Knowledge (XXG)

Zonal spherical harmonics

Source 📝

975: 698: 740: 1257: 1617: 491: 1728: 535: 1413: 1133: 1107: 1493: 970:{\displaystyle {\frac {1}{|\mathbf {x} -\mathbf {y} |^{n-2}}}=\sum _{k=0}^{\infty }c_{n,k}{\frac {|\mathbf {x} |^{k}}{|\mathbf {y} |^{n+k-2}}}Z_{\mathbf {x} /|\mathbf {x} |}^{(k)}(\mathbf {y} /|\mathbf {y} |)} 132: 375: 202: 1634: 261: 1324: 315: 356: 1310: 731: 1009: 693:{\displaystyle {\frac {1}{\omega _{n-1}}}{\frac {1-r^{2}}{|\mathbf {x} -r\mathbf {y} |^{n}}}=\sum _{k=0}^{\infty }r^{k}Z_{\mathbf {x} }^{(k)}(\mathbf {y} ),} 61: 1784: 54:
On the two-dimensional sphere, the unique zonal spherical harmonic of degree ℓ invariant under rotations fixing the north pole is represented in
1760: 1252:{\displaystyle Z_{\mathbf {x} }^{(\ell )}(\mathbf {y} )={\frac {n+2\ell -2}{n-2}}C_{\ell }^{(\alpha )}(\mathbf {x} \cdot \mathbf {y} )} 324: 156: 1612:{\displaystyle Z_{\mathbf {x} }^{(\ell )}(\mathbf {y} )=\sum _{k=1}^{d}Y_{k}(\mathbf {x} ){\overline {Y_{k}(\mathbf {y} )}}.} 1779: 318: 1116: 486:{\displaystyle Y(\mathbf {x} )=\int _{S^{n-1}}Z_{\mathbf {x} }^{(\ell )}(\mathbf {y} )Y(\mathbf {y} )\,d\Omega (y)} 215: 280: 44: 1277: 55: 1723:{\displaystyle Z_{\mathbf {x} }^{(\ell )}(\mathbf {x} )=\omega _{n-1}^{-1}\dim \mathbf {H} _{\ell }.} 1408:{\displaystyle Z_{R\mathbf {x} }^{(\ell )}(R\mathbf {y} )=Z_{\mathbf {x} }^{(\ell )}(\mathbf {y} )} 703: 146: 40: 32: 369: 212:
is the variable of the function. This can be obtained by rotation of the basic zonal harmonic
1756: 1476: 47:
are a broad extension of the notion of zonal spherical harmonics to allow for a more general
1749: 517: 48: 1773: 1112: 734: 359: 269:-dimensional Euclidean space, zonal spherical harmonics are defined as follows. Let 1452:, and that satisfies this invariance property, is a constant multiple of the degree 733:
is the surface area of the (n-1)-dimensional sphere. They are also related to the
1744: 1740: 28: 17: 508:. The integral is taken with respect to the invariant probability measure. 43:
that are invariant under the rotation through a particular fixed axis. The
1102:{\displaystyle c_{n,k}={\frac {1}{\omega _{n-1}}}{\frac {2k+n-2}{(n-2)}}.} 1119:. Thus, the zonal spherical harmonics can be expressed as follows. If 1321:
The zonal spherical harmonics are rotationally invariant, meaning that
1115:
of the Newton kernel (with suitable normalization) are precisely the
368:
of spherical harmonics of degree ℓ. In other words, the following
127:{\displaystyle Z^{(\ell )}(\theta ,\phi )=P_{\ell }(\cos \theta )} 153:. The general zonal spherical harmonic of degree ℓ is denoted by 516:
The zonal harmonics appear naturally as coefficients of the
208:
is a point on the sphere representing the fixed axis, and
197:{\displaystyle Z_{\mathbf {x} }^{(\ell )}(\mathbf {y} )} 1637: 1496: 1327: 1280: 1136: 1012: 743: 706: 538: 378: 327: 283: 218: 159: 64: 1751:
