Knowledge (XXG)

Sol–gel process

Source 📝

399: 80: 702: 595:) will be capable of condensation, so relatively little branching will occur. The mechanisms of hydrolysis and condensation, and the factors that bias the structure toward linear or branched structures are the most critical issues of sol–gel science and technology. This reaction is favored in both basic and acidic conditions. 940:
Furthermore, microscopic pores in sintered ceramic nanomaterials, mainly trapped at the junctions of microcrystalline grains, cause light to scatter and prevented true transparency. The total volume fraction of these nanoscale pores (both intergranular and intragranular porosity) must be less than 1%
282:
The sol–gel process is a wet-chemical technique used for the fabrication of both glassy and ceramic materials. In this process, the sol (or solution) evolves gradually towards the formation of a gel-like network containing both a liquid phase and a solid phase. Typical precursors are metal alkoxides
774:
It would therefore appear desirable to process a material in such a way that it is physically uniform with regard to the distribution of components and porosity, rather than using particle size distributions which will maximize the green density. The containment of a uniformly dispersed assembly of
825:
synthesis. Other elements (metals, metal oxides) can be easily incorporated into the final product and the silicate sol formed by this method is very stable. Semi-stable metal complexes can be used to produce sub-2 nm oxide particles without thermal treatment. During base-catalyzed synthesis,
928:
can be made by the sol–gel route. In the processing of high performance ceramic nanomaterials with superior opto-mechanical properties under adverse conditions, the size of the crystalline grains is determined largely by the size of the crystalline particles present in the raw material during the
292:
is used primarily to describe a broad range of solid-liquid (and/or liquid-liquid) mixtures, all of which contain distinct solid (and/or liquid) particles which are dispersed to various degrees in a liquid medium. The term is specific to the size of the individual particles, which are larger than
858:
or dip-coating. Protective and decorative coatings, and electro-optic components can be applied to glass, metal and other types of substrates with these methods. Cast into a mold, and with further drying and heat-treatment, dense ceramic or glass articles with novel properties can be formed that
794:
colloidal solid which results from aggregation. The degree of order appears to be limited by the time and space allowed for longer-range correlations to be established. Such defective polycrystalline structures would appear to be the basic elements of nanoscale materials science, and, therefore,
770:
process, yielding heterogeneous densification. Some pores and other structural defects associated with density variations have been shown to play a detrimental role in the sintering process by growing and thus limiting end-point densities. Differential stresses arising from heterogeneous
891:
and crystalline, have found use in various forms from bulk solid-state components to high surface area forms such as thin films, coatings and fibers. Also, thin films have found their application in the electronic field and can be used as sensitive components of a resistive gas sensors.
679:
systems, the concept of steric immobilisation becomes relevant. To avoid the formation of multiple phases of binary oxides as the result of differing hydrolysis and condensation rates, the entrapment of cations in a polymer network is an effective approach, generally termed the
337:, which are affected both by sedimentation and forces of gravity. Stabilized suspensions of such sub-micrometre spherical particles may eventually result in their self-assembly—yielding highly ordered microstructures reminiscent of the prototype colloidal crystal: precious 103:, the volume fraction of particles (or particle density) may be so low that a significant amount of fluid may need to be removed initially for the gel-like properties to be recognized. This can be accomplished in any number of ways. The simplest method is to allow time for 1821:
Mokrushin, Artem S.; Fisenko, Nikita A.; Gorobtsov, Philipp Yu; Simonenko, Tatiana L.; Glumov, Oleg V.; Melnikova, Natalia A.; Simonenko, Nikolay P.; Bukunov, Kirill A.; Simonenko, Elizaveta P.; Sevastyanov, Vladimir G.; Kuznetsov, Nikolay T. (January 2021).
688:
agent is used, most often citric acid, to surround aqueous cations and sterically entrap them. Subsequently, a polymer network is formed to immobilize the chelated cations in a gel or resin. This is most often achieved by poly-esterification using
283:
and metal chlorides, which undergo hydrolysis and polycondensation reactions to form a colloid. The basic structure or morphology of the solid phase can range anywhere from discrete colloidal particles to continuous chain-like polymer networks.
305:. But if they are small enough to be colloids, then their irregular motion in suspension can be attributed to the collective bombardment of a myriad of thermally agitated molecules in the liquid suspending medium, as described originally by 1622:
Curran, Christopher D., et al. "Ambient temperature aqueous synthesis of ultrasmall copper doped ceria nanocrystals for the water gas shift and carbon monoxide oxidation reactions." Journal of Materials Chemistry A 6.1 (2018):
717:
condition, a highly porous and extremely low density material called aerogel is obtained. Drying the gel by means of low temperature treatments (25–100 °C), it is possible to obtain porous solid matrices called
1869:
Ciriminna, Rosaria; Fidalgo, Alexandra; Pandarus, Valerica; Béland, François; Ilharco, Laura M.; Pagliaro, Mario (2013). "The Sol–Gel Route to Advanced Silica-Based Materials and Recent Applications".
1782:
Gorobtsov, Philipp Yu.; Fisenko, Nikita A.; Solovey, Valentin R.; Simonenko, Nikolay P.; Simonenko, Elizaveta P.; Volkov, Ivan A.; Sevastyanov, Vladimir G.; Kuznetsov, Nikolay T. (July 2021).
149:. One of the distinct advantages of using this methodology as opposed to the more traditional processing techniques is that densification is often achieved at a much lower temperature. 368:). Formation of a metal oxide involves connecting the metal centers with oxo (M-O-M) or hydroxo (M-OH-M) bridges, therefore generating metal-oxo or metal-hydroxo polymers in solution. 591:
is tetrafunctional (can branch or bond in 4 different directions). Alternatively, under certain conditions (e.g., low water concentration) fewer than 4 of the OR or OH groups (
200:). The sol–gel approach is a cheap and low-temperature technique that allows the fine control of the product's chemical composition. Even small quantities of dopants, such as 795:
provide the first step in developing a more rigorous understanding of the mechanisms involved in microstructural evolution in inorganic systems such as sintered ceramic
375:
glass or micro-crystalline ceramic. Subsequent thermal treatment (firing) may be performed in order to favor further polycondensation and enhance mechanical properties.
