Knowledge

Diffraction

Source đź“ť

499: 6423: 1747: 406:; based on that principle, as light travels through slits and boundaries, secondary point light sources are created near or along these obstacles, and the resulting diffraction pattern is going to be the intensity profile based on the collective interference of all these light sources that have different optical paths. In the quantum formalism, that is similar to considering the limited regions around the slits and boundaries from which photons are more likely to originate, and calculating the probability distribution (that is proportional to the resulting intensity of classical formalism). 702: 511: 4863: 750: 6435: 660: 555: 327: 463: 5024: 475: 742: 638: 734: 79: 5236:
take into account the fact that waves that arrive at the screen at the same time were emitted by the source at different times. The initial phase with which the source emits waves can change over time in an unpredictable way. This means that waves emitted by the source at times that are too far apart can no longer form a constant interference pattern since the relation between their phases is no longer time independent.
618: 1755: 4433:, and then collimating it with a second convex lens whose focal point is coincident with that of the first lens. The resulting beam has a larger diameter, and hence a lower divergence. Divergence of a laser beam may be reduced below the diffraction of a Gaussian beam or even reversed to convergence if the refractive index of the propagation media increases with the light intensity. This may result in a 487: 543: 29: 230: 6471: 668: 1974: 456:, this is already the case; water waves propagate only on the surface of the water. For light, we can often neglect one direction if the diffracting object extends in that direction over a distance far greater than the wavelength. In the case of light shining through small circular holes, we will have to take into account the full three-dimensional nature of the problem. 602: 3055: 3050: 6447: 6483: 4055: 3616: 6459: 4392: 4440:
When the wave front of the emitted beam has perturbations, only the transverse coherence length (where the wave front perturbation is less than 1/4 of the wavelength) should be considered as a Gaussian beam diameter when determining the divergence of the laser beam. If the transverse coherence length
389:
for the photon: the light and dark bands are the areas where the photons are more or less likely to be detected. The wavefunction is determined by the physical surroundings such as slit geometry, screen distance, and initial conditions when the photon is created. The wave nature of individual photons
829:
Similarly, the source just below the top of the slit will interfere destructively with the source located just below the middle of the slit at the same angle. We can continue this reasoning along the entire height of the slit to conclude that the condition for destructive interference for the entire
5235:
The description of diffraction relies on the interference of waves emanating from the same source taking different paths to the same point on a screen. In this description, the difference in phase between waves that took different paths is only dependent on the effective path length. This does not
1985: 765:
An illuminated slit that is wider than a wavelength produces interference effects in the space downstream of the slit. Assuming that the slit behaves as though it has a large number of point sources spaced evenly across the width of the slit interference effects can be calculated. The analysis of
5250:
If waves are emitted from an extended source, this can lead to incoherence in the transversal direction. When looking at a cross section of a beam of light, the length over which the phase is correlated is called the transverse coherence length. In the case of Young's double-slit experiment, this
4874:
The angular spacing of the features in the diffraction pattern is inversely proportional to the dimensions of the object causing the diffraction. In other words: The smaller the diffracting object, the 'wider' the resulting diffraction pattern, and vice versa. (More precisely, this is true of the
448:
It is possible to obtain a qualitative understanding of many diffraction phenomena by considering how the relative phases of the individual secondary wave sources vary, and, in particular, the conditions in which the phase difference equals half a cycle in which case waves will cancel one another
4714:
Two point sources will each produce an Airy pattern – see the photo of a binary star. As the point sources move closer together, the patterns will start to overlap, and ultimately they will merge to form a single pattern, in which case the two point sources cannot be resolved in the image. The
3819: 797:
We can find the angle at which a first minimum is obtained in the diffracted light by the following reasoning. The light from a source located at the top edge of the slit interferes destructively with a source located at the middle of the slit, when the path difference between them is equal to
3271: 2774: 5444: : It has illuminated for us another, fourth way, which we now make known and call "diffraction" , because we sometimes observe light break up; that is, that parts of the compound , separated by division, advance farther through the medium but in different , as we will soon show. 4771:
is a useful theorem stating that the diffraction pattern from an opaque body is identical to that from a hole of the same size and shape, but with differing intensities. This means that the interference conditions of a single obstruction would be the same as that of a single slit.
5243:. In order for interference to occur, the path length difference must be smaller than the coherence length. This is sometimes referred to as spectral coherence, as it is related to the presence of different frequency components in the wave. In the case of light emitted by an 4753:
is another diffraction phenomenon. It is a result of the superposition of many waves with different phases, which are produced when a laser beam illuminates a rough surface. They add together to give a resultant wave whose amplitude, and therefore intensity, varies randomly.
3398: 2834: 5436: : Nobis alius quartus modus illuxit, quem nunc proponimus, vocamusque; diffractionem, quia advertimus lumen aliquando diffringi, hoc est partes eius multiplici dissectione separatas per idem tamen medium in diversa ulterius procedere, eo modo, quem mox declarabimus. 1774: 3406: 3824: 5271:. These femtosecond-duration pulses will allow for the (potential) imaging of single biological macromolecules. Due to these short pulses, radiation damage can be outrun, and diffraction patterns of single biological macromolecules will be able to be obtained. 4811:
using a plane wave spectrum formulation. A generalization of the half-plane problem is the "wedge problem", solvable as a boundary value problem in cylindrical coordinates. The solution in cylindrical coordinates was then extended to the optical regime by
1215: 4480:. This is because a plane wave incident on a circular lens or mirror is diffracted as described above. The light is not focused to a point but forms an Airy disk having a central spot in the focal plane whose radius (as measured to the first null) is 5683:(Proposition 1. Light propagates or spreads not only in a straight line, by refraction, and by reflection, but also by a somewhat different fourth way: by diffraction.) On p. 187, Grimaldi also discusses the interference of light from two sources: 4912:
According to quantum theory every particle exhibits wave properties and can therefore diffract. Diffraction of electrons and neutrons is one of the powerful arguments in favor of quantum mechanics. The wavelength associated with a particle is the
1739: 5008:
has been observed for small particles, like electrons, neutrons, atoms, and even large molecules. The short wavelength of these matter waves makes them ideally suited to study the atomic crystal structure of solids, small molecules and proteins.
4171: 1790:
A diffraction grating is an optical component with a regular pattern. The form of the light diffracted by a grating depends on the structure of the elements and the number of elements present, but all gratings have intensity maxima at angles
2115: 3696: 2470: 4847: 5552:
Juffmann, Thomas; Milic, Adriana; MĂĽllneritsch, Michael; Asenbaum, Peter; Tsukernik, Alexander; TĂĽxen, Jens; Mayor, Marcel; Cheshnovsky, Ori; Arndt, Markus (25 March 2012). "Real-time single-molecule imaging of quantum interference".
1958:
The figure shows the light diffracted by 2-element and 5-element gratings where the grating spacings are the same; it can be seen that the maxima are in the same position, but the detailed structures of the intensities are different.
3136: 498: 3691: 757:
A long slit of infinitesimal width which is illuminated by light diffracts the light into a series of circular waves and the wavefront which emerges from the slit is a cylindrical wave of uniform intensity, in accordance with the
770:, these sources all have the same phase. Light incident at a given point in the space downstream of the slit is made up of contributions from each of these point sources and if the relative phases of these contributions vary by 1879: 4404:
is the spatial Fourier transform of the aperture shape, and this is a direct by-product of using the parallel-rays approximation, which is identical to doing a plane wave decomposition of the aperture plane fields (see
3143: 2646: 4685: 369:
of the individual waves so that the summed amplitude of the waves can have any value between zero and the sum of the individual amplitudes. Hence, diffraction patterns usually have a series of maxima and minima.
216:
The amount of diffraction depends on the size of the gap. Diffraction is greatest when the size of the gap is similar to the wavelength of the wave. In this case, when the waves pass through the gap they become
4719:
specifies that two point sources are considered "resolved" if the separation of the two images is at least the radius of the Airy disk, i.e. if the first minimum of one coincides with the maximum of the other.
2344: 3276: 1702: 5988: 1778: 5459: 1781: 1780: 1776: 1775: 793:
or more, we may expect to find minima and maxima in the diffracted light. Such phase differences are caused by differences in the path lengths over which contributing rays reach the point from the slit.
1782: 4429:
profile and has the lowest divergence for a given diameter. The smaller the output beam, the quicker it diverges. It is possible to reduce the divergence of a laser beam by first expanding it with one
1418: 4866:
The upper half of this image shows a diffraction pattern of He-Ne laser beam on an elliptic aperture. The lower half is its 2D Fourier transform approximately reconstructing the shape of the aperture.
510: 945: 298:
demonstrating interference from two closely spaced slits. Explaining his results by interference of the waves emanating from the two different slits, he deduced that light must propagate as waves.
1127: 530:
The effects of diffraction are often seen in everyday life. The most striking examples of diffraction are those that involve light; for example, the closely spaced tracks on a CD or DVD act as a
4723:
Thus, the larger the aperture of the lens compared to the wavelength, the finer the resolution of an imaging system. This is one reason astronomical telescopes require large objectives, and why
2586: 4163: 5251:
would mean that if the transverse coherence length is smaller than the spacing between the two slits, the resulting pattern on a screen would look like two single-slit diffraction patterns.
1091: 5776: 4108: 3045:{\displaystyle \Psi (r)\propto \iint \limits _{\mathrm {aperture} }\!\!E_{\mathrm {inc} }(x',y')~{\frac {e^{ik|\mathbf {r} -\mathbf {r} '|}}{4\pi |\mathbf {r} -\mathbf {r} '|}}\,dx'\,dy',} 5846:
Fresnel, Augustin-Jean (1818), "MĂ©moire sur la diffraction de la lumière" ("Memoir on the diffraction of light"), deposited 29 July 1818, "crowned" 15 March 1819, published in
4885:
When the diffracting object has a periodic structure, for example in a diffraction grating, the features generally become sharper. The third figure, for example, shows a comparison of a
4835: 872: 4951: 5093: 2003: 1779: 462: 4846: 4516: 2826: 1337: 2388: 1370: 3611:{\displaystyle \Psi (r)\propto {\frac {e^{ikr}}{4\pi r}}\iint \limits _{\mathrm {aperture} }\!\!E_{\mathrm {inc} }(x',y')e^{-ik(\mathbf {r} '\cdot \mathbf {\hat {r}} )}\,dx'\,dy'.} 2375: 5001:
of the particle (mass Ă— velocity for slow-moving particles). For example, a sodium atom traveling at about 300 m/s would have a de Broglie wavelength of about 50 picometres.
4050:{\displaystyle \Psi (r)\propto {\frac {e^{ikr}}{4\pi r}}\iint \limits _{\mathrm {aperture} }\!\!E_{\mathrm {inc} }(x',y')e^{-ik\sin \theta (\cos \phi x'+\sin \phi y')}\,dx'\,dy'.} 992: 899: 830:
slit is the same as the condition for destructive interference between two narrow slits a distance apart that is half the width of the slit. The path difference is approximately
2615: 1732: 1583: 745:
Numerical approximation of diffraction pattern from a slit of width four wavelengths with an incident plane wave. The main central beam, nulls, and phase reversals are apparent.