Introduction to Fourier Analysis on Euclidean Spaces
1748: 1722: 1611: 1407: 1304: 1251: 1101: 969: 725: 692: 485: 350: 309: 255: 196: 126: 1755:, Princeton, N.J.: Princeton University Press, 1312:is the ultraspherical polynomial of degree ℓ. 8: 256:{\displaystyle Z^{(\ell )}(\theta ,\phi ).} 310:{\displaystyle Z_{\mathbf {x} }^{(\ell )}} 1711: 1706: 1690: 1679: 1664: 1649: 1643: 1642: 1636: 1592: 1583: 1576: 1568: 1559: 1549: 1538: 1523: 1508: 1502: 1501: 1495: 1397: 1382: 1376: 1375: 1360: 1342: 1336: 1332: 1326: 1290: 1285: 1279: 1241: 1233: 1218: 1213: 1174: 1163: 1148: 1142: 1141: 1135: 1055: 1041: 1032: 1017: 1011: 959: 954: 949: 944: 939: 924: 918: 913: 908: 903: 898: 897: 872: 867: 861: 856: 848: 843: 837: 832: 829: 817: 807: 796: 774: 769: 763: 755: 750: 744: 742: 711: 705: 679: 664: 658: 657: 647: 637: 626: 610: 605: 599: 588: 583: 575: 562: 548: 539: 537: 467: 459: 445: 430: 424: 423: 405: 400: 385: 377: 340: 326: 295: 289: 288: 282: 223: 217: 186: 171: 165: 164: 158: 103: 69: 63: 351:{\displaystyle P\mapsto P(\mathbf {x} )} 1305:{\displaystyle C_{\ell }^{(\alpha )}} 512:Relationship with harmonic potentials 7: 1415:for every orthogonal transformation 808: 638: 471: 25: 1785:Special hypergeometric functions 1707: 1665: 1644: 1593: 1569: 1524: 1503: 1444:that is a spherical harmonic in 1398: 1377: 1361: 1337: 1242: 1234: 1164: 1143: 955: 940: 914: 899: 862: 838: 764: 756: 680: 659: 600: 589: 460: 446: 425: 386: 341: 290: 187: 166: 1669: 1661: 1656: 1650: 1597: 1589: 1573: 1565: 1528: 1520: 1515: 1509: 1402: 1394: 1389: 1383: 1365: 1354: 1349: 1343: 1297: 1291: 1246: 1230: 1225: 1219: 1168: 1160: 1155: 1149: 1090: 1078: 964: 960: 950: 936: 931: 925: 919: 909: 868: 857: 844: 833: 770: 751: 684: 676: 671: 665: 606: 584: 480: 474: 464: 456: 450: 442: 437: 431: 390: 382: 345: 337: 331: 302: 296: 247: 235: 230: 224: 191: 183: 178: 172: 121: 109: 93: 81: 76: 70: 1: 726:{\displaystyle \omega _{n-1}} 1601: 1419:. Conversely, any function 1274:are the constants above and 1801: 1117:ultraspherical polynomials 358:in the finite-dimensional 321:of the linear functional 45:zonal spherical functions 37:zonal spherical harmonics 1111:The coefficients of the 1724: 1613: 1554: 1409: 1306: 1253: 1103: 971: 812: 727: 694: 642: 487: 352: 311: 257: 198: 128: 1725: 1614: 1534: 1410: 1307: 1254: 1104: 972: 792: 728: 695: 622: 520:for the unit ball in 488: 353: 312: 258: 199: 129: 56:spherical coordinates 1635: 1494: 1325: 1278: 1134: 1010: 741: 704: 536: 376: 370:reproducing property 325: 281: 277:−1)-sphere. Define 216: 157: 62: 1780:Rotational symmetry 1698: 1660: 1519: 1393: 1353: 1301: 1229: 1159: 935: 675: 441: 319:dual representation 306: 273:be a point on the ( 182: 147:Legendre polynomial 41:spherical harmonics 33:rotational symmetry 1720: 1675: 1638: 1609: 1497: 1405: 1371: 