1470:
Lange, F. F. & Metcalf, M. (1983). "Processing-Related Fracture Origins: II, Agglomerate Motion and Cracklike Internal Surfaces Caused by Differential Sintering".
929:
synthesis or formation of the object. Thus a reduction of the original particle size well below the wavelength of visible light (~500 nm) eliminates much of the
571:. This type of reaction can continue to build larger and larger silicon-containing molecules by the process of polymerization. Thus, a polymer is a huge molecule (or 2610: 821:, used in a variety of finishing operations, are made using a sol–gel type process. One of the more important applications of sol–gel processing is to carry out 274:
in the form of fibers and monoliths. Sol–gel research grew to be so important that in the 1990s more than 35,000 papers were published worldwide on the process.
2489: 842:
The applications for sol gel-derived products are numerous. For example, scientists have used it to produce the world's lightest materials and also some of its
693:. The resulting polymer is then combusted under oxidising conditions to remove organic content and yield a product oxide with homogeneously dispersed cations. 371:
In both cases (discrete particles or continuous polymer network), the drying process serves to remove the liquid phase from the gel, yielding a micro-porous
356:
exhibits certain advantages with regard to physical properties in the formation of high performance glass and glass/ceramic components in 2 and 3 dimensions.
805:
can be formed by precipitation. These powders of single and multiple component compositions can be produced at a nanoscale particle size for dental,
641:
during sol–gel process. The product is a molecular-scale composite with improved mechanical properties. Sono-Ormosils are characterized by a higher
2041: 1537:
Whitesides, G. M.; et al. (1991). "Molecular Self-Assembly and Nanochemistry: A Chemical Strategy for the Synthesis of Nanostructures".
1122: 1068: 1307: 141:
process, is often necessary in order to favor further polycondensation and enhance mechanical properties and structural stability via final
134:
of the final component will clearly be strongly influenced by changes imposed upon the structural template during this phase of processing.
297:. If the particles are large enough, then their dynamic behavior in any given period of time in suspension would be governed by forces of 1222:
Nishio, Keishi; Tsuchiya, Tsuchiya (2004-12-17). "Chapter 3 Sol–Gel Processing of Thin Films with Metal Salts". In Sakka, JSumio (ed.).
667:, hydrolysis and condensation processes naturally give rise to homogenous compositions. For systems involving multiple cations, such as 449:
are ideal chemical precursors for sol–gel synthesis because they react readily with water. The reaction is called hydrolysis, because a
645:
than classic gels as well as an improved thermal stability. An explanation therefore might be the increased degree of polymerization.
317:, with sedimentation being a possible long-term result. This critical size range (or particle diameter) typically ranges from tens of 91:" (a colloidal solution) is formed that then gradually evolves towards the formation of a gel-like diphasic system containing both a 1664: 1231: 887:
fibers can be drawn which are used for fiber optic sensors and thermal insulation, respectively. Thus, many ceramic materials, both
1249:"Enhancement of Ce/Cr Codopant Solubility and Chemical Homogeneity in TiO2 Nanoparticles through Sol–Gel versus Pechini Syntheses" 771:
densification have also been shown to result in the propagation of internal cracks, thus becoming the strength-controlling flaws.
2514: 2310: 971: 2625: 747:
Differential stresses that develop as a result of non-uniform drying shrinkage are directly related to the rate at which the
249: 1659:
Brinker, C. J. and Scherer, G. W., Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, (Academic Press, 1990)
1248: 2620: 2615: 2426: 2403: 1137:
Klein, L.C. and Garvey, G.J., "Kinetics of the Sol-Gel Transition" Journal of Non-Crystalline Solids, Vol. 38, p.45 (1980)
830:
which is strong enough to prevent reaction in the hydroxo regime but weak enough to allow reaction in the oxo regime (see
584: 157: 976: 2590: 2259: 1384: 706: 1676:
German Patent 736411 (Granted 6 May 1943) Anti-Reflective Coating (W. Geffcken and E. Berger, Jenaer Glasswerk Schott).
1203:, "The Sol-Gel Transition: Formation of Glass Fibers & Thin Films", J. Non-Crystalline Solids, Vol. 48, p.31 (1982) 2034: 1347:
Evans, A. G. & Davidge, R. W. (1969). "The strength and fracture of fully dense polycrystalline magnesium oxide".
755:. Such stresses have been associated with a plastic-to-brittle transition in consolidated bodies, and can yield to 714: 263:
The interest in sol–gel processing can be traced back in the mid-1800s with the observation that the hydrolysis of
2290: 2211: 2101: 941:
for high-quality optical transmission, i.e. the density has to be 99.99% of the theoretical crystalline density.
387: 1320:
Franks, G. V. & Lange, F. F. (1996). "Plastic-to-Brittle Transition of Saturated, Alumina Powder Compacts".
126:
and densification. The rate at which the solvent can be removed is ultimately determined by the distribution of
2605: 2191: 411: 264: 386:, respectively. In addition, uniform ceramic powders of a wide range of chemical composition can be formed by 1650:
Phalippou, J., Sol-Gel: A Low temperature Process for the Materials of the New Millennium, solgel.com (2000).
1382:
Evans, A. G.; Davidge, R. W. (1970). "Strength and fracture of fully dense polycrystalline magnesium oxide".
1212:
Rosa-Fox, N. de la; Pinero, M.; Esquivias, L. (2002): Organic-Inorganic Hybrid Materials from Sonogels. 2002.
2554: 2421: 2295: 2027: 99:
phase whose morphologies range from discrete particles to continuous polymer networks. In the case of the
775:
strongly interacting particles in suspension requires total control over particle-particle interactions.
2595: 2363: 2171: 1427:
Evans, A. G.; Davidge, R. W. (1970). "The strength and oxidation of reaction-sintered silicon nitride".