1549: 5035:) in this diffraction pattern forms from the constructive interference of X-rays passing through a crystal. The data can be used to determine the crystal's atomic structure. 2520: 2186: 1521: 1469: 2637: 2267: 1906: 1042: 5047:. Bragg diffraction is a consequence of interference between waves reflecting from many different crystal planes. The condition of constructive interference is given by 1244: 825: 5475:
Wireless Communications: Principles and Practice, Prentice Hall communications engineering and emerging technologies series, T. S. Rappaport, Prentice Hall, 2002 pg 126
1299: 5113: 4536: 1803: 1012: 5254:
In the case of particles like electrons, neutrons, and atoms, the coherence length is related to the spatial extent of the wave function that describes the particle.
5194:) whose wavelength is on the order of (or much smaller than) the atomic spacing. The pattern produced gives information of the separations of crystallographic planes 5153: 1492: 124: 4626: 158:, of different points on the wavefront (or, equivalently, each wavelet) that travel by paths of different lengths to the registering surface. If there are multiple, 2245: 2213: 1271: 791: 585:- bright rings around the shadow of the observer. In contrast to the corona, glory requires the particles to be transparent spheres (like fog droplets), since the 5976: 5212: 5173: 5133: 4995: 4971: 4705: 4600: 4580: 4556: 3065: 2155: 2135: 1946: 1926: 1111: 965: 100: 3623: 2590:
This solution assumes that the delta function source is located at the origin. If the source is located at an arbitrary source point, denoted by the vector
2475: 271: 4639: 4387:{\displaystyle \Psi (r)\propto {\frac {e^{ikr}}{4\pi r}}\iint \limits _{\mathrm {aperture} }\!\!E_{\mathrm {inc} }(x',y')e^{-i(k_{x}x'+k_{y}y')}\,dx'\,dy',} 474: 361:. The wave displacement at any subsequent point is the sum of these secondary waves. When waves are added together, their sum is determined by the relative 3814:{\displaystyle \mathbf {\hat {r}} =\sin \theta \cos \phi \mathbf {\hat {x}} +\sin \theta ~\sin \phi ~\mathbf {\hat {y}} +\cos \theta \mathbf {\hat {z}} ,} 258:, 'to break into pieces', referring to light breaking up into different directions. The results of Grimaldi's observations were published posthumously in 2283: 486: 1592: 243:
might have observed diffraction in a broadening of the shadow. The effects of diffraction of light were first carefully observed and characterized by
1777: 4882:
The diffraction angles are invariant under scaling; that is, they depend only on the ratio of the wavelength to the size of the diffracting object.
5930:
in 1690; however, in the preface to his book, Huygens states that in 1678 he first communicated his book to the French Royal Academy of Sciences.)
4441:
in the vertical direction is higher than in horizontal, the laser beam divergence will be lower in the vertical direction than in the horizontal.
1017:
A similar argument can be used to show that if we imagine the slit to be divided into four, six, eight parts, etc., minima are obtained at angles
6106:
Kouyoumjian, R. G.; Pathak, P. H. (November 1974). "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface".
6398: 6422: 6250: 6223: 6198: 6171: 6021: 5643: 5496: 4456: 5924:(I have thus shown in what manner one can imagine that light propagates successively by spherical waves, … ) (Note: Huygens published his 904: 4792:
that strikes a sharp well-defined obstacle, such as a mountain range or the wall of a building. The knife-edge effect is explained by the
5753: 5687:(Proposition 22. Sometimes light, as a result of its transmission, renders dark a body's surface, previously illuminated by another .) 2525: 5913: 5681:"Propositio I. Lumen propagatur seu diffunditur non solum directe, refracte, ac reflexe, sed etiam alio quodam quarto modo, diffracte." 5902: 5672: 5423: 4113: 410: 291: 5386: 4889:
pattern with a pattern formed by five slits, both sets of slits having the same spacing, between the center of one slit and the next.
567:
This principle can be extended to engineer a grating with a structure such that it will produce any diffraction pattern desired; the
6146: 5536: 4834: 4817: 1047: 4062: 2219:. The smaller the aperture, the larger the spot size at a given distance, and the greater the divergence of the diffracted beams. 1746: 5685:"Propositio XXII. Lumen aliquando per sui communicationem reddit obscuriorem superficiem corporis aliunde, ac prius illustratam." 3266:{\displaystyle \psi (\mathbf {r} |\mathbf {r} ')={\frac {e^{ik|\mathbf {r} -\mathbf {r} '|}}{4\pi |\mathbf {r} -\mathbf {r} '|}},} 2769:{\displaystyle \psi (\mathbf {r} |\mathbf {r} ')={\frac {e^{ik|\mathbf {r} -\mathbf {r} '|}}{4\pi |\mathbf {r} -\mathbf {r} '|}}.} 4919: 1376: 390:(as opposed to wave properties only arising from the interactions between multitudes of photons) was implied by a low-intensity 5331: 5054: 155: 4483: 6256: 5217:
For completeness, Bragg diffraction is a limit for a large number of atoms with X-rays or neutrons, and is rarely valid for
4793: 759: 581:- a bright disc and rings around a bright light source like the sun or the moon. At the opposite point one may also observe 346: 135: 5267:
A new way to image single biological particles has emerged since the 2010s, utilising the bright X-rays generated by X-ray
1951:
The light diffracted by a grating is found by summing the light diffracted from each of the elements, and is essentially a
663:
View from the end of Millennium Bridge; Moon rising above the Southwark Bridge. Street lights are reflecting in the Thames.
452:
The simplest descriptions of diffraction are those in which the situation can be reduced to a two-dimensional problem. For
5922:"J'ay donc monstré de quelle façon l'on peut concevoir que la lumiere s'etend successivement par des ondes spheriques, … " 4825: 4401: 3393:{\displaystyle \psi (\mathbf {r} |\mathbf {r} ')={\frac {e^{ikr}}{4\pi r}}e^{-ik(\mathbf {r} '\cdot \mathbf {\hat {r}} )}} 353:. The propagation of a wave can be visualized by considering every particle of the transmitted medium on a wavefront as a 709:
Sound waves can diffract around objects, which is why one can still hear someone calling even when hiding behind a tree.
5316: 5301: 4796:, which states that a well-defined obstruction to an electromagnetic wave acts as a secondary source, and creates a new 701: 6508: 2483: 2382: 687:, that is diffraction off the meat fibers. All these effects are a consequence of the fact that light propagates as a 608: 578: 315: 5039:
Diffraction from a large three-dimensional periodic structure such as many thousands of atoms in a crystal is called
6413: 4450: 1423: 713: 656:
in camera or support struts in telescope; In normal vision, diffraction through eyelashes may produce such spikes.
624: 582: 5821:
Fresnel, Augustin-Jean (1816), "Mémoire sur la diffraction de la lumière" ("Memoir on the diffraction of light"),
833: 434: 403: 194: 170: 5247:, the coherence length is related to the lifetime of the excited state from which the atom made its transition. 4862: 679:
which is observed when laser light falls on an optically rough surface is also a diffraction phenomenon. When
287: 244: 64: 1210:{\displaystyle I(\theta )=I_{0}\,\operatorname {sinc} ^{2}\left({\frac {d\pi }{\lambda }}\sin \theta \right),} 2781: 6108: 5746: 5286: 4421:
changes as it propagates is determined by diffraction. When the entire emitted beam has a planar, spatially
1306: 1303:
which is also a normalization factor of the intensity profile that can be determined by an integration from
574: 350: 4731:(large aperture diameter compared to working distance) in order to obtain the highest possible resolution. 2349: 1342: 59:
of the obstacle/aperture. The diffracting object or aperture effectively becomes a secondary source of the
5341: 5321: 5306: 5182:
Bragg diffraction may be carried out using either electromagnetic radiation of very short wavelength like
4886: 4768: 4763: 1434: 1121: 970: 877: 659: 418: 391: 233:
Thomas Young's sketch of two-slit diffraction for water waves, which he presented to the Royal Society in
1496:
hence the wavefront emerging from the slit would resemble a cylindrical wave with azimuthal symmetry; If
5361: 5281: 5183: 4914: 1710: 1561: 1441: 1117: 728: 386: 326: 299: 6434: 554: 1992:
The far-field diffraction of a plane wave incident on a circular aperture is often referred to as the
1528: 749: 6503: 6283: 6050: 5785: 5572: 5381: 5336: 5218: 5191: 4907: 409:
There are various analytical models which allow the diffracted field to be calculated, including the
5825:, vol. 1, pp. 239–81 (March 1816); reprinted as "Deuxième MĂ©moire…" ("Second Memoir…") in 5457:"A History of Physics in its Elementary Branches, including the evolution of physical laboratories." 5023: 2489: 2160: 1984: 1551:
would have appreciable intensity, hence the wavefront emerging from the slit would resemble that of
634:
A shadow of a solid object, using light from a compact source, shows small fringes near its edges.
5704: 5391: 5268: 5230: 5187: 5044: 4903: 4477: 4422: 4400:
of the aperture distribution. Huygens' principle when applied to an aperture simply says that the
2640: 2593: 2479: 1768: 1586: 1500: 1448: 767: 531: 426: 283: 163: 159: 147: 5728: 5628:
Stationary Diffraction by Wedges : Method of Automorphic Functions on Complex Characteristics
5456: 2620: 2250: 2110:{\displaystyle I(\theta )=I_{0}\left({\frac {2J_{1}(ka\sin \theta )}{ka\sin \theta }}\right)^{2},} 6487: 6475: 6439: 6315: 6270:
Neutze, Richard; Wouts, Remco; van der Spoel, David; Weckert, Edgar; Hajdu, Janos (August 2000).
6076: 5867: 5803: 5604: 5562: 5366: 4821: 4728: 4724: 4716: 4633: 3140:
In the far field, wherein the parallel rays approximation can be employed, the Green's function,
2277: 1884: 1552: 1116:
There is no such simple argument to enable us to find the maxima of the diffraction pattern. The
1020: 649: 430: 422: 311: 186: 182: 5954: 1220: 802: 766:
this system is simplified if we consider light of a single wavelength. If the incident light is
741: 437:. Most configurations cannot be solved analytically, but can yield numerical solutions through 6390: 2478:.) By direct substitution, the solution to this equation can be readily shown to be the scalar 2465:{\displaystyle \nabla ^{2}\psi ={\frac {1}{r}}{\frac {\partial ^{2}}{\partial r^{2}}}(r\psi ).} 1278: 6364: 6307: 6299: 6246: 6219: 6194: 6167: 6142: 6017: 6011: 5926: 5883: 5879: 5863: 5855: 5750: 5639: 5596: 5588: 5532: 5492: 5396: 5311: 5296: 5098: 5040: 5018: 4808: 4521: 4459:
The Airy disk around each of the stars from the 2.56 m telescope aperture can be seen in this
4397: 4166: 2828:
is incident on the aperture, the field produced by this aperture distribution is given by the
997: 637: 560:
Data is written on CDs as pits and lands; the pits on the surface act as diffracting elements.
374: 338: 282:) observed the diffraction patterns caused by a bird feather, which was effectively the first 240: 213:
and, therefore, undergoes diffraction (which is measurable at subatomic to molecular levels).