1328: 1302: 1281: 1249: 1209: 1137: 1099: 991:and the constants 967: 893: 723: 690: 653: 483: 419: 348: 307: 284: 253: 194: 160: 124: 1762:978-0-691-08078-9 1604: 1477:orthonormal basis 1207: 1094: 1053: 891: 787: 617: 560: 16:(Redirected from 1792: 1765: 1754: 1729: 1727: 1726: 1721: 1716: 1715: 1710: 1697: 1689: 1668: 1659: 1648: 1647: 1630: 1618: 1616: 1615: 1610: 1605: 1600: 1596: 1588: 1587: 1577: 1572: 1564: 1563: 1553: 1548: 1527: 1518: 1507: 1506: 1489: 1455: 1443: 1433: 1414: 1412: 1411: 1406: 1401: 1392: 1381: 1380: 1364: 1352: 1341: 1340: 1311: 1309: 1308: 1303: 1300: 1289: 1273: 1258: 1256: 1255: 1250: 1245: 1237: 1228: 1217: 1208: 1206: 1195: 1175: 1167: 1158: 1147: 1146: 1129: 1108: 1106: 1105: 1100: 1095: 1093: 1076: 1056: 1054: 1052: 1051: 1033: 1028: 1027: 1005: 990: 976: 974: 973: 968: 963: 958: 953: 948: 943: 934: 923: 922: 917: 912: 907: 902: 892: 890: 889: 888: 871: 865: 860: 854: 853: 852: 847: 841: 836: 830: 828: 827: 811: 806: 788: 786: 785: 784: 773: 767: 759: 754: 745: 732: 730: 729: 724: 722: 721: 699: 697: 696: 691: 683: 674: 663: 662: 652: 651: 641: 636: 618: 616: 615: 614: 609: 603: 592: 587: 581: 580: 579: 563: 561: 559: 558: 540: 507: 492: 490: 489: 484: 463: 449: 440: 429: 428: 418: 417: 416: 415: 389: 357: 355: 354: 349: 344: 316: 314: 313: 308: 305: 294: 293: 262: 260: 259: 254: 234: 233: 203: 201: 200: 195: 190: 181: 170: 169: 152: 144: 133: 131: 130: 125: 108: 107: 80: 79: 21: 1800: 1799: 1795: 1794: 1793: 1791: 1790: 1789: 1770: 1769: 1763: 1739: 1736: 1705: 1633: 1632: 1622: 1579: 1578: 1555: 1492: 1491: 1488: 1480: 1474: 1465: 1456:zonal harmonic. 1453: 1448:for each fixed 1435: 1420: 1323: 1322: 1318: 1276: 1275: 1272: 1260: 1196: 1176: 1132: 1131: 1120: 1077: 1057: 1037: 1013: 1008: 1007: 1004: 992: 978: 866: 855: 842: 831: 813: 768: 749: 739: 738: 707: 702: 701: 643: 604: 582: 571: 564: 544: 534: 533: 514: 506: 494: 401: 396: 374: 373: 367: 323: 322: 279: 278: 219: 214: 213: 155: 154: 150: 143: 135: 99: 65: 60: 59: 23: 22: 18:Zonal harmonics 15: 12: 11: 5: 1798: 1796: 1788: 1787: 1782: 1772: 1771: 1768: 1767: 1761: 1735: 1732: 1731: 1730: 1719: 1714: 1709: 1704: 1701: 1696: 1693: 1688: 1685: 1682: 1678: 1674: 1671: 1667: 1663: 1658: 1655: 1652: 1646: 1641: 1621:Evaluating at 1619: 1608: 1603: 1599: 1595: 1591: 1586: 1582: 1575: 1571: 1567: 1562: 1558: 1552: 1547: 1544: 1541: 1537: 1533: 1530: 1526: 1522: 1517: 1514: 1511: 1505: 1500: 1484: 1470: 1463: 1457: 1404: 1400: 1396: 1391: 1388: 1385: 1379: 1374: 1370: 1367: 1363: 1359: 1356: 1351: 1348: 1345: 1339: 1335: 1331: 1317: 1314: 1299: 1296: 1293: 1288: 1284: 1264: 1248: 1244: 1240: 1236: 1232: 1227: 1224: 1221: 1216: 1212: 1205: 1202: 1199: 1194: 1191: 1188: 1185: 1182: 1179: 1173: 1170: 1166: 1162: 1157: 1154: 1151: 1145: 1140: 1098: 1092: 1089: 1086: 1083: 1080: 1075: 1072: 1069: 1066: 1063: 1060: 1050: 