966: 153: 60: 473:
Depending on the amount of water and catalyst present, hydrolysis may proceed to completion to silica:
786:
silica, for example, may therefore be stabilized sufficiently to ensure a high degree of order in the
208:, can be introduced in the sol and end up uniformly dispersed in the final product. It can be used in 2519: 2393: 2141: 2131: 1984: 1913: 1589: 1546: 1436: 1393: 1356: 1025: 934: 854:
One of the largest application areas is thin films, which can be produced on a piece of substrate by
68: 2186: 1824:"Pen plotter printing of ITO thin film as a highly CO sensitive component of a resistive gas sensor" 2539: 2461: 2383: 2358: 1784:"Microstructure and local electrophysical properties of sol-gel derived (In2O3-10%SnO2)/V2O5 films" 1768:, (2000) "Transparent ceramics for armor and EM window applications", Proc. SPIE, Vol. 4102, p. 1, 1308:
Structure development of resorcinol-formaldehyde gels: microphase separation or colloid aggregation
613:
forces, which stretch out and break the chain in a non-random process, result in a lowering of the
568: 209: 185: 123: 313:. Einstein concluded that this erratic behavior could adequately be described using the theory of 2446: 2368: 2116: 2106: 1929: 1851: 1823: 1803: 1783: 1747: 1452: 1409: 1289: 1263: 1041: 1015: 884: 668: 383: 213: 205: 1695:
Yakovlev, Aleksandr V. (22 March 2016). "Inkjet Color Printing by Interference Nanostructures".
629:
over conventional stirring and results in higher molecular weights with lower polydispersities.
1187:
Allman III, R.M. and Onoda, G.Y., Jr. (Unpublished work, IBM T.J. Watson Research Center, 1984)
2559: 2524: 2494: 2451: 2388: 2373: 2285: 2176: 1886: 1843: 1712: 1660: 1605: 1562: 1281: 1227: 1118: 1064: 787: 756: 506: 407: 348:), the interparticle forces have sufficient strength to cause considerable aggregation and/or 253: 20: 579:. The number of bonds that a monomer can form is called its functionality. Polymerization of 2315: 2305: 2300: 2070: 1956: 1921: 1878: 1835: 1795: 1739: 1704: 1597: 1554: 1506: 1479: 1444: 1401: 1364: 1329: 1273: 1093: 1033: 930: 831: 614: 580: 112: 398: 27:
is a method for producing solid materials from small molecules. The method is used for the
2509: 2504: 2353: 2249: 2221: 2206: 2201: 2196: 2156: 2126: 1150:, "Sol-Gel Transition in Simple Silicates", J. Non-Crystalline Solids, Vol.48, p.47 (1982) 961: 860: 791: 762:
In addition, any fluctuations in packing density in the compact as it is prepared for the
734: 727: 690: 681: 654: 314: 306: 294: 268: 2226: 1632:
Wright, J. D. and Sommerdijk, N. A. J. M., Sol-Gel Materials: Chemistry and Applications.
1527:, Aksay, I. A., Adv. Ceram., Vol. 9, p. 94, Proc. Amer. Ceramic Soc. (Columbus, OH 1984). 43:(Ti). The process involves conversion of monomers in solution into a colloidal solution ( 1917: 1593: 1550: 1440: 1397: 1360: 1224:
Handbook of Sol-Gel Science and Technology, Processing Characterisation and Applications
1029: 701: 2471: 2441: 2436: 1960: 1730:
Yakovlev, Aleksandr V. (December 2015). "Sol-Gel Assisted Inkjet Hologram Patterning".
1510: 1483: 1333: 956: 626: 617:
and poly-dispersity. Furthermore, multi-phase systems are very efficient dispersed and
557: 257: 131: 108: 79: 64: 1601: 998:
Hanaor, D. A. H.; Chironi, I.; Karatchevtseva, I.; Triani, G.; Sorrell, C. C. (2012).
364:
evolves then towards the formation of an inorganic network containing a liquid phase (
352:
prior to their growth. The formation of a more open continuous network of low density
2600: 2584: 2378: 2335: 2241: 2216: 2111: 1933: 1855: 1807: 1751: 1456: 1413: 925: 921: 880: 796: 572: 382:
and refractory ceramic fiber can be drawn which are used for fiber optic sensors and
361: 302: 104: 88: 83:
Schematic representation of the different stages and routes of the sol–gel technology
45: 28: 1293: 1045: 900:
Sol-gel technology has been applied for controlled release of fragrances and drugs.
2544: 2499: 2456: 2146: 2121: 2075: 1641:
Aegerter, M. A. and Mennig, M., Sol-Gel Technologies for Glass Producers and Users.
1037: 855: 810: 802: 776: 741: 610: 349: 310: 197: 181: 165: 146: 1839: 1685:
Klein, L. C., Sol-Gel Optics: Processing and Applications, Springer Verlag (1994).
1277: 722:. In addition, a sol–gel process was developed in the 1950s for the production of 1799: 1112: 2569: 2534: 2254: 2136: 917: 723: 502: 229: 193: 161: 32: 1904:
Yoldas, B. E. (1979). "Monolithic glass formation by chemical polymerization".
859:
cannot be created by any other method. Other coating methods include spraying,
378:
With the viscosity of a sol adjusted into a proper range, both optical quality
2564: 2529: 2398: 2166: 2161: 1368: 950: 913: 806: 676: 622: 607: 603: 514: 510: 494: 379: 322: 1497:
Evans, A. G. (1987). "Considerations of Inhomogeneity Effects in Sintering".
224:
for various purposes. Sol–gel derived materials have diverse applications in
172:
into a suitable container with the desired shape (e.g., to obtain monolithic
2431: 2330: 1708: 1558: 876: 843: 818: 814: 767: 685: 446: 372: 217: 142: 1947:
Prochazka, S.; Klug, F. J. (1983). "Infrared-Transparent Mullite Ceramic".