206: 131: 6038: 5830: 5138: 1477: 468:
Computer-generated intensity pattern formed on a screen by diffraction from a square aperture
109: 6451: 6354: 6346: 6291: 6117: 6088: 6058: 5834: 5793: 5771: 5669: 5631: 5580: 5524: 5420: 5240: 4813: 4605: 2829: 2378: 2377:
is the 3-dimensional delta function. The delta function has only radial dependence, so the
2270: 733: 705:
Circular waves generated by diffraction from the narrow entrance of a flooded coastal quarry
442: 174: 60: 5910: 2230: 2191: 1249: 773: 5984: 5917: 5906: 5757: 5676: 5463: 5427: 5291: 4974: 4746: 4740: 2216: 676: 399: 307: 303: 295: 259: 234: 72: 5698: 6405: 6287: 6054: 5789: 5722: 5576: 78: 51:
is the interference or bending of waves around the corners of an obstacle or through an
6427: 6359: 6334: 6079:(June 2013). "GTD, UTD, UAT, and STD: A Historical Revisit and Personal Observations". 5874:, American Book Company, 1900, pp. 81–144. (First published, as extracts only, in 5351: 5346: 5326: 5197: 5158: 5118: 5028: 4980: 4956: 4708: 4690: 4585: 4565: 4541: 4469: 4406: 2140: 2120: 1931: 1911: 1096: 950: 438: 310:, and thereby gave great support to the wave theory of light that had been advanced by 85: 5622:
Komech, Alexander; Merzon, Anatoli (2019), Komech, Alexander; Merzon, Anatoli (eds.),
1754: 150:
source (such as a laser) encounters a slit/aperture that is comparable in size to its
6497: 5807: 5528: 4750: 4461: 4434: 4426: 2273: 414: 362: 358: 4852:
Diffraction on a soft aperture, with a gradient of conductivity over the image width
4455: 617: 6463: 6319: 5812:. (Note: This lecture was presented before the Royal Society on 24 November 1803.) 5608: 5356: 5244: 395: 382: 354: 263: 5896: 3821:
the expression for the Fraunhofer region field from a planar aperture now becomes
28: 6240: 5486: 1874:{\displaystyle d\left(\sin {\theta _{m}}\pm \sin {\theta _{i}}\right)=m\lambda ,} 6384: 5772:"The Bakerian Lecture: Experiments and calculations relative to physical optics" 5635: 5371: 5005: 4899: 4800:. This new wavefront propagates into the geometric shadow area of the obstacle. 4466: 4430: 1952: 586: 542: 331: 229: 210: 202: 6062: 5239:
The length over which the phase in a beam of light is correlated is called the
645:) seen in the center of the shadow of a circular obstacle is due to diffraction 6160: 5741:
Letter from James Gregory to John Collins, dated 13 May 1673. Reprinted in:
5623: 5376: 4804: 1738: 1706:
The choice of plus/minus sign depends on the definition of the incident angle
684: 667: 642: 590: 568: 517: 218: 151: 20: 6303: 6092: 5592: 4797: 4789: 4476:
The ability of an imaging system to resolve detail is ultimately limited by
1997: 1993: 1968: 1589:), the intensity profile in the Fraunhofer regime (i.e. far field) becomes: 1430: 712:
Diffraction can also be a concern in some technical applications; it sets a
680: 453: 366: 302:
did more definitive studies and calculations of diffraction, made public in
190: 139: 103: 33: 6368: 6350: 6311: 6271: 6121: 5798: 5727:. London: Longman, Rees, Orme, Brown & Green and John Taylor. pp.  5600: 5417:
Physico mathesis de lumine, coloribus, et iride, aliisque annexis libri duo
146:. The characteristic bending pattern is most pronounced when a wave from a 5584: 3131:{\displaystyle \mathbf {r} '=x'\mathbf {\hat {x}} +y'\mathbf {\hat {y}} .} 1973: 4998: 4629: 4559: 4165:
the Fraunhofer region field of the planar aperture assumes the form of a
3686:{\displaystyle \mathbf {r} '=x'\mathbf {\hat {x}} +y'\mathbf {\hat {y}} } 694:
Diffraction can occur with any kind of wave. Ocean waves diffract around
653: 52: 41: 4870:
Several qualitative observations can be made of diffraction in general:
601: 492:
Computational model of an interference pattern from two-slit diffraction
3054: 143: 71:
and was the first to record accurate observations of the phenomenon in
23:, the change in direction of a wave passing from one medium to another. 6339:
Philosophical Transactions of the Royal Society B: Biological Sciences
5221:
or with solid particles in the size range of less than 50 nanometers.
4680:{\displaystyle \theta \approx \sin \theta =1.22{\frac {\lambda }{D}},} 6295: 1585:
of the light onto the slit is non-zero (which causes a change in the
994:
is the angle of incidence at which the minimum intensity occurs, and
378: 56: 6333:
Chapman, Henry N.; Caleman, Carl; Timneanu, Nicusor (17 July 2014).
4816:, who introduced the notion of diffraction coefficients through his 6458: 5666:
Physico-mathesis de lumine, coloribus, et iride, aliisque adnexis …
1758:
A diffraction pattern of a 633 nm laser through a grid of 150 slits
504:
Optical diffraction pattern (laser, analogous to X-ray diffraction)
377:
understanding of light propagation through a slit (or slits) every
40:
beam projected onto a plate after passing through a small circular
6272:"Potential for biomolecular imaging with femtosecond X-ray pulses" 5848:
Mémoires de l'Académie Royale des Sciences de l'Institut de France
5567: 5022: 4861: 4418: 3403:
The expression for the far-zone (Fraunhofer region) field becomes
3053: 2339:{\displaystyle \nabla ^{2}\psi +k^{2}\psi =\delta (\mathbf {r} ),} 1983: 1972: 1772: 1753: 1745: 1737: 1437:), that is, at a distance much larger than the width of the slit. 748: 740: 732: 700: 695: 666: 658: 636: 534:
to form the familiar rainbow pattern seen when looking at a disc.
325: 252: 228: 198: 178: 154:, as shown in the inserted image. This is due to the addition, or 77: 37: 27: 1988:
Diffraction pattern from a circular aperture at various distances
5909:(Leiden, Netherlands: Pieter van der Aa, 1690), Chapter 1. From 4876: 1697:{\displaystyle I(\theta )=I_{0}\,\operatorname {sinc} ^{2}\left} 688: 342: 279: 275: 5872:
The Wave Theory of Light: Memoirs by Huygens, Young and Fresnel
5043:. It is similar to what occurs when waves are scattered from a 4396:
In the far-field / Fraunhofer region, this becomes the spatial
480:
Generation of an interference pattern from two-slit diffraction
3062:
where the source point in the aperture is given by the vector
5743:
Correspondence of Scientific Men of the Seventeenth Century …
520:
are partially due to diffraction, according to some analyses.
402:. The quantum approach has some striking similarities to the 5630:, Cham: Springer International Publishing, pp. 15–17, 671:
Simulated diffraction spikes in hexagonal telescope mirrors
421:
approximation of the Kirchhoff equation (applicable to the
6385:
The Feynman Lectures on Physics Vol. I Ch. 30: Diffraction
6218:(4th ed.). United States of America: Addison Wesley. 5519:
Kokkotas, Kostas D. (2003). "Gravitational Wave Physics".
4711:
of the imaging lens (e.g., of a telescope's main mirror).
1413:{\displaystyle \operatorname {sinc} x={\frac {\sin x}{x}}} 548:
Pixels on smart phone screen acting as diffraction grating
5777:
Philosophical Transactions of the Royal Society of London
716:
to the resolution of a camera, telescope, or microscope.
2227:
The wave that emerges from a point source has amplitude
737:
2D Single-slit diffraction with width changing animation
6158:
Halliday, David; Resnick, Robert; Walker, Jerl (2005),
5700:
Memoires pour l'histoire des sciences et des beaux arts
5668:(Bologna ("Bonomia"), (Italy): Vittorio Bonati, 1665), 4602:) of the imaging optics; this is strictly accurate for 6239:
Ayahiko Ichimiya; Philip I. Cohen (13 December 2004).
1750:
Diffraction of a red laser using a diffraction grating
1742:
2-slit (top) and 5-slit diffraction of red laser light
1345: 1309: 940:{\displaystyle d\,\sin \theta _{\text{min}}=\lambda ,} 166:), a complex pattern of varying intensity can result. 6411: 5703:. Paris: Impr. de S. A. S.; Chez E. Ganeau. pp.  5491:. Springer Science & Business Media. p. 14. 5419:(Bologna ("Bonomia"), Italy: Vittorio Bonati, 1665), 5200: 5161: 5141: 5121: 5101: 5057: 4983: 4959: 4922: 4693: 4642: 4608: 4588: 4568: 4544: 4524: 4486: 4174: 4116: 4065: 3827: 3699: 3626: 3409: 3279: 3146: 3068: 2837: 2784: 2649: 2623: 2596: 2528: 2492: 2391: 2352: 2286: 2253: 2233: 2194: 2163: 2143: 2123: 2006: 1934: 1914: 1887: 1806: 1713: 1595: 1564: 1531: 1503: 1480: 1451: 1379: 1281: 1252: 1223: 1130: 1099: 1050: 1023: 1000: 973: 953: 907: 880: 836: 805: 776: 112: 88: 5868:"Fresnel's prize memoir on the diffraction of light" 5485:
Suryanarayana, C.; Norton, M. Grant (29 June 2013).
4824:
extended the (singular) Keller coefficients via the
719:
Other examples of diffraction are considered below.