1047: 1044: 1040: 1036: 1031: 1026: 1023: 1020: 1016: 996: 966: 962: 957: 952: 947: 942: 938: 933: 930: 927: 921: 916: 911: 906: 901: 896: 887: 884: 881: 878: 875: 870: 864: 859: 851: 846: 840: 835: 826: 823: 820: 816: 810: 805: 802: 799: 795: 791: 783: 780: 777: 772: 766: 762: 758: 753: 748: 720: 717: 714: 710: 689: 686: 682: 678: 673: 670: 667: 661: 656: 650: 646: 640: 635: 632: 629: 625: 621: 613: 608: 602: 598: 595: 591: 586: 578: 574: 570: 567: 557: 554: 551: 547: 543: 532:unit vectors, 518:Poisson kernel 513: 510: 502: 482: 479: 476: 473: 470: 466: 462: 458: 455: 452: 448: 444: 439: 436: 433: 427: 422: 414: 411: 408: 404: 399: 395: 392: 388: 384: 381: 365: 347: 343: 339: 336: 333: 330: 304: 301: 298: 292: 287: 252: 249: 246: 243: 240: 237: 232: 229: 226: 222: 193: 189: 185: 180: 177: 174: 168: 163: 139: 123: 120: 117: 114: 111: 106: 102: 98: 95: 92: 89: 86: 83: 78: 75: 72: 68: 49:symmetry group 24: 14: 13: 10: 9: 6: 4: 3: 2: 1797: 1786: 1783: 1781: 1778: 1777: 1775: 1764: 1758: 1753: 1752: 1746: 1742: 1738: 1737: 1733: 1717: 1712: 1702: 1699: 1694: 1691: 1686: 1683: 1680: 1676: 1672: 1653: 1639: 1629: 1625: 1620: 1606: 1584: 1580: 1560: 1556: 1550: 1545: 1542: 1539: 1535: 1531: 1512: 1498: 1487: 1483: 1478: 1473: 1469: 1462: 1458: 1451: 1447: 1442: 1438: 1431: 1427: 1423: 1418: 1386: 1372: 1368: 1357: 1346: 1333: 1329: 1320: 1319: 1315: 1313: 1294: 1286: 1282: 1271: 1267: 1263: 1238: 1222: 1214: 1210: 1203: 1200: 1197: 1192: 1189: 1186: 1183: 1180: 1177: 1171: 1152: 1138: 1127: 1123: 1118: 1114: 1113:Taylor series 1109: 1096: 1087: 1084: 1081: 1073: 1070: 1067: 1064: 1061: 1058: 1048: 1045: 1042: 1038: 1034: 1029: 1024: 1021: 1018: 1014: 1006:are given by 1003: 999: 995: 989: 985: 981: 945: 928: 904: 894: 885: 882: 879: 876: 873: 849: 824: 821: 818: 814: 803: 800: 797: 793: 789: 781: 778: 775: 760: 746: 736: 735:Newton kernel 718: 715: 712: 708: 687: 668: 654: 648: 644: 633: 630: 627: 623: 619: 611: 596: 593: 576: 572: 568: 565: 555: 552: 549: 545: 541: 531: 527: 523: 519: 511: 509: 505: 501: 497: 477: 468: 453: 434: 420: 412: 409: 406: 402: 397: 393: 379: 371: 364: 361: 360:Hilbert space 334: 328: 320: 299: 285: 276: 272: 268: 263: 250: 244: 241: 238: 227: 220: 211: 207: 175: 161: 148: 142: 138: 118: 115: 112: 104: 100: 96: 90: 87: 84: 73: 66: 57: 52: 50: 46: 42: 38: 34: 30: 19: 1750: 1745:Weiss, Guido 1741:Stein, Elias 1627: 1623: 1485: 1481: 1471: 1467: 1460: 1449: 1445: 1440: 1436: 1429: 1425: 1421: 1416: 1269: 1265: 1261: 1125: 1121: 1110: 1001: 997: 993: 987: 983: 979: 529: 525: 521: 515: 503: 499: 495: 362: 274: 270: 266: 264: 209: 205: 140: 136: 53: 39:are special 36: 29:mathematical 26: 1774:Categories 1734:References 1316:Properties 317:to be the 149:of degree 1713:ℓ 1703:⁡ 1692:− 1684:− 1677:ω 1654:ℓ 1602:¯ 1536:∑ 1513:ℓ 1387:ℓ 1347:ℓ 1295:α 1287:ℓ 1239:⋅ 1223:α 1215:ℓ 1201:− 1190:− 