1890: 1847: 1743: 1716: 1609: 1285: 402:
Simplified representation of the condensation induced by hydrolysis of TEOS
1566: 709:. This type of disordered morphology is typical of many sol–gel materials. 560:
is associated with the formation of a 1-, 2-, or 3-dimensional network of
2549: 2320: 2096: 2091: 999: 752: 618: 567:
By definition, condensation liberates a small molecule, such as water or
561: 521: 498: 450: 410:
is a well-studied example of polymerization of an alkoxide, specifically
318: 245: 127: 40: 1097: 509:. Intermediate species including or may result as products of partial 2269: 2019: 1925: 1448: 1405: 909: 822: 783: 748: 642: 630: 576: 517: 435: 298: 288: 241: 189: 173: 169: 100: 56: 36: 1882: 1159:
Einstein, A., Ann. Phys., Vol. 19, p. 289 (1906), Vol. 34 p.591 (1911)
360:
In either case (discrete particles or continuous polymer network) the
2345: 2151: 864: 827: 638: 634: 592: 233: 225: 92: 826:
hydroxo (M-OH) bonds may be avoided in favor of oxo (M-O-M) using a
1268: 751:
can be removed, and thus highly dependent upon the distribution of
122:
process, which is typically accompanied by a significant amount of
2264: 2231: 2181: 2065: 2050: 1580:
Dubbs D. M, Aksay I. A.; Aksay (2000). "Self-Assembled Ceramics".
1020: 888: 705:
Nanostructure of a resorcinol-formaldehyde gel reconstructed from
700: 431: 237: 221: 177: 96: 78: 1999:. Plinio Innocenzi. Springer Briefs in Materials. Springer. 2016. 497:
often requires an excess of water and/or the use of a hydrolysis
1061:
Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing
763: 564:
bonds accompanied by the production of H−O−H and R−O−H species.
338: 2023: 953:, small spheroidal droplet of colloidal particles in suspension 719: 365: 201: 51: 912:
elements and active optical components as well as large area
1004:
Powders Prepared by Excess Hydrolysis of Titanium Alkoxide"
621:, so that very fine mixtures are provided. This means that 118:
Removal of the remaining liquid (solvent) phase requires a
49:) that acts as the precursor for an integrated network (or 2014: 587:
of the polymer, because a fully hydrolyzed monomer Si(OH)
513:
reactions. Early intermediates result from two partially
16:
Method for producing solid materials from small molecules
1084:
Hench, L. L.; J. K. West (1990). "The Sol-Gel Process".
606:
is an efficient tool for the synthesis of polymers. The
2009: 1525:
Microstructural Control Through Colloidal Consolidation
333:), the particles may grow to sufficient size to become 267:(TEOS) under acidic conditions led to the formation of 453:
ion becomes attached to the silicon atom as follows:
575:) formed from hundreds or thousands of units called 2480: 2412: 2344: 2278: 2240: 2084: 2058: 744:, without generation of large quantities of dust. 633:(organically modified silicate) are obtained when 107:to occur, and then pour off the remaining liquid. 414:. The chemical formula for TEOS is given by Si(OC 1993:, Zarzycki. J., Cambridge University Press, 1991 344:Under certain chemical conditions (typically in 329:Under certain chemical conditions (typically in 713:If the liquid in a wet gel is removed under a 293:atomic dimensions but small enough to exhibit 111:can also be used to accelerate the process of 2490:Conservation and restoration of glass objects 2035: 8: 1788:Colloid and Interface Science Communications 879:of a sol adjusted into a proper range, both 1173:Structural Variations in Colloidal Crystals 1114:Sol-Gel Optics: Processing and Applications 2042: 2028: 2020: 216:material, or as a means of producing very 55:) of either discrete particles or network 1267: 1019: 397: 192:), or used to synthesize powders (e.g., 1949:Journal of the American Ceramic Society 1499:Journal of the American Ceramic Society 993: 991: 987: 2611:Glass coating and surface modification 1772:, Marker, A.J. and Arthurs, E.G., Eds. 1195: 1193: 1059:Brinker, C. J.; G. W. Scherer (1990). 803:Ultra-fine and uniform ceramic powders 933:, resulting in a translucent or even 759:in the unfired body if not relieved. 67:. Sol–gel process is used to produce 7: 1183: 1181: 1167: 1165: 583:, for instance, can lead to complex 137:Afterwards, a thermal treatment, or 1226:. Kluwer Academic. pp. 59–66. 1961:10.1111/j.1151-2916.1983.tb11004.x 1511:10.1111/j.1151-2916.1982.tb10340.x 1484:10.1111/j.1151-2916.1983.tb10069.x 1334:10.1111/j.1151-2916.1996.tb08091.x 659:For single cation systems like SiO 14: 1602:10.1146/annurev.physchem.51.1.601 1306:Gommes, C. J., Roberts A. (2008) 779:colloids provide this potential. 