 259:4555244 195:Bibcode 581:  571:  563:  466:  435:  425:  417:  375:  367:  324:  316:  266:  256:  215:  94:, and 373:S2CID 322:S2CID 286:(PDF) 579:PMID 561:ISSN 464:ISBN 433:PMID 415:ISSN 365:ISSN 314:ISSN 264:PMID 213:ISSN 113:and 30:are 569:PMC 553:doi 516:doi 487:154 456:doi 423:PMC 407:doi 403:119 357:doi 306:doi 254:PMC 244:doi 203:doi 34:of 599:: 577:. 567:. 559:. 547:. 543:. 512:91 510:. 506:. 485:, 462:, 431:. 421:. 413:. 401:. 397:. 385:^ 371:. 363:. 355:. 345:15 343:. 320:. 312:. 304:. 294:14 292:. 288:. 262:. 252:. 240:12 238:. 234:. 211:. 201:. 189:. 185:. 144:, 90:, 86:, 78:, 74:, 70:, 66:, 62:, 58:, 54:, 585:. 555:: 549:6 524:. 518:: 458:: 439:. 409:: 379:. 359:: 351:: 328:. 308:: 300:: 270:. 246:: 219:. 205:: 197:: 191:3

Index


Scanning electron microscope
nanoparticles
zinc oxide
surface area
catalytic activity
synthesized
laser ablation
hydrothermal methods
electrochemical depositions
sol–gel method
chemical vapor deposition
thermal decomposition
combustion methods
ultrasound
anodization
co-precipitation
electrophoretic deposition
precipitation processes
wide-bandgap semiconductor
energy gap
titanium dioxide nanoparticles
silicon dioxide nanoparticles
sunscreen
ultraviolet light
visible light
travel throughout the body
animal studies
placenta
blood–brain barrier

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