1187:ℓ 1153:ℓ 1085:− 1071:− 1046:− 1039:ω 883:− 809:∞ 794:∑ 779:− 761:− 716:− 709:ω 639:∞ 624:∑ 594:− 569:− 553:− 546:ω 472:Ω 435:ℓ 410:− 398:∫ 332:↦ 300:ℓ 245:ϕ 239:θ 228:ℓ 176:ℓ 119:θ 116:⁡ 105:ℓ 91:ϕ 85:θ 74:ℓ 31:study of 1747:(1971), 986:∈ 498:∈ 493:for all 204:, where 1490:, then 1466:, ..., 1130:, then 372:holds: 27:In the 1759:  1631:gives 1475:is an 1259:where 977:where 700:where 524:: for 134:where 35:, the 1128:−2)/2 145:is a 1757:ISBN 737:via 528:and 1700:dim 1479:of 1459:If 1434:on 1124:= ( 265:In 113:cos 58:by 1776:: 1743:; 1626:= 51:. 1766:. 1718:. 1708:H 1695:1 1687:1 1681:n 1673:= 1670:) 1666:x 1662:( 1657:) 1651:( 1645:x 1640:Z 1628:y 1624:x 1607:. 1598:) 1594:y 1590:( 1585:k 1581:Y 1574:) 1570:x 1566:( 1561:k 1557:Y 1551:d 1546:1 1543:= 1540:k 1532:= 1529:) 1525:y 1521:( 1516:) 1510:( 1504:x 1499:Z 1486:ℓ 1482:H 1472:d 1468:Y 1464:1 1461:Y 1454:ℓ 1450:x 1446:y 1441:S 1439:× 1437:S 1432:) 1430:y 1428:, 1426:x 1424:( 1422:f 1417:R 1403:) 1399:y 1395:( 1390:) 1384:( 1378:x 1373:Z 1369:= 1366:) 1362:y 1358:R 1355:( 1350:) 1344:( 1338:x 1334:R 1330:Z 1298:) 1292:( 1283:C 1270:ℓ 1268:, 1266:n 1262:c 1247:) 1243:y 1235:x 1231:( 1226:) 1220:( 1211:C 1204:2 1198:n 1193:2 1184:2 1181:+ 1178:n 1172:= 1169:) 1165:y 1161:( 1156:) 1150:( 1144:x 1139:Z 1126:n 1122:α 1097:. 1091:) 1088:2 1082:n 1079:( 1074:2 1068:n 1065:+ 1062:k 1059:2 1049:1 1043:n 1035:1 1030:= 1025:k 1022:, 1019:n 1015:c 1002:k 1000:, 998:n 994:c 988:R 984:y 982:, 980:x 965:) 961:| 956:y 951:| 946:/ 941:y 937:( 932:) 929:k 926:( 920:| 915:x 910:| 905:/ 900:x 895:Z 886:2 880:k 877:+ 874:n 869:| 863:y 858:| 850:k 845:| 839:x 834:| 825:k 822:, 819:n 815:c 804:0 801:= 798:k 790:= 782:2 776:n 771:| 765:y 757:x 752:| 747:1 719:1 713:n 688:, 685:) 681:y 677:( 672:) 669:k 666:( 660:x 655:Z 649:k 645:r 634:0 631:= 628:k 620:= 612:n 607:| 601:y 597:r 590:x 585:| 577:2 573:r 566:1 556:1 550:n 542:1 530:y 526:x 522:R 504:ℓ 500:H 496:Y 481:) 478:y 475:( 469:d 465:) 461:y 457:( 454:Y 451:) 447:y 443:( 438:) 432:( 426:x 421:Z 413:1 407:n 403:S 394:= 391:) 387:x 383:( 380:Y 366:ℓ 363:H 346:) 342:x 338:( 335:P 329:P 303:) 297:( 291:x 286:Z 275:n 271:x 267:n 251:. 248:) 242:, 236:( 231:) 225:( 221:Z 210:y 206:x 192:) 188:y 184:( 179:) 173:( 167:x 162:Z 151:ℓ 141:ℓ 137:P 122:) 110:( 101:P 97:= 94:) 88:, 82:( 77:) 71:( 67:Z 20:)

Index

Zonal harmonics
mathematical
rotational symmetry
spherical harmonics
zonal spherical functions
symmetry group
spherical coordinates
Legendre polynomial
dual representation
Hilbert space
reproducing property
Poisson kernel
Newton kernel
Taylor series
ultraspherical polynomials
orthonormal basis
Stein, Elias
Weiss, Guido
Introduction to Fourier Analysis on Euclidean Spaces
ISBN
978-0-691-08078-9
Categories
Rotational symmetry
Special hypergeometric functions

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.