697:Nanomaterials, aerogels, xerogels 156:sol can be either deposited on a 1310:. Physical Review E, 77, 041409. 2560:Radioactive waste vitrification 2515:Glass fiber reinforced concrete 972:Random graph theory of gelation 766:are often amplified during the 87:In this chemical procedure, a " 1991:Glasses and the Vitreous State 1770:Inorganic Optical Materials II 1247:Chen, W.; et al. (2018). 1038:10.1179/1743676111Y.0000000059 1: 2427:Chemically strengthened glass 2010:International Sol–Gel Society 1840:10.1016/j.talanta.2020.121455 1732:Advanced Functional Materials 1278:10.1021/acs.inorgchem.8b00926 2260:Glass-ceramic-to-metal seals 1906:Journal of Materials Science 1800:10.1016/j.colcom.2021.100452 1385:Journal of Materials Science 1008:Advances in Applied Ceramics 707:small-angle X-ray scattering 1000:"Single and Mixed Phase TiO 867:printing, or roll coating. 35:, especially the oxides of 2642: 1175:, M.S. Thesis, UCLA (1983) 652: 2291:Chemical vapor deposition 2212:Ultra low expansion glass 2102:Borophosphosilicate glass 1997:The Sol to Gel Transition 1369:10.1080/14786436908228708 160:to form a film (e.g., by 130:in the gel. The ultimate 2530:Glass-reinforced plastic 2192:Sodium hexametaphosphate 977:Liquid–liquid extraction 782:Monodisperse powders of 637:is added to gel-derived 265:tetraethyl orthosilicate 256:, and separation (e.g., 212:and manufacturing as an 2422:Anti-reflective coating 2296:Glass batch calculation 2177:Photochromic lens glass 1709:10.1021/acsnano.5b06074 1559:10.1126/science.1962191 250:controlled drug release 1744:10.1002/adfm.201503483 710: 625:increases the rate of 403: 278:Particles and polymers 84: 2626:Transparent materials 2555:Prince Rupert's drops 2404:Transparent materials 2364:Gradient-index optics 2172:Phosphosilicate glass 1977:Colloidal Dispersions 1582:Annu. Rev. Phys. Chem 1523:Allman III, R. M. in 967:Mechanics of gelation 871:Thin films and fibers 817:applications. Powder 704: 684:. In this process, a 401: 321:(10 m) to a few 145:, densification, and 82: 69:ceramic nanoparticles 2621:Thin film deposition 2616:Industrial processes 2520:Glass ionomer cement 2394:Photosensitive glass 2321:Liquidus temperature 2142:Fluorosilicate glass 1985:Cambridge University 935:transparent material 2591:Ceramic engineering 2540:Glass-to-metal seal 2462:Self-cleaning glass 2384:Optical lens design 2015:The Sol–Gel Gateway 1918:1979JMatS..14.1843Y 1594:2000ARPC...51..601D 1551:1991Sci...254.1312W 1441:1970JMatS...5..314E 1398:1970JMatS...5..314E 1361:1969PMag...20..373E 1256:Inorganic Chemistry 1117:. Springer Verlag. 1098:10.1021/cr00099a003 1030:2012AdApC.111..149H 850:Protective coatings 548:−Si−OR + HO−Si−(OR) 532:−Si−OH + HO−Si−(OR) 346:acid-catalyzed sols 331:base-catalyzed sols 210:ceramics processing 206:rare-earth elements 2525:Glass microspheres 2447:Hydrogen darkening 2369:Hydrogen darkening 2117:Chalcogenide glass 2107:Borosilicate glass 1926:10.1007/BF00551023 1449:10.1007/BF02397783 1406:10.1007/BF02397783 1171:Allman III, R.M., 1111:Klein, L. (1994). 1063:. Academic Press. 896:Controlled release 885:refractory ceramic 711: 669:strontium titanate 404: 384:thermal insulation 214:investment casting 85: 2578: 2577: 2495:Glass-coated wire 2467:sol–gel technique 2452:Insulated glazing 2389:Photochromic lens 2374:Optical amplifier 2326:sol–gel technique 1979:, Russel, W. B., 1883:10.1021/cr300399c 1738:(47): 7375–7380. 1472:J. Am. Ceram. Soc 1328:(12): 3161–3168. 1322:J. Am. Ceram. Soc 1262:(12): 7279–7289. 1124:978-0-7923-9424-2 1070:978-0-12-134970-7 788:colloidal crystal 757:crack propagation 507:hydrochloric acid 254:reactive material 21:materials science 2633: 2316:Ion implantation 2071:Glass transition 2044: 2037: 2030: 2021: 1965: 1964: 1944: 1938: 1937: 1912:(8): 1843–1849. 1901: 1895: 1894: 1877:(8): 6592–6620. 1871:Chemical Reviews 1866: 1860: 1859: 1818: 1812: 1811: 1779: 1773: 1762: 1756: 1755: 1727: 1721: 1720: 1703:(3): 3078–3086. 1692: 1686: 1683: 1677: 1674: 1668: 1657: 1651: 1648: 1642: 1639: 1633: 1630: 1624: 1620: 1614: 1613: 1577: 1571: 1570: 1545:(5036): 1312–9. 1534: 1528: 1521: 1515: 1514: 1494: 1488: 1487: 1467: 1461: 1460: 1424: 1418: 1417: 1379: 1373: 1372: 1355:(164): 373–388. 