652:
are diffraction patterns caused due to non-circular
5977:"Food Explainer: Why Is Some Deli Meat Iridescent?" 5862:, vol. 1 (Paris: Imprimerie ImpĂ©riale, 1866), 5829:, vol. 1 (Paris: Imprimerie ImpĂ©riale, 1866), 2581:{\displaystyle \psi (r)={\frac {e^{ikr}}{4\pi r}}.} 6159: 5206: 5167: 5147: 5127: 5107: 5087: 4989: 4965: 4945: 4699: 4679: 4620: 4594: 4574: 4550: 4530: 4510: 4386: 4157: 4102: 4049: 3813: 3685: 3610: 3392: 3265: 3130: 3044: 2820: 2768: 2631: 2609: 2580: 2514: 2464: 2369: 2338: 2261: 2239: 2207: 2180: 2149: 2129: 2109: 1940: 1920: 1900: 1873: 1726: 1696: 1577: 1543: 1515: 1486: 1463: 1412: 1364: 1331: 1293: 1265: 1238: 1209: 1105: 1085: 1036: 1006: 986: 959: 939: 893: 866: 819: 785: 118: 94: 82:Infinitely many points (three shown) along length 6037:Chiao, R. Y.; Garmire, E.; Townes, C. H. (1964). 4255: 4254: 3908: 3907: 3802: 3778: 3739: 3706: 3677: 3654: 3570: 3490: 3489: 3379: 3119: 3096: 2887: 2886: 1948:is an integer which can be positive or negative. 874:so that the minimum intensity occurs at an angle 134:, the diffraction phenomenon is described by the 6166:(7th ed.), USA: John Wiley and Sons, Inc., 5214:, allowing one to deduce the crystal structure. 4158:{\displaystyle k_{y}=k\sin \theta \sin \phi \,,} 627:, as seen from a plane on the underlying clouds. 5521:Encyclopedia of Physical Science and Technology 4803:Knife-edge diffraction is an outgrowth of the " 5745:, ed. Stephen Jordan Rigaud (Oxford, England: 3058:On the calculation of Fraunhofer region fields 1086:{\displaystyle d\,\sin \theta _{n}=n\lambda ,} 6184: 6182: 5941:The Mathematical Theory of Huygens' Principle 4788:is a truncation of a portion of the incident 4103:{\displaystyle k_{x}=k\sin \theta \cos \phi } 1908:is the angle at which the light is incident, 1473:the intensity will have little dependency on 314:and reinvigorated by Young, against Newton's 266:studied these effects and attributed them to 106:, producing a continuously varying intensity 8: 2617:and the field point is located at the point 2476:del in cylindrical and spherical coordinates 593:and internal reflection within the droplet. 6242:Reflection High-Energy Electron Diffraction 4632:case). In object space, the corresponding 1928:is the separation of grating elements, and 867:{\displaystyle {\frac {d\sin(\theta )}{2}}} 589:of the light that forms the glory involves 4946:{\displaystyle \lambda ={\frac {h}{p}}\,,} 1955:of diffraction and interference patterns. 753:Graph and image of single-slit diffraction 6358: 5797: 5749:, 1841), vol. 2, pp. 251–255, especially 5566: 5199: 5160: 5155:is the angle of the diffracted wave, and 5140: 5120: 5100: 5088:{\displaystyle m\lambda =2d\sin \theta ,} 5056: 4982: 4958: 4939: 4929: 4921: 4692: 4664: 4641: 4607: 4587: 4567: 4543: 4523: 4485: 4369: 4357: 4338: 4317: 4303: 4261: 4260: 4226: 4225: 4196: 4190: 4173: 4151: 4121: 4115: 4070: 4064: 4032: 4020: 3956: 3914: 3913: 3879: 3878: 3849: 3843: 3826: 3797: 3796: 3773: 3772: 3734: 3733: 3701: 3700: 3698: 3672: 3671: 3649: 3648: 3628: 3625: 3593: 3581: 3565: 3564: 3552: 3538: 3496: 3495: 3461: 3460: 3431: 3425: 3408: 3374: 3373: 3361: 3347: 3318: 3312: 3297: 3291: 3286: 3278: 3252: 3243: 3234: 3229: 3215: 3206: 3197: 3192: 3185: 3179: 3164: 3158: 3153: 3145: 3114: 3113: 3091: 3090: 3070: 3067: 3027: 3015: 3007: 2998: 2989: 2984: 2970: 2961: 2952: 2947: 2940: 2934: 2893: 2892: 2858: 2857: 2836: 2790: 2789: 2783: 2755: 2746: 2737: 2732: 2718: 2709: 2700: 2695: 2688: 2682: 2667: 2661: 2656: 2648: 2624: 2622: 2598: 2595: 2550: 2544: 2527: 2497: 2491: 2438: 2424: 2418: 2408: 2396: 2390: 2359: 2351: 2325: 2307: 2291: 2285: 2254: 2252: 2232: 2199: 2193: 2170: 2162: 2142: 2122: 2098: 2047: 2037: 2026: 2005: 1933: 1913: 1892: 1886: 1847: 1842: 1826: 1821: 1805: 1718: 1712: 1680: 1640: 1626: 1621: 1615: 1594: 1569: 1563: 1530: 1502: 1479: 1450: 1392: 1378: 1352: 1344: 1319: 1308: 1280: 1257: 1251: 1222: 1175: 1161: 1156: 1150: 1129: 1098: 1065: 1054: 1049: 1028: 1022: 999: 978: 972: 952: 922: 911: 906: 885: 879: 837: 835: 809: 804: 775: 111: 87: 5135:is the distance between crystal planes, 4454: 2137:is the radius of the circular aperture, 1800:which are given by the grating equation 1273:is the intensity at the central maximum 209:also demonstrates that matter possesses 173:travels through a medium with a varying 142:as a collection of individual spherical 138:that treats each point in a propagating 6418: 5939:Baker, B.B. & Copson, E.T. (1939), 5488:X-Ray Diffraction: A Practical Approach 5408: 4830: 4511:{\displaystyle \Delta x=1.22\lambda N,} 4417:The way in which the beam profile of a 3400:as can be seen in the adjacent figure. 2821:{\displaystyle E_{\mathrm {inc} }(x,y)} 2486:(and using the physics time convention 1332:{\textstyle \theta =-{\frac {\pi }{2}}} 458: 6399:International Union of Crystallography 6133: 6131: 6081:IEEE Antennas and Propagation Magazine 5991:from the original on 10 September 2013 1365:{\textstyle \theta ={\frac {\pi }{2}}} 330:Single-slit diffraction in a circular 181:travels through a medium with varying 5854:(for 1821 & 1822, printed 1826), 4820:(GTD). In 1974, Prabhakar Pathak and 2370:{\displaystyle \delta (\mathbf {r} )} 2269:that is given by the solution of the 102:project phase contributions from the 7: 5975:Arumugam, Nadia (9 September 2013). 5860:Oeuvres complètes d'Augustin Fresnel 5827:Oeuvres complètes d'Augustin Fresnel 4840:Diffraction on a sharp metallic edge 2000:in intensity with angle is given by 987:{\displaystyle \theta _{\text{min}}} 894:{\displaystyle \theta _{\text{min}}} 345:propagate; this is described by the 6406:Using a cd as a diffraction grating 6013:Dynamic fields and waves of physics 5837:submitted on 15 October 1815.) 4538:is the wavelength of the light and 2643:(for arbitrary source location) as 2639:, then we may represent the scalar 1246:is the intensity at a given angle, 351:principle of superposition of waves 6259:from the original on 16 July 2017. 4487: 4268: 4265: 4262: 4248: 4245: 4242: 4239: 4236: 4233: 4230: 4227: 4175: 3921: 3918: 3915: 3901: 3898: 3895: 3892: 3889: 3886: 3883: 3880: 3828: 3503: 3500: 3497: 3483: 3480: 3477: 3474: 3471: 3468: 3465: 3462: 3410: 2900: 2897: 2894: 2880: 2877: 2874: 2871: 2868: 2865: 2862: 2859: 2838: 2797: 2794: 2791: 2431: 2421: 2393: 2288: 1727:{\displaystyle \theta _{\text{i}}} 1578:{\displaystyle \theta _{\text{i}}} 1429:This analysis applies only to the 429:approximation (applicable to the 341:diffraction arises because of how 14: 5624:"The Early Theory of Diffraction" 4818:geometrical theory of diffraction 2381:(a.k.a. scalar Laplacian) in the 1977:A computer-generated image of an 16:Phenomenon of the motion of waves 6481: 6469: 6457: 6445: 6433: 6421: 6335:"Diffraction before destruction" 6039:"Self-Trapping of Optical Beams" 5955:"Optical effects on spider webs" 5878:, vol. 11 (1819), pp.  5876:Annales de Chimie et de Physique 5823:Annales de Chimie et de Physique 5466:MacMillan Company, New York 1899 4845: 4833: 3799: 3775: 3736: 3703: 3674: 3651: 3629: 3567: 3553: 3376: 3362: 3298: 3287: 3244: 3235: 3207: 3198: 3165: 3154: 3116: 3093: 3071: 2999: 2990: 2962: 2953: 2778:Therefore, if an electric field 2747: 2738: 2710: 2701: 2668: 2657: 2625: 2599: 2360: 2326: 2255: 1544:{\displaystyle \theta \approx 0} 1372:and conservation of energy, and 1014:is the wavelength of the light. 616: 600: 571:on a credit card is an example. 553: 541: 509: 497: 485: 473: 461: 185:– all waves diffract, including 169:These effects also occur when a 5770:Thomas Young (1 January 1804). 5332:Dynamical theory of diffraction 4807:problem", originally solved by 1113:is an integer other than zero. 577:by small particles can cause a 55:into the region of geometrical 6245:. Cambridge University Press. 