1344: 1338: 1337: 1317: 1311: 1304: 1298: 1297: 1271: 1253: 1244: 1238: 1237: 1219: 1213: 1210: 1204: 1197: 1188: 1185: 1176: 1169: 1160: 1157: 1151: 1144: 1138: 1135: 1129: 1128: 1108: 1102: 1101: 1086:Chemical Reviews 1081: 1075: 1074: 1056: 1050: 1049: 1023: 995: 931:light scattering 832:Pourbaix diagram 615:molecular weight 581:silicon alkoxide 113:phase separation 2641: 2640: 2636: 2635: 2634: 2632: 2631: 2630: 2606:Glass chemistry 2581: 2580: 2579: 2574: 2510:Glass electrode 2505:Glass databases 2482: 2476: 2414: 2408: 2340: 2274: 2250:Bioactive glass 2236: 2222:Vitreous enamel 2207:Thoriated glass 2202:Tellurite glass 2187:Soda–lime glass 2157:Gold ruby glass 2127:Cranberry glass 2080: 2054: 2048: 2006: 1973: 1971:Further reading 1968: 1955:(12): 874–880. 1946: 1945: 1941: 1903: 1902: 1898: 1868: 1867: 1863: 1820: 1819: 1815: 1781: 1780: 1776: 1763: 1759: 1729: 1728: 1724: 1694: 1693: 1689: 1684: 1680: 1675: 1671: 1658: 1654: 1649: 1645: 1640: 1636: 1631: 1627: 1621: 1617: 1579: 1578: 1574: 1536: 1535: 1531: 1522: 1518: 1505:(10): 497–501. 1496: 1495: 1491: 1469: 1468: 1464: 1426: 1425: 1421: 1381: 1380: 1376: 1346: 1345: 1341: 1319: 1318: 1314: 1305: 1301: 1251: 1246: 1245: 1241: 1234: 1221: 1220: 1216: 1211: 1207: 1198: 1191: 1186: 1179: 1170: 1163: 1158: 1154: 1146:Brinker, C.J., 1145: 1141: 1136: 1132: 1125: 1110: 1109: 1105: 1083: 1082: 1078: 1071: 1058: 1057: 1053: 1003: 997: 996: 989: 985: 962:Freeze gelation 947: 906: 904:Opto-mechanical 898: 873: 861:electrophoresis 852: 840: 792:polycrystalline 738: 731: 699: 691:ethylene glycol 682:Pechini process 674: 666: 662: 657: 655:Pechini process 651: 649:Pechini process 601: 590: 551: 547: 535: 531: 488: 484: 480: 468: 464: 460: 443: 439: 429: 425: 421: 417: 396: 315:Brownian motion 307:Albert Einstein 295:Brownian motion 280: 272: 77: 65:metal alkoxides 25:sol–gel process 17: 12: 11: 5: 2639: 2637: 2629: 2628: 2623: 2618: 2613: 2608: 2603: 2598: 2593: 2583: 2582: 2576: 2575: 2573: 2572: 2567: 2562: 2557: 2552: 2547: 2542: 2537: 2532: 2527: 2522: 2517: 2512: 2507: 2502: 2497: 2492: 2486: 2484: 2478: 2477: 2475: 2474: 2472:Tempered glass 2469: 2464: 2459: 2454: 2449: 2444: 2442:DNA microarray 2439: 2437:Dealkalization 2434: 2429: 2424: 2418: 2416: 2410: 2409: 2407: 2406: 2401: 2396: 2391: 2386: 2381: 2376: 2371: 2366: 2361: 2356: 2350: 2348: 2342: 2341: 2339: 2338: 2333: 2328: 2323: 2318: 2313: 2311:Glass modeling 2308: 2303: 2298: 2293: 2288: 2282: 2280: 2276: 2275: 2273: 2272: 2267: 2262: 2257: 2252: 2246: 2244: 2242:Glass-ceramics 2238: 2237: 2235: 2234: 2229: 2224: 2219: 2214: 2209: 2204: 2199: 2194: 2189: 2184: 2182:Silicate glass 2179: 2174: 2169: 2164: 2159: 2154: 2149: 2144: 2139: 2134: 2129: 2124: 2119: 2114: 2109: 2104: 2099: 2094: 2088: 2086: 2082: 2081: 2079: 2078: 2073: 2068: 2062: 2060: 2056: 2055: 2053:science topics 2049: 2047: 2046: 2039: 2032: 2024: 2018: 2017: 2012: 2005: 2004:External links 2002: 2001: 2000: 1994: 1988: 1972: 1969: 1967: 1966: 1939: 1896: 1861: 1813: 1774: 1757: 1722: 1687: 1678: 1669: 1652: 1643: 1634: 1625: 1615: 1572: 1529: 1516: 1489: 1478:(6): 398–406. 1462: 1435:(4): 314–325. 1419: 1392:(4): 314–325. 1374: 1339: 1312: 1299: 1239: 1232: 1214: 1205: 1189: 1177: 1161: 1152: 1139: 1130: 1123: 1103: 1076: 1069: 1051: 1014:(3): 149–158. 1001: 986: 984: 981: 980: 979: 974: 969: 964: 959: 957:Freeze-casting 954: 946: 943: 926:beam splitters 905: 902: 897: 894: 872: 869: 851: 848: 839: 836: 736: 729: 698: 695: 672: 664: 660: 653:Main article: 650: 647: 627:polymerisation 600: 597: 588: 558:polymerization 554: 553: 549: 545: 538: 537: 533: 529: 520:linked with a 491: 490: 486: 482: 478: 471: 470: 466: 462: 458: 441: 437: 427: 423: 419: 415: 408:Stöber process 395: 394:Polymerization 392: 358: 357: 342: 279: 276: 270: 260:) technology. 258:chromatography 132:microstructure 109:Centrifugation 76: 73: 15: 13: 10: 9: 6: 4: 3: 2: 2638: 2627: 2624: 2622: 2619: 2617: 2614: 2612: 2609: 2607: 2604: 2602: 2599: 2597: 2594: 2592: 2589: 2588: 2586: 2571: 2568: 2566: 2563: 2561: 2558: 2556: 2553: 2551: 2548: 2546: 2543: 2541: 2538: 2536: 2533: 2531: 2528: 2526: 2523: 2521: 2518: 2516: 2513: 2511: 2508: 2506: 2503: 2501: 2498: 2496: 2493: 2491: 2488: 2487: 2485: 2479: 2473: 2470: 2468: 2465: 2463: 2460: 2458: 2455: 2453: 2450: 2448: 2445: 2443: 2440: 2438: 2435: 2433: 2430: 2428: 2425: 2423: 2420: 2419: 2417: 2411: 2405: 2402: 2400: 2397: 2395: 2392: 2390: 2387: 2385: 2382: 2380: 2379:Optical fiber 2377: 2375: 2372: 2370: 2367: 2365: 2362: 2360: 2357: 2355: 2352: 2351: 2349: 2347: 2343: 2337: 2336:Vitrification 2334: 2332: 2329: 2327: 2324: 2322: 2319: 2317: 2314: 2312: 2309: 2307: 2306:Glass melting 2304: 2302: 2301:Glass forming 2299: 2297: 2294: 2292: 2289: 2287: 2284: 2283: 2281: 2277: 2271: 2268: 2266: 2263: 2261: 2258: 2256: 2253: 2251: 2248: 2247: 2245: 2243: 2239: 2233: 2230: 2228: 2225: 2223: 2220: 2218: 2217:Uranium glass 2215: 2213: 2210: 2208: 2205: 2203: 2200: 2198: 2197:Soluble glass 2195: 2193: 2190: 2188: 2185: 2183: 2180: 2178: 2175: 2173: 2170: 2168: 2165: 2163: 2160: 2158: 2155: 2153: 2150: 2148: 2145: 2143: 2140: 2138: 2135: 2133: 2130: 2128: 2125: 2123: 2120: 2118: 2115: 2113: 2112:Ceramic glaze 2110: 2108: 2105: 2103: 2100: 2098: 2095: 2093: 2090: 2089: 2087: 2083: 2077: 2074: 2072: 2069: 2067: 2064: 2063: 2061: 2057: 2052: 2045: 2040: 2038: 2033: 2031: 2026: 2025: 2022: 2016: 2013: 2011: 2008: 2007: 2003: 1998: 1995: 1992: 1989: 1986: 1982: 1978: 1975: 1974: 1970: 1962: 1958: 1954: 1950: 1943: 1940: 1935: 1931: 1927: 1923: 1919: 1915: 1911: 1907: 1900: 1897: 1892: 1888: 1884: 1880: 1876: 1872: 1865: 1862: 1857: 1853: 1849: 1845: 1841: 1837: 1833: 1829: 1825: 1817: 1814: 1809: 1805: 1801: 1797: 1793: 1789: 1785: 1778: 1775: 1771: 1767: 1764:Patel, P.J., 1761: 1758: 1753: 1749: 1745: 1741: 1737: 1733: 1726: 1723: 1718: 1714: 1710: 1706: 1702: 1698: 1691: 1688: 1682: 1679: 1673: 1670: 1666: 1665:9780121349707 1662: 1656: 1653: 1647: 1644: 1638: 1635: 1629: 1626: 1619: 1616: 1611: 1607: 1603: 1599: 1595: 1591: 1587: 1583: 1576: 1573: 1568: 1564: 1560: 1556: 1552: 1548: 1544: 1540: 1533: 1530: 1526: 1520: 1517: 1512: 1508: 1504: 1500: 1493: 1490: 1485: 1481: 1477: 1473: 1466: 1463: 1458: 1454: 1450: 1446: 1442: 1438: 1434: 1430: 1429:J. Mater. Sci 1423: 1420: 1415: 1411: 1407: 1403: 1399: 1395: 1391: 1387: 1386: 1378: 1375: 1370: 1366: 1362: 1358: 1354: 1350: 1343: 1340: 1335: 1331: 1327: 1323: 1316: 1313: 1309: 1303: 1300: 1295: 1291: 1287: 1283: 1279: 1275: 1270: 1265: 1261: 1257: 1250: 1243: 1240: 1235: 1233:9781402079696 1229: 1225: 1218: 1215: 1209: 1206: 1202: 1196: 1194: 1190: 1184: 1182: 1178: 1174: 1168: 1166: 1162: 1156: 1153: 1149: 1143: 1140: 1134: 1131: 1126: 1120: 1116: 1115: 1107: 1104: 1099: 1095: 1091: 1087: 1080: 1077: 1072: 1066: 1062: 1055: 1052: 1047: 1043: 1039: 1035: 1031: 1027: 1022: 1017: 1013: 1009: 1005: 994: 992: 988: 982: 978: 975: 973: 970: 968: 965: 963: 960: 958: 955: 952: 949: 948: 944: 942: 938: 936: 932: 927: 923: 919: 915: 911: 903: 901: 895: 893: 890: 886: 882: 878: 870: 868: 866: 862: 857: 849: 847: 845: 837: 835: 833: 829: 824: 820: 816: 812: 808: 804: 800: 798: 797:nanomaterials 793: 789: 785: 780: 778: 772: 769: 765: 760: 758: 754: 750: 745: 743: 742:nuclear fuels 739: 732: 725: 721: 716: 715:supercritical 708: 703: 696: 694: 692: 687: 683: 678: 670: 656: 648: 646: 644: 640: 636: 632: 628: 624: 620: 616: 612: 609: 605: 598: 596: 594: 586: 582: 578: 574: 573:macromolecule 570: 565: 563: 559: 543: 542: 541: 527: 526: 525: 523: 519: 516: 512: 508: 504: 500: 496: 476: 475: 474: 465:O → HO−Si(OR) 456: 455: 454: 452: 448: 444: 433: 413: 409: 400: 393: 391: 389: 388:precipitation 385: 381: 376: 374: 369: 367: 363: 355: 351: 347: 343: 340: 336: 332: 328: 327: 326: 325:(10 m). 324: 320: 316: 312: 308: 304: 303:sedimentation 300: 296: 291: 290: 284: 277: 275: 273: 266: 261: 259: 255: 251: 247: 243: 239: 235: 231: 227: 223: 219: 215: 211: 207: 203: 199: 195: 191: 187: 183: 179: 175: 171: 167: 163: 159: 155: 150: 148: 144: 140: 135: 133: 129: 125: 121: 116: 114: 110: 106: 105:sedimentation 102: 98: 94: 90: 81: 74: 72: 70: 66: 62: 58: 54: 53: 48: 47: 42: 38: 34: 30: 26: 22: 2596:Dosage forms 2545:Porous glass 2500:Safety glass 2466: 2457:Porous glass 2415:modification 2325: 2227:Wood's glass 2147:Fused quartz 2122:Cobalt glass 2076:Supercooling 1996: 1990: 1987:Press (1989) 1980: 1976: 1952: 1948: 1942: 1909: 1905: 1899: 1874: 1870: 1864: 1831: 1827: 1816: 1791: 1787: 1777: 1769: 1765: 1760: 1735: 1731: 1725: 1700: 1696: 1690: 1681: 1672: 1655: 1646: 1637: 1628: 1618: 1585: 1581: 1575: 1542: 1538: 1532: 1524: 1519: 1502: 1498: 1492: 1475: 1471: 1465: 1432: 1428: 1422: 1389: 1383: 1377: 1352: 1348: 1342: 1325: 1321: 1315: 1302: 1259: 1255: 1242: 1223: 1217: 1208: 1200: 1172: 1155: 1147: 1142: 1133: 1113: 1106: 1089: 1085: 1079: 1060: 1054: 1011: 1007: 939: 918:cold mirrors 908:Macroscopic 907: 899: 874: 856:spin coating 853: 841: 838:Applications 811:agrochemical 801: 781: 777:Monodisperse 773: 761: 746: 712: 658: 608:cavitational 602: 599:Sono-Ormosil 566: 555: 539: 492: 472: 430:, where the 405: 377: 370: 359: 353: 350:flocculation 345: 334: 330: 311:dissertation 287: 285: 281: 262: 202:organic dyes 194:microspheres 166:spin coating 151: 147:grain growth 138: 136: 119: 117: 86: 50: 44: 33:metal oxides 24: 18: 2570:Glass fiber 2535:Glass cloth 2279:Preparation 2255:CorningWare 2137:Flint glass 2132:Crown glass 2085:Formulation 914:hot mirrors 726:powders of 724:radioactive 503:acetic acid 426:, or Si(OR) 380:glass fiber 323:micrometres 230:electronics 198:nanospheres 162:dip-coating 29:fabrication 2585:Categories 2565:Windshield 2399:Refraction 2359:Dispersion 2167:Milk glass 2162:Lead glass 1834:: 121455. 