5529:10.1016/B0-12-227410-5/00300-8 5263:Diffraction before destruction 4352: 4310: 4296: 4274: 4184: 4178: 4015: 3975: 3949: 3927: 3837: 3831: 3576: 3548: 3531: 3509: 3419: 3413: 3385: 3357: 3306: 3292: 3283: 3253: 3230: 3216: 3193: 3173: 3159: 3150: 3008: 2985: 2971: 2948: 2928: 2906: 2847: 2841: 2815: 2803: 2756: 2733: 2719: 2696: 2676: 2662: 2653: 2538: 2532: 2515:{\displaystyle e^{-i\omega t}} 2456: 2447: 2364: 2356: 2330: 2322: 2181:{\displaystyle 2\pi /\lambda } 2071: 2053: 2016: 2010: 1686: 1655: 1605: 1599: 1233: 1227: 1140: 1134: 855: 849: 411:Kirchhoff diffraction equation 1: 6191:Introduction to Modern Optics 5387:Schaefer–Bergmann diffraction 4826:uniform theory of diffraction 4582:divided by aperture diameter 4402:far-field diffraction pattern 2610:{\displaystyle \mathbf {r} '} 1516:{\displaystyle d\gg \lambda } 1464:{\displaystyle d\ll \lambda } 575:Diffraction in the atmosphere 6391:"Scattering and diffraction" 5709:grimaldi diffraction 0–1800. 5317:Diffraction vs. interference 5302:Coherent diffraction imaging 4425:wave front, it approximates 2632:{\displaystyle \mathbf {r} } 2262:{\displaystyle \mathbf {r} } 1120:can be calculated using the 6141:(North-Holland, Amsterdam) 5721:Sir David Brewster (1831). 5636:10.1007/978-3-030-26699-8_2 5175:is an integer known as the 4445:Diffraction-limited imaging 4413:Propagation of a laser beam 2484:spherical coordinate system 2383:spherical coordinate system 1901:{\displaystyle \theta _{i}} 1037:{\displaystyle \theta _{n}} 316:corpuscular theory of light 247:, who also coined the term 6525: 6063:10.1103/PhysRevLett.13.479 6016:. CRC Press. p. 102. 5943:, Oxford, pp. 36–40. 5870:, in H. Crew (ed.), 5697:Jean Louis Aubert (1760). 5664:Francesco Maria Grimaldi, 5415:Francesco Maria Grimaldi, 5228: 5016: 4897: 4761: 4738: 4451:Diffraction-limited system 4448: 1966: 1766: 1424:unnormalized sinc function 1239:{\displaystyle I(\theta )} 967:is the width of the slit, 820:{\displaystyle \lambda /2} 726: 18: 4794:Huygens–Fresnel principle 4757: 1294:{\displaystyle \theta =0} 760:Huygens–Fresnel principle 435:path integral formulation 404:Huygens-Fresnel principle 375:modern quantum mechanical 347:Huygens–Fresnel principle 136:Huygens–Fresnel principle 6189:Grant R. Fowles (1975). 6093:10.1109/MAP.2013.6586622 5179:of the diffracted beam. 5108:{\displaystyle \lambda } 4531:{\displaystyle \lambda } 2276:for a point source (the 1558:When the incident angle 1007:{\displaystyle \lambda } 387:probability distribution 245:Francesco Maria Grimaldi 126:on the registering plate 65:Francesco Maria Grimaldi 63:wave. Italian scientist 19:Not to be confused with 6193:. Courier Corporation. 6109:Proceedings of the IEEE 6043:Physical Review Letters 5866:; partly translated as 5747:Oxford University Press 5287:Atmospheric diffraction 5148:{\displaystyle \theta } 4894:Matter wave diffraction 4707:is the diameter of the 1487:{\displaystyle \theta } 723:Single-slit diffraction 160:closely spaced openings 119:{\displaystyle \theta } 6351:10.1098/rstb.2013.0313 6214:Hecht, Eugene (2002). 6162:Fundamental of Physics 6137:John M. Cowley (1975) 6122:10.1109/PROC.1974.9651 6010:Andrew Norton (2000). 5799:10.1098/rstl.1804.0001 5446: 5438: 5342:Fraunhofer diffraction 5322:Diffractive solar sail 5307:Diffraction from slits 5208: 5169: 5149: 5129: 5109: 5089: 5036: 4991: 4967: 4947: 4867: 4786:knife-edge diffraction 4701: 4681: 4622: 4621:{\displaystyle N\gg 1} 4596: 4576: 4552: 4532: 4512: 4473: 4388: 4159: 4104: 4051: 3815: 3687: 3612: 3394: 3267: 3132: 3059: 3046: 2822: 2770: 2633: 2611: 2582: 2516: 2466: 2371: 2340: 2263: 2241: 2209: 2182: 2151: 2131: 2111: 1989: 1981: 1942: 1922: 1902: 1875: 1787: 1759: 1751: 1743: 1728: 1698: 1579: 1545: 1517: 1488: 1465: 1435:Fraunhofer diffraction 1414: 1366: 1333: 1295: 1267: 1240: 1211: 1122:Fraunhofer diffraction 1107: 1087: 1038: 1008: 988: 961: 941: 895: 868: 821: 787: 754: 746: 738: 706: 672: 664: 646: 419:Fraunhofer diffraction 392:double-slit experiment 334: 237: 127: 120: 96: 45: 5585:10.1038/nnano.2012.34 5555:Nature Nanotechnology 5439: 5431: 5362:Point spread function 5282:Angle-sensitive pixel 5209: 5186:or matter waves like 5170: 5150: 5130: 5110: 5090: 5026: 5017:Further information: 4992: 4968: 4948: 4915:de Broglie wavelength 4865: 4725:microscope objectives 4702: 4682: 4623: 4597: 4577: 4553: 4533: 4513: 4458: 4389: 4160: 4105: 4052: 3816: 3688: 3613: 3395: 3268: 3133: 3057: 3047: 2823: 2771: 2634: 2612: 2583: 2517: 2467: 2372: 2341: 2264: 2242: 2240:{\displaystyle \psi } 2210: 2208:{\displaystyle J_{1}} 2183: 2152: 2132: 2112: 1987: 1976: 1943: 1923: 1903: 1876: 1785: 1757: 1749: 1741: 1729: 1699: 1580: 1546: 1518: 1489: 1466: 1415: 1367: 1334: 1296: 1268: 1266:{\displaystyle I_{0}} 1241: 1212: 1108: 1088: 1039: 1009: 989: 962: 942: 896: 869: 822: 788: 786:{\displaystyle 2\pi } 752: 744: 736: 729:Diffraction formalism 704: 698:and other obstacles. 670: 662: 640: 329: 300:Augustin-Jean Fresnel 292:celebrated experiment 232: 195:electromagnetic waves 121: 97: 81: 31: 5898:TraitĂ© de la lumiere 5895:Christiaan Huygens, 5724:A Treatise on Optics 5337:Electron diffraction 5269:free-electron lasers 5219:electron diffraction 5198: 5159: 5139: 5119: 5099: 5055: 4981: 4957: 4920: 4908:Electron diffraction 4691: 4640: 4606: 4586: 4566: 4542: 4522: 4484: 4172: 4114: 4063: 3825: 3697: 3624: 3407: 3277: 3144: 3066: 2835: 2782: 2647: 2621: 2594: 2526: 2490: 2389: 2350: 2284: 2251: 2231: 2192: 2161: 2141: 2121: 2004: 1932: 1912: 1885: 1804: 1711: 1593: 1562: 1529: 1501: 1478: 1449: 1377: 1343: 1307: 1279: 1250: 1221: 1128: 1097: 1048: 1021: 998: 971: 951: 905: 878: 834: 803: 774: 385:that determines the 381:is described by its 211:wave-like properties 110: 86: 6288:2000Natur.406..752N 6139:Diffraction physics 6077:Rahmat-Samii, Yahya 6055:1964PhRvL..13..479C 5953:Dietrich Zawischa. 5835:"First Memoir" 5833:. (Revision of the 5790:1804RSPT...94....1Y 5577:2012NatNa...7..297J 5392:Thinned-array curse 5231:Coherence (physics) 5115:is the wavelength, 5045:diffraction grating 4904:Neutron diffraction 4769:Babinet's principle 4764:Babinet's principle 4758:Babinet's principle 1786:Diffraction grating 1769:Diffraction grating 1763:Diffraction grating 532:diffraction grating 427:Fresnel diffraction 394:first performed by 284:diffraction grating 187:gravitational waves 164:diffraction grating 34:diffraction pattern 6509:Physical phenomena 6345:(1647): 20130313. 5916:2016-12-01 at the 5905:2016-06-16 at the 5756:2016-12-01 at the 5675:2016-12-01 at the 5462:2016-12-01 at the 5426:2016-12-01 at the 5367:Powder diffraction 5204: 5165: 5145: 5125: 5105: 5085: 5037: 4987: 4963: 4943: 4868: 4822:Robert Kouyoumjian 4749:seen when using a 4729:numerical aperture 4717:Rayleigh criterion 4697: 4677: 4634:angular resolution 4618: 4592: 4572: 4548: 4528: 4508: 4474: 4384: 4253: 4155: 4100: 4047: 3906: 3811: 3683: 3608: 3488: 3390: 3263: 3128: 3060: 3042: 2885: 2818: 2766: 2629: 2607: 2578: 2512: 2462: 2367: 2336: 2278:Helmholtz equation 2259: 2237: 2205: 2178: 2147: 2127: 2107: 1990: 1982: 1938: 1918: 1898: 1871: 1788: 1760: 1752: 1744: 1724: 1694: 1575: 1553:geometrical optics 1541: 1513: 1484: 1461: 1410: 1362: 1329: 1291: 1263: 1236: 1207: 1103: 1083: 1034: 1004: 984: 957: 937: 891: 864: 817: 783: 755: 747: 739: 707: 673: 665: 650:Diffraction spikes 647: 433:) and the Feynman 413:(derived from the 335: 312:Christiaan Huygens 286:to be discovered. 238: 183:acoustic impedance 128: 116: 92: 46: 6282:(6797): 752–757. 6252:978-0-521-45373-8 6225:978-0-8053-8566-3 6200:978-0-486-65957-2 6173:978-0-471-23231-5 6116:(11): 1448–1461. 6023:978-0-7503-0719-2 5645:978-3-030-26699-8 5498:978-1-4899-0148-4 5397:X-ray diffraction 5312:Diffraction spike 5297:Cloud iridescence 5245:atomic transition 5207:{\displaystyle d} 5168:{\displaystyle m} 5128:{\displaystyle d} 5041:Bragg diffraction 5019:Bragg diffraction 5013:Bragg diffraction 4990:{\displaystyle p} 4966:{\displaystyle h} 4937: 4809:Arnold Sommerfeld 4782:knife-edge effect 4700:{\displaystyle D} 4672: 4595:{\displaystyle D} 4575:{\displaystyle f} 4551:{\displaystyle N} 4398:Fourier transform 4221: 4219: 4167:Fourier transform 3874: 3872: 3805: 3781: 3771: 3759: 3742: 3709: 3680: 3657: 3573: 3456: 3454: 3382: 3341: 3258: 3122: 3099: 3013: 2933: 2853: 2761: 2573: 2445: 2416: 2150:{\displaystyle k} 2130:{\displaystyle a} 2092: 1963:Circular aperture 1941:{\displaystyle m} 1921:{\displaystyle d} 1783: 1721: 1683: 1653: 1572: 1442:intensity profile 1408: 1360: 1327: 1188: 1118:intensity profile 1106:{\displaystyle n} 981: 960:{\displaystyle d} 925: 888: 862: 714:fundamental limit 641:The bright spot ( 516:Colors seen in a 339:classical physics 207:quantum mechanics 132:classical physics 95:{\displaystyle d} 6516: 6486: 6485: 6484: 6474: 6473: 6472: 6462: 6461: 6450: 6449: 6448: 6438: 6437: 6426: 6425: 6417: 6402: 6373: 6372: 6362: 6330: 6324: 6323: 6296:10.1038/35021099 6267: 6261: 6260: 6236: 6230: 6229: 6211: 6205: 6204: 6186: 6177: 6176: 6165: 6155: 6149: 6135: 6126: 6125: 6103: 6097: 6096: 6073: 6067: 6066: 6034: 6028: 6027: 6007: 6001: 6000: 5998: 5996: 5972: 5966: 5965: 5963: 5961: 5950: 5944: 5937: 5931: 5893: 5887: 5864:pp. 247–364 5856:pp. 339–475 5853: 5844: 5838: 5819: 5813: 5811: 5801: 5767: 5761: 5739: 5733: 5732: 5718: 5712: 5711: 5694: 5688: 5662: 5656: 5655: 5654: 5652: 5619: 5613: 5612: 5570: 5549: 5543: 5542: 5516: 5510: 5509: 5507: 5505: 5482: 5476: 5473: 5467: 5455:Cajori, Florian 5453: 5447: 5413: 5241:coherence length 5213: 5211: 5210: 5205: 5174: 5172: 5171: 5166: 5154: 5152: 5151: 5146: 5134: 5132: 5131: 5126: 5114: 5112: 5111: 5106: 5094: 5092: 5091: 5086: 4996: 4994: 4993: 4988: 4972: 4970: 4969: 4964: 4952: 4950: 4949: 4944: 4938: 4930: 4849: 4837: 4814:Joseph B. Keller 4735:Speckle patterns 4727:require a large 4706: 4704: 4703: 4698: 4686: 4684: 4683: 4678: 4673: 4665: 4627: 4625: 4624: 4619: 4601: 4599: 4598: 4593: 4581: 4579: 4578: 4573: 4557: 4555: 4554: 4549: 4537: 4535: 4534: 4529: 4517: 4515: 4514: 4509: 4393: 4391: 4390: 4385: 4380: 4368: 4356: 4355: 4351: 4343: 4342: 4330: 4322: 4321: 4295: 4284: 4273: 4272: 4271: 4252: 4251: 4220: 4218: 4207: 4206: 4191: 4164: 4162: 4161: 4156: 4126: 4125: 4109: 4107: 4106: 4101: 4075: 4074: 4056: 4054: 4053: 4048: 4043: 4031: 4019: 4018: 4014: 3994: 3948: 3937: 3926: 3925: 3924: 3905: 3904: 3873: 3871: 3860: 3859: 3844: 3820: 3818: 3817: 3812: 3807: 3806: 3798: 3783: 3782: 3774: 3769: 3757: 3744: 3743: 3735: 3711: 3710: 3702: 3692: 3690: 3689: 3684: 3682: 3681: 3673: 3670: 3659: 3658: 3650: 3647: 3636: 3632: 3617: 3615: 3614: 3609: 3604: 3592: 3580: 3579: 3575: 3574: 3566: 3560: 3556: 3530: 3519: 3508: 3507: 3506: 3487: 3486: 3455: 3453: 3442: 3441: 3426: 3399: 3397: 3396: 3391: 3389: 3388: 3384: 3383: 3375: 3369: 3365: 3342: 3340: 3329: 3328: 3313: 3305: 3301: 3295: 3290: 3272: 3270: 3269: 3264: 3259: 3257: 3256: 3251: 3247: 3238: 3233: 3221: 3220: 3219: 3214: 3210: 3201: 3196: 3180: 3172: 3168: 3162: 3157: 3137: 3135: 3134: 3129: 3124: 3123: 3115: 3112: 3101: 3100: 3092: 3089: 3078: 3074: 3051: 3049: 3048: 3043: 3038: 3026: 3014: 3012: 3011: 3006: 3002: 2993: 2988: 2976: 2975: 2974: 2969: 2965: 2956: 2951: 2935: 2931: 2927: 2916: 2905: 2904: 2903: 2884: 2883: 2830:surface integral 2827: 2825: 2824: 2819: 2802: 2801: 2800: 2775: 2773: 2772: 2767: 2762: 2760: 2759: 2754: 2750: 2741: 2736: 2724: 2723: 2722: 2717: 2713: 2704: 2699: 2683: 2675: 2671: 2665: 2660: 2641:Green's function 2638: 2636: 2635: 2630: 2628: 2616: 2614: 2613: 2608: 2606: 2602: 2587: 2585: 2584: 2579: 2574: 2572: 2561: 2560: 2545: 2521: 2519: 2518: 2513: 2511: 2510: 2480:Green's function 2471: 2469: 2468: 2463: 2446: 2444: 2443: 2442: 2429: 2428: 2419: 2417: 2409: 2401: 2400: 2379:Laplace operator 2376: 2374: 2373: 2368: 2363: 2345: 2343: 2342: 2337: 2329: 2312: 2311: 2296: 2295: 2271:frequency domain 2268: 2266: 2265: 2260: 2258: 2246: 2244: 2243: 2238: 2223:General aperture 2214: 2212: 2211: 2206: 2204: 2203: 2187: 2185: 2184: 2179: 2174: 2156: 2154: 2153: 2148: 2136: 2134: 2133: 2128: 2116: 2114: 2113: 2108: 2103: 2102: 2097: 2093: 2091: 2074: 2052: 2051: 2038: 2031: 2030: 1947: 1945: 1944: 1939: 1927: 1925: 1924: 1919: 1907: 1905: 1904: 1899: 1897: 1896: 1880: 1878: 1877: 1872: 1858: 1854: 1853: 1852: 1851: 1832: 1831: 1830: 1784: 1735: 1733: 1731: 1730: 1725: 1723: 1722: 1719: 1703: 1701: 1700: 1695: 1693: 1689: 1685: 1684: 1681: 1654: 1649: 1641: 1631: 1630: 1620: 1619: 1584: 1582: 1581: 1576: 1574: 1573: 1570: 1550: 1548: 1547: 1542: 1524: 1522: 1520: 1519: 1514: 1495: 1493: 1491: 1490: 1485: 1472: 1470: 1468: 1467: 1462: 1421: 1419: 1417: 1416: 1411: 1409: 1404: 1393: 1371: 1369: 1368: 1363: 1361: 1353: 1338: 1336: 1335: 1330: 1328: 1320: 1302: 1300: 1298: 1297: 1292: 1272: 1270: 1269: 1264: 1262: 1261: 1245: 1243: 1242: 1237: 1216: 1214: 1213: 1208: 1203: 1199: 1189: 1184: 1176: 1166: 1165: 1155: 1154: 1112: 1110: 1109: 1104: 1092: 1090: 1089: 1084: 1070: 1069: 1043: 1041: 1040: 1035: 1033: 1032: 1013: 1011: 1010: 1005: 993: 991: 990: 985: 983: 982: 979: 966: 964: 963: 958: 946: 944: 943: 938: 927: 926: 923: 900: 898: 897: 892: 890: 889: 886: 873: 871: 870: 865: 863: 858: 838: 828: 826: 824: 823: 818: 813: 792: 790: 789: 784: 620: 604: 557: 545: 513: 501: 489: 477: 465: 443:boundary element 357:for a secondary 175:refractive index 125: 123: 122: 117: 101: 99: 98: 93: 67:coined the word 44:in another plate 6524: 6523: 6519: 6518: 6517: 6515: 6514: 6513: 6494: 6493: 6492: 6482: 6480: 6470: 6468: 6456: 6446: 6444: 6432: 6420: 6412: 6395:Crystallography 6389: 6381: 6376: 6332: 6331: 6327: 6269: 6268: 6264: 6253: 6238: 6237: 6233: 6226: 6213: 6212: 6208: 6201: 6188: 6187: 6180: 6174: 6157: 6156: 6152: 6136: 6129: 6105: 6104: 6100: 6075: 6074: 6070: 6049:(15): 479–482. 6036: 6035: 6031: 6024: 6009: 6008: 6004: 5994: 5992: 5985:The Slate Group 5974: 5973: 5969: 5959: 5957: 5952: 5951: 5947: 5938: 5934: 5918:Wayback Machine 5907:Wayback Machine 5894: 5890: 5858:; reprinted in 5851: 5845: 5841: 5831:pp. 89–122 5820: 5816: 5769: 5768: 5764: 5758:Wayback Machine 5740: 5736: 5720: 5719: 5715: 5696: 5695: 5691: 5677:Wayback Machine 5663: 5659: 5650: 5648: 5646: 5621: 5620: 5616: 5551: 5550: 5546: 5539: 5518: 5517: 5513: 5503: 5501: 5499: 5484: 5483: 5479: 5474: 5470: 5464:Wayback Machine 5454: 5450: 5428:Wayback Machine 5414: 5410: 5406: 5401: 5292:Brocken spectre 5277: 5265: 5260: 5233: 5227: 5196: 5195: 5157: 5156: 5137: 5136: 5117: 5116: 5097: 5096: 5053: 5052: 5031:, each dot (or 5021: 5015: 5004:Diffraction of 4979: 4978: 4975:Planck constant 4955: 4954: 4918: 4917: 4910: 4896: 4879:of the angles.) 4860: 4853: 4850: 4841: 4838: 4778: 4766: 4760: 4747:speckle pattern 4743: 4741:Speckle pattern 4737: 4689: 4688: 4638: 4637: 4604: 4603: 4584: 4583: 4564: 4563: 4540: 4539: 4520: 4519: 4482: 4481: 4453: 4447: 4415: 4373: 4361: 4344: 4334: 4323: 4313: 4299: 4288: 4277: 4256: 4208: 4192: 4170: 4169: 4117: 4112: 4111: 4066: 4061: 4060: 4036: 4024: 4007: 3987: 3952: 3941: 3930: 3909: 3861: 3845: 3823: 3822: 3695: 3694: 3663: 3640: 3627: 3622: 3621: 3597: 3585: 3551: 3534: 3523: 3512: 3491: 3443: 3427: 3405: 3404: 3360: 3343: 3330: 3314: 3296: 3275: 3274: 3242: 3222: 3205: 3181: 3163: 3142: 3141: 3105: 3082: 3069: 3064: 3063: 3031: 3019: 2997: 2977: 2960: 2936: 2920: 2909: 2888: 2833: 2832: 2785: 2780: 2779: 2745: 2725: 2708: 2684: 2666: 2645: 2644: 2619: 2618: 2597: 2592: 2591: 2562: 2546: 2524: 2523: 2493: 2488: 2487: 2482:, which in the 2434: 2430: 2420: 2392: 2387: 2386: 2348: 2347: 2303: 2287: 2282: 2281: 2249: 2248: 2229: 2228: 2225: 2217:Bessel function 2195: 2190: 2189: 2159: 2158: 2139: 2138: 2119: 2118: 2075: 2043: 2039: 2033: 2032: 2022: 2002: 2001: 1971: 1965: 1930: 1929: 1910: 1909: 1888: 1883: 1882: 1843: 1822: 1814: 1810: 1802: 1801: 1799: 1773: 1771: 1765: 1714: 1709: 1708: 1707: 1676: 1642: 1639: 1635: 1622: 1611: 1591: 1590: 1565: 1560: 1559: 1527: 1526: 1499: 1498: 1497: 1476: 1475: 1474: 1447: 1446: 1445: 1394: 1375: 1374: 1373: 1341: 1340: 1305: 1304: 1277: 1276: 1274: 1253: 1248: 1247: 1219: 1218: 1177: 1174: 1170: 1157: 1146: 1126: 1125: 1095: 1094: 1061: 1046: 1045: 1024: 1019: 1018: 996: 995: 974: 969: 968: 949: 948: 918: 903: 902: 881: 876: 875: 839: 832: 831: 801: 800: 799: 772: 771: 731: 725: 677:speckle pattern 632: 631: 630: 629: 628: 621: 613: 612: 605: 565: 564: 563: 562: 561: 558: 550: 549: 546: 528: 521: 514: 505: 502: 493: 490: 481: 478: 469: 466: 365:as well as the 324: 270:of light rays. 227: 205:. Furthermore, 108: 107: 84: 83: 24: 17: 12: 11: 5: 6522: 6520: 6512: 6511: 6506: 6496: 6495: 6491: 6490: 6478: 6466: 6454: 6442: 6430: 6410: 6409: 6403: 6387: 6380: 6379:External links 6377: 6375: 6374: 6325: 6262: 6251: 6231: 6224: 6206: 6199: 6178: 6172: 6150: 6127: 6098: 6068: 6029: 6022: 6002: 5967: 5945: 5932: 5888: 5839: 5814: 5762: 5734: 5713: 5689: 5657: 5644: 5614: 5561:(5): 297–300. 5544: 5537: 5511: 5497: 5477: 5468: 5448: 5407: 5405: 5402: 5400: 5399: 5394: 5389: 5384: 5379: 5374: 5369: 5364: 5359: 5354: 5352:Fresnel number 5349: 5347:Fresnel imager 5344: 5339: 5334: 5329: 5327:Diffractometer 5324: 5319: 5314: 5309: 5304: 5299: 5294: 5289: 5284: 5278: 5276: 5273: 5264: 5261: 5259: 5256: 5229:Main article: 5226: 5223: 5203: 5164: 5144: 5124: 5104: 5084: 5081: 5078: 5075: 5072: 5069: 5066: 5063: 5060: 5014: 5011: 4986: 4962: 4942: 4936: 4933: 4928: 4925: 4895: 4892: 4891: 4890: 4883: 4880: 4859: 4856: 4855: 4854: 4851: 4844: 4842: 4839: 4832: 4777: 4774: 4762:Main article: 4759: 4756: 4739:Main article: 4736: 4733: 4709:entrance pupil 4696: 4676: 4671: 4668: 4663: 4660: 4657: 4654: 4651: 4648: 4645: 4617: 4614: 4611: 4591: 4571: 4562:(focal length 4547: 4527: 4507: 4504: 4501: 4498: 4495: 4492: 4489: 4449:Main article: 4446: 4443: 4414: 4411: 4407:Fourier optics 4383: 4379: 4376: 4372: 4367: 4364: 4360: 4354: 4350: 4347: 4341: 4337: 4333: 4329: 4326: 4320: 4316: 4312: 4309: 4306: 4302: 4298: 4294: 4291: 4287: 4283: 4280: 4276: 4270: 4267: 4264: 4259: 4250: 4247: 4244: 4241: 4238: 4235: 4232: 4229: 4224: 4217: 4214: 4211: 4205: 4202: 4199: 4195: 4189: 4186: 4183: 4180: 4177: 4154: 4150: 4147: 4144: 4141: 4138: 4135: 4132: 4129: 4124: 4120: 4099: 4096: 4093: 4090: 4087: 4084: 4081: 4078: 4073: 4069: 4046: 4042: 4039: 4035: 4030: 4027: 4023: 4017: 4013: 4010: 4006: 4003: 4000: 3997: 3993: 3990: 3986: 3983: 3980: 3977: 3974: 3971: 3968: 3965: 3962: 3959: 3955: 3951: 3947: 3944: 3940: 3936: 3933: 3929: 3923: 3920: 3917: 3912: 3903: 3900: 3897: 3894: 3891: 3888: 3885: 3882: 3877: 3870: 3867: 3864: 3858: 3855: 3852: 3848: 3842: 3839: 3836: 3833: 3830: 3810: 3804: 3801: 3795: 3792: 3789: 3786: 3780: 3777: 3768: 3765: 3762: 3756: 3753: 3750: 3747: 3741: 3738: 3732: 3729: 3726: 3723: 3720: 3717: 3714: 3708: 3705: 3679: 3676: 3669: 3666: 3662: 3656: 3653: 3646: 3643: 3639: 3635: 3631: 3607: 3603: 3600: 3596: 3591: 3588: 3584: 3578: 3572: 3569: 3563: 3559: 3555: 3550: 3547: 3544: 3541: 3537: 3533: 3529: 3526: 3522: 3518: 3515: 3511: 3505: 3502: 3499: 3494: 3485: 3482: 3479: 3476: 3473: 3470: 3467: 3464: 3459: 3452: 3449: 3446: 3440: 3437: 3434: 3430: 3424: 3421: 3418: 3415: 3412: 3387: 3381: 3378: 3372: 3368: 3364: 3359: 3356: 3353: 3350: 3346: 3339: 3336: 3333: 3327: 3324: 3321: 3317: 3311: 3308: 3304: 3300: 3294: 3289: 3285: 3282: 3273:simplifies to 3262: 3255: 3250: 3246: 3241: 3237: 3232: 3228: 3225: 3218: 3213: 3209: 3204: 3200: 3195: 3191: 3188: 3184: 3178: 3175: 3171: 3167: 3161: 3156: 3152: 3149: 3127: 3121: 3118: 3111: 3108: 3104: 3098: 3095: 3088: 3085: 3081: 3077: 3073: 3041: 3037: 3034: 3030: 3025: 3022: 3018: 3010: 3005: 3001: 2996: 2992: 2987: 2983: 2980: 2973: 2968: 2964: 2959: 2955: 2950: 2946: 2943: 2939: 2930: 2926: 2923: 2919: 2915: 2912: 2908: 2902: 2899: 2896: 2891: 2882: 2879: 2876: 2873: 2870: 2867: 2864: 2861: 2856: 2852: 2849: 2846: 2843: 2840: 2817: 2814: 2811: 2808: 2805: 2799: 2796: 2793: 2788: 2765: 2758: 2753: 2749: 2744: 2740: 2735: 2731: 2728: 2721: 2716: 2712: 2707: 2703: 2698: 2694: 2691: 2687: 2681: 2678: 2674: 2670: 2664: 2659: 2655: 2652: 2627: 2605: 2601: 2577: 2571: 2568: 2565: 2559: 2556: 2553: 2549: 2543: 2540: 2537: 2534: 2531: 2509: 2506: 2503: 2500: 2496: 2461: 2458: 2455: 2452: 2449: 2441: 2437: 2433: 2427: 2423: 2415: 2412: 2407: 2404: 2399: 2395: 2385:simplifies to 2366: 2362: 2358: 2355: 2335: 2332: 2328: 2324: 2321: 2318: 2315: 2310: 2306: 2302: 2299: 2294: 2290: 2257: 2236: 2224: 2221: 2202: 2198: 2177: 2173: 2169: 2166: 2146: 2126: 2106: 2101: 2096: 2090: 2087: 2084: 2081: 2078: 2073: 2070: 2067: 2064: 2061: 2058: 2055: 2050: 2046: 2042: 2036: 2029: 2025: 2021: 2018: 2015: 2012: 2009: 1967:Main article: 1964: 1961: 1937: 1917: 1895: 1891: 1870: 1867: 1864: 1861: 1857: 1850: 1846: 1841: 1838: 1835: 1829: 1825: 1820: 1817: 1813: 1809: 1795: 1767:Main article: 1764: 1761: 1717: 1692: 1688: 1679: 1675: 1672: 1669: 1666: 1663: 1660: 1657: 1652: 1648: 1645: 1638: 1634: 1629: 1625: 1618: 1614: 1610: 1607: 1604: 1601: 1598: 1568: 1540: 1537: 1534: 1512: 1509: 1506: 1483: 1460: 1457: 1454: 1407: 1403: 1400: 1397: 1391: 1388: 1385: 1382: 1359: 1356: 1351: 1348: 1326: 1323: 1318: 1315: 1312: 1290: 1287: 1284: 1260: 1256: 1235: 1232: 1229: 1226: 1206: 1202: 1198: 1195: 1192: 1187: 1183: 1180: 1173: 1169: 1164: 1160: 1153: 1149: 1145: 1142: 1139: 1136: 1133: 1102: 1082: 1079: 1076: 1073: 1068: 1064: 1060: 1057: 1053: 1031: 1027: 1003: 977: 956: 936: 933: 930: 921: 917: 914: 910: 884: 861: 857: 854: 851: 848: 845: 842: 816: 812: 808: 782: 779: 727:Main article: 724: 721: 683:appears to be 622: 615: 614: 606: 599: 598: 597: 596: 595: 587:backscattering 559: 552: 551: 547: 540: 539: 538: 537: 536: 527: 524: 523: 522: 515: 508: 506: 503: 496: 494: 491: 484: 482: 479: 472: 470: 467: 460: 439:finite element 359:spherical wave 323: 320: 226: 223: 115: 91: 15: 13: 10: 9: 6: 4: 3: 2: 6521: 6510: 6507: 6505: 6502: 6501: 6499: 6489: 6479: 6477: 6467: 6465: 6460: 6455: 6453: 6443: 6441: 6436: 6431: 6429: 6424: 6419: 6415: 6407: 6404: 6400: 6396: 6392: 6388: 6386: 6383: 6382: 6378: 6370: 6366: 6361: 6356: 6352: 6348: 6344: 6340: 6336: 6329: 6326: 6321: 6317: 6313: 6309: 6305: 6301: 6297: 6293: 6289: 6285: 6281: 6277: 6273: 6266: 6263: 6258: 6254: 6248: 6244: 6243: 6235: 6232: 6227: 6221: 6217: 6210: 6207: 6202: 6196: 6192: 6185: 6183: 6179: 6175: 6169: 6164: 6163: 6154: 6151: 6148: 6147:0-444-10791-6 6144: 6140: 6134: 6132: 6128: 6123: 6119: 6115: 6111: 6110: 6102: 6099: 6094: 6090: 6086: 6082: 6078: 6072: 6069: 6064: 6060: 6056: 6052: 6048: 6044: 6040: 6033: 6030: 6025: 6019: 6015: 6014: 6006: 6003: 5990: 5986: 5982: 5978: 5971: 5968: 5956: 5949: 5946: 5942: 5936: 5933: 5929: 5928: 5923: 5919: 5915: 5912: 5908: 5904: 5901: 5899: 5892: 5889: 5885: 5881: 5877: 5873: 5869: 5865: 5861: 5857: 5849: 5843: 5840: 5836: 5832: 5828: 5824: 5818: 5815: 5809: 5805: 5800: 5795: 5791: 5787: 5783: 5779: 5778: 5773: 5766: 5763: 5759: 5755: 5752: 5748: 5744: 5738: 5735: 5730: 5726: 5725: 5717: 5714: 5710: 5706: 5702: 5701: 5693: 5690: 5686: 5682: 5678: 5674: 5671: 5667: 5661: 5658: 5647: 5641: 5637: 5633: 5629: 5625: 5618: 5615: 5610: 5606: 5602: 5598: 5594: 5590: 5586: 5582: 5578: 5574: 5569: 5564: 5560: 5556: 5548: 5545: 5540: 5538:9780122274107 5534: 5530: 5526: 5522: 5515: 5512: 5500: 5494: 5490: 5489: 5481: 5478: 5472: 5469: 5465: 5461: 5458: 5452: 5449: 5445: 5443: 5437: 5435: 5429: 5425: 5422: 5418: 5412: 5409: 5403: 5398: 5395: 5393: 5390: 5388: 5385: 5383: 5380: 5378: 5375: 5373: 5370: 5368: 5365: 5363: 5360: 5358: 5355: 5353: 5350: 5348: 5345: 5343: 5340: 5338: 5335: 5333: 5330: 5328: 5325: 5323: 5320: 5318: 5315: 5313: 5310: 5308: 5305: 5303: 5300: 5298: 5295: 5293: 5290: 5288: 5285: 5283: 5280: 5279: 5274: 5272: 5270: 5262: 5257: 5255: 5252: 5248: 5246: 5242: 5237: 5232: 5224: 5222: 5220: 5215: 5201: 5193: 5189: 5185: 5180: 5178: 5162: 5142: 5122: 5102: 5082: 5079: 5076: 5073: 5070: 5067: 5064: 5061: 5058: 5050: 5046: 5042: 5034: 5030: 5025: 5020: 5012: 5010: 5007: 5002: 5000: 4984: 4976: 4960: 4940: 4934: 4931: 4926: 4923: 4916: 4909: 4905: 4901: 4893: 4888: 4884: 4881: 4878: 4873: 4872: 4871: 4864: 4857: 4848: 4843: 4836: 4831: 4829: 4827: 4823: 4819: 4815: 4810: 4806: 4801: 4799: 4795: 4791: 4787: 4783: 4776:"Knife edge" 4775: 4773: 4770: 4765: 4755: 4752: 4751:laser pointer 4748: 4742: 4734: 4732: 4730: 4726: 4721: 4718: 4712: 4710: 4694: 4674: 4669: 4666: 4661: 4658: 4655: 4652: 4649: 4646: 4643: 4635: 4631: 4615: 4612: 4609: 4589: 4569: 4561: 4545: 4525: 4505: 4502: 4499: 4496: 4493: 4490: 4479: 4471: 4468: 4464: 4463: 4457: 4452: 4444: 4442: 4438: 4436: 4435:self-focusing 4432: 4428: 4427:Gaussian beam 4424: 4420: 4412: 4410: 4408: 4403: 4399: 4394: 4381: 4377: 4374: 4370: 4365: 4362: 4358: 4348: 4345: 4339: 4335: 4331: 4327: 4324: 4318: 4314: 4307: 4304: 4300: 4292: 4289: 4285: 4281: 4278: 4257: 4222: 4215: 4212: 4209: 4203: 4200: 4197: 4193: 4187: 4181: 4168: 4152: 4148: 4145: 4142: 4139: 4136: 4133: 4130: 4127: 4122: 4118: 4097: 4094: 4091: 4088: 4085: 4082: 4079: 4076: 4071: 4067: 4057: 4044: 4040: 4037: 4033: 4028: 4025: 4021: 4011: 4008: 4004: 4001: 3998: 3995: 3991: 3988: 3984: 3981: 3978: 3972: 3969: 3966: 3963: 3960: 3957: 3953: 3945: 3942: 3938: 3934: 3931: 3910: 3875: 3868: 3865: 3862: 3856: 3853: 3850: 3846: 3840: 3834: 3808: 3793: 3790: 3787: 3784: 3766: 3763: 3760: 3754: 3751: 3748: 3745: 3730: 3727: 3724: 3721: 3718: 3715: 3712: 3667: 3664: 3660: 3644: 3641: 3637: 3633: 3618: 3605: 3601: 3598: 3594: 3589: 3586: 3582: 3561: 3557: 3545: 3542: 3539: 3535: 3527: 3524: 3520: 3516: 3513: 3492: 3457: 3450: 3447: 3444: 3438: 3435: 3432: 3428: 3422: 3416: 3401: 3370: 3366: 3354: 3351: 3348: 3344: 3337: 3334: 3331: 3325: 3322: 3319: 3315: 3309: 3302: 3280: 3260: 3248: 3239: 3226: 3223: 3211: 3202: 3189: 3186: 3182: 3176: 3169: 3147: 3138: 3125: 3109: 3106: 3102: 3086: 3083: 3079: 3075: 3056: 3052: 3039: 3035: 3032: 3028: 3023: 3020: 3016: 3003: 2994: 2981: 2978: 2966: 2957: 2944: 2941: 2937: 2924: 2921: 2917: 2913: 2910: 2889: 2854: 2850: 2844: 2831: 2812: 2809: 2806: 2786: 2776: 2763: 2751: 2742: 2729: 2726: 2714: 2705: 2692: 2689: 2685: 2679: 2672: 2650: 2642: 2603: 2588: 2575: 2569: 2566: 2563: 2557: 2554: 2551: 2547: 2541: 2535: 2529: 2507: 2504: 2501: 2498: 2494: 2485: 2481: 2477: 2472: 2459: 2453: 2450: 2439: 2435: 2425: 2413: 2410: 2405: 2402: 2397: 2384: 2380: 2353: 2333: 2319: 2316: 2313: 2308: 2304: 2300: 2297: 2292: 2279: 2275: 2274:wave equation 2272: 2234: 2222: 2220: 2218: 2200: 2196: 2175: 2171: 2167: 2164: 2144: 2124: 2104: 2099: 2094: 2088: 2085: 2082: 2079: 2076: 2068: 2065: 2062: 2059: 2056: 2048: 2044: 2040: 2034: 2027: 2023: 2019: 2013: 2007: 1999: 1995: 1986: 1980: 1975: 1970: 1962: 1960: 1956: 1954: 1949: 1935: 1915: 1893: 1889: 1868: 1865: 1862: 1859: 1855: 1848: 1844: 1839: 1836: 1833: 1827: 1823: 1818: 1815: 1811: 1807: 1798: 1794: 1770: 1762: 1756: 1748: 1740: 1736: 1715: 1704: 1690: 1677: 1673: 1670: 1667: 1664: 1661: 1658: 1650: 1646: 1643: 1636: 1632: 1627: 1623: 1616: 1612: 1608: 1602: 1596: 1588: 1566: 1556: 1554: 1538: 1535: 1532: 1510: 1507: 1504: 1481: 1458: 1455: 1452: 1443: 1438: 1436: 1432: 1427: 1425: 1422:which is the 1405: 1401: 1398: 1395: 1389: 1386: 1383: 1380: 1357: 1354: 1349: 1346: 1324: 1321: 1316: 1313: 1310: 1288: 1285: 1282: 1258: 1254: 1230: 1224: 1204: 1200: 1196: 1193: 1190: 1185: 1181: 1178: 1171: 1167: 1162: 1158: 1151: 1147: 1143: 1137: 1131: 1123: 1119: 1114: 1100: 1080: 1077: 1074: 1071: 1066: 1062: 1058: 1055: 1051: 1029: 1025: 1015: 1001: 975: 954: 934: 931: 928: 919: 915: 912: 908: 882: 859: 852: 846: 843: 840: 814: 810: 806: 795: 780: 777: 769: 763: 761: 751: 743: 735: 730: 722: 720: 717: 715: 710: 703: 699: 697: 692: 690: 686: 682: 678: 669: 661: 657: 655: 651: 644: 639: 635: 626: 619: 610: 603: 594: 592: 588: 584: 580: 576: 572: 570: 556: 544: 535: 533: 525: 519: 512: 507: 500: 495: 488: 483: 476: 471: 464: 459: 457: 455: 450: 446: 444: 440: 436: 432: 428: 424: 420: 416: 415:wave equation 412: 407: 405: 401: 397: 393: 388: 384: 380: 376: 371: 368: 364: 360: 356: 352: 348: 344: 340: 333: 328: 321: 319: 317: 313: 309: 305: 301: 297: 293: 289: 285: 281: 277: 273: 272:James Gregory 269: 265: 261: 257: 254: 250: 246: 242: 236: 231: 224: 222: 220: 219:semi-circular 214: 212: 208: 204: 200: 196: 192: 188: 184: 180: 176: 172: 167: 165: 161: 157: 153: 149: 145: 141: 137: 133: 113: 105: 89: 80: 76: 74: 70: 66: 62: 58: 54: 50: 43: 39: 35: 30: 26: 22: 6394: 6342: 6338: 6328: 6279: 6275: 6265: 6241: 6234: 6215: 6209: 6190: 6161: 6153: 6138: 6113: 6107: 6101: 6087:(3): 29–40. 6084: 6080: 6071: 6046: 6042: 6032: 6012: 6005: 5993:. Retrieved 5980: 5970: 5960:21 September 5958:. Retrieved 5948: 5940: 5935: 5925: 5921: 5897: 5891: 5875: 5871: 5859: 5850:, vol.  5847: 5842: 5826: 5822: 5817: 5781: 5775: 5765: 5742: 5737: 5723: 5716: 5708: 5699: 5692: 5684: 5680: 5665: 5660: 5649:, retrieved 5627: 5617: 5558: 5554: 5547: 5520: 5514: 5502:. Retrieved 5487: 5480: 5471: 5451: 5441: 5440: 5433: 5432: 5416: 5411: 5357:Fresnel zone 5266: 5258:Applications 5253: 5249: 5238: 5234: 5216: 5181: 5176: 5048: 5038: 5032: 5006:matter waves 5003: 4911: 4869: 4802: 4785: 4781: 4779: 4767: 4744: 4722: 4713: 4475: 4460: 4439: 4416: 4395: 4058: 3619: 3402: 3139: 3061: 2777: 2589: 2473: 2247:at location 2226: 2157:is equal to 1991: 1978: 1957: 1950: 1796: 1792: 1789: 1705: 1557: 1439: 1428: 1124:equation as 1115: 1016: 796: 764: 756: 718: 711: 708: 693: 674: 648: 633: 573: 566: 529: 451: 447: 408: 396:G. I. Taylor 383:wavefunction 372: 355:point source 336: 290:performed a 288:Thomas Young 267: 264:Isaac Newton 255: 248: 239: 215: 193:, and other 177:, or when a 168: 156:interference 129: 68: 48: 47: 25: 6504:Diffraction 6488:Outer space 6476:Spaceflight 6440:Mathematics 5995:9 September 5442:Translation 5372:Quasioptics 5049:Bragg's law 5029:Bragg's law 4900:Matter wave 4887:double-slit 4478:diffraction 4470:zeta Boötis 4467:binary star 4462:lucky image 4431:convex lens 3620:Now, since 1953:convolution 1587:path length 454:water waves 332:ripple tank 256:diffringere 251:, from the 249:diffraction 203:radio waves 191:water waves 69:diffraction 61:propagating 49:Diffraction 6498:Categories 6408:at YouTube 5404:References 5382:Reflection 5377:Refraction 5033:reflection 5027:Following 4898:See also: 4805:half-plane 4419:laser beam 1444:above, if 685:iridescent 643:Arago spot 591:refraction 518:spider web 431:near field 367:amplitudes 179:sound wave 171:light wave 152:wavelength 21:refraction 6452:Astronomy 6304:1476-4687 5808:110408369 5593:1748-3395 5568:1402.1867 5523:: 67–85. 5504:7 January 5225:Coherence 5192:electrons 5143:θ 5103:λ 5080:θ 5077:⁡ 5062:λ 4924:λ 4798:wavefront 4790:radiation 4667:λ 4656:θ 4653:⁡ 4647:≈ 4644:θ 4613:≫ 4526:λ 4500:λ 4488:Δ 4305:− 4223:∬ 4213:π 4188:∝ 4176:Ψ 4149:ϕ 4146:⁡ 4140:θ 4137:⁡ 4098:ϕ 4095:⁡ 4089:θ 4086:⁡ 4005:ϕ 4002:⁡ 3985:ϕ 3982:⁡ 3973:θ 3970:⁡ 3958:− 3876:∬ 3866:π 3841:∝ 3829:Ψ 3803:^ 3794:θ 3791:⁡ 3779:^ 3767:ϕ 3764:⁡ 3755:θ 3752:⁡ 3740:^ 3731:ϕ 3728:⁡ 3722:θ 3719:⁡ 3707:^ 3678:^ 3655:^ 3571:^ 3562:⋅ 3540:− 3458:∬ 3448:π 3423:∝ 3411:Ψ 3380:^ 3371:⋅ 3349:− 3335:π 3281:ψ 3240:− 3227:π 3203:− 3148:ψ 3120:^ 3097:^ 2995:− 2982:π 2958:− 2855:∬ 2851:∝ 2839:Ψ 2743:− 2730:π 2706:− 2651:ψ 2567:π 2530:ψ 2505:ω 2499:− 2454:ψ 2432:∂ 2422:∂ 2403:ψ 2394:∇ 2354:δ 2320:δ 2314:ψ 2298:ψ 2289:∇ 2235:ψ 2176:λ 2168:π 2089:θ 2086:⁡ 2069:θ 2066:⁡ 2014:θ 1998:variation 1994:Airy disk 1979:Airy disk 1969:Airy disk 1890:θ 1866:λ 1