1794:: 100452. 1588:: 601–22. 1269:2203.11507 1199:Sakka, S. 983:References 951:Coacervate 846:ceramics. 807:biomedical 677:perovskite 675:and other 623:ultrasound 619:emulsified 604:Sonication 536:→ + H−O−H 515:hydrolyzed 511:hydrolysis 495:hydrolysis 434:group R = 218:thin films 95:phase and 61:precursors 59:. Typical 2432:Corrosion 2331:Viscosity 2286:Annealing 1934:137347665 1856:224811369 1808:237762446 1752:138778285 1457:137539240 1414:137539240 1349:Phil. Mag 1092:: 33–72. 1021:1410.8255 877:viscosity 875:With the 819:abrasives 815:catalytic 784:colloidal 768:sintering 686:chelating 585:branching 552:→ + R−OH 493:Complete 447:Alkoxides 373:amorphous 319:angstroms 286:The term 220:of metal 186:membranes 158:substrate 154:precursor 143:sintering 124:shrinkage 39:(Si) and 2550:Pre-preg 2354:Achromat 2097:Bioglass 2092:AgInSbTe 1983:, Eds., 1891:23782155 1848:33076078 1717:26805775 1697:ACS Nano 1623:244-255. 1610:11031294 1294:44149390 1286:29863346 1046:98265180 945:See also 844:toughest 753:porosity 720:xerogels 631:Ormosils 577:monomers 562:siloxane 522:siloxane 518:monomers 501:such as 499:catalyst 489:+ 4 R−OH 451:hydroxyl 354:polymers 335:colloids 246:medicine 190:aerogels 174:ceramics 128:porosity 57:polymers 41:titanium 2481:Diverse 2413:Surface 2270:Zerodur 1914:Bibcode 1828:Talanta 1590:Bibcode 1567:1962191 1547:Bibcode 1539:Science 1437:Bibcode 1394:Bibcode 1357:Bibcode 1026:Bibcode 910:optical 881:optical 823:zeolite 749:solvent 671:, SrTiO 663:and TiO 643:density 593:ligands 569:alcohol 485:O → SiO 309:in his 299:gravity 289:colloid 248:(e.g., 242:sensors 240:, (bio) 178:glasses 101:colloid 37:silicon 2483:topics 2346:Optics 2152:GeSbTe 2059:Basics 1981:et al. 1932:  1889:  1854:  1846:  1806:  1766:et al. 1750:  1715:  1663:  1608:  1565:  1455:  1412:  1292:  1284:  1230:  1201:et al. 1148:et al. 1121:  1067:  1044:  924:, and 922:lenses 889:glassy 865:inkjet 828:ligand 639:silica 635:silane 556:Thus, 524:bond: 477:Si(OR) 469:+ R−OH 457:Si(OR) 234:energy 226:optics 222:oxides 182:fibers 139:firing 120:drying 93:liquid 75:Stages 23:, the 2265:Macor 2232:ZBLAN 2066:Glass 2051:Glass 1930:S2CID 1852:S2CID 1804:S2CID 1748:S2CID 1453:S2CID 1410:S2CID 1290:S2CID 1264:arXiv 1252:(PDF) 1042:S2CID 1016:arXiv 813:, or 611:shear 481:+ 2 H 432:alkyl 238:space 97:solid 2601:Gels 1887:PMID 1844:PMID 1713:PMID 1661:ISBN 1606:PMID 1563:PMID 1282:PMID 1228:ISBN 1119:ISBN 1065:ISBN 883:and 764:kiln 740:for 733:and 544:(OR) 528:(OR) 412:TEOS 406:The 339:opal 301:and 204:and 170:cast 152:The 63:are 1957:doi 1922:doi 1879:doi 1875:113 1836:doi 1832:221 1796:doi 1740:doi 1705:doi 1598:doi 1555:doi 1543:254 1507:doi 1480:doi 1445:doi 1402:doi 1365:doi 1330:doi 1274:doi 1094:doi 1034:doi 1012:111 834:). 790:or 735:ThO 540:or 505:or 461:+ H 366:gel 362:sol 269:SiO 252:), 168:), 164:or 89:sol 52:gel 46:sol 31:of 19:In 2587:: 1953:66 1951:. 1928:. 1920:. 1910:14 1908:. 1885:. 1873:. 1850:. 1842:. 1830:. 1826:. 1802:. 1792:43 1790:. 1786:. 1746:. 1736:25 1734:. 1711:. 1701:10 1699:. 1604:. 1596:. 1586:51 1584:. 1561:. 1553:. 1541:. 1503:65 1501:. 1476:66 1474:. 1451:. 1443:. 1431:. 1408:. 1400:. 1388:. 1363:. 1353:20 1351:. 1326:79 1324:. 1288:. 1280:. 1272:. 1260:57 1258:. 1254:. 1192:^ 1180:^ 1164:^ 1090:90 1088:. 1040:. 1032:. 1024:. 1010:. 1006:. 990:^ 937:. 920:, 916:, 863:, 809:, 799:. 728:UO 445:. 390:. 244:, 236:, 232:, 228:, 196:, 188:, 184:, 180:, 176:, 115:. 71:. 2043:e 2036:t 2029:v 1963:. 1959:: 1936:. 1924:: 1916:: 1893:. 1881:: 1858:. 1838:: 1810:. 1798:: 1754:. 1742:: 1719:. 1707:: 1667:. 1612:. 1600:: 1592:: 1569:. 1557:: 1549:: 1513:. 1509:: 1486:. 1482:: 1459:. 1447:: 1439:: 1433:5 1416:. 1404:: 1396:: 1390:5 1371:. 1367:: 1359:: 1336:. 1332:: 1296:. 1276:: 1266:: 1236:. 1127:. 1100:. 1096:: 1073:. 1048:. 1036:: 1028:: 1018:: 1002:2 737:2 730:2 673:3 665:2 661:2 589:4 550:3 546:3 534:3 530:3 487:2 483:2 479:4 467:3 463:2 459:4 442:5 440:H 438:2 436:C 428:4 424:4 422:) 420:5 418:H 416:2 341:. 271:2

Index

materials science
fabrication
metal oxides
silicon
titanium
sol
gel
polymers
precursors
metal alkoxides
ceramic nanoparticles

sol
liquid
solid
colloid
sedimentation
Centrifugation
phase separation
shrinkage
porosity
microstructure
sintering
grain growth
precursor
substrate
dip-coating
spin coating
cast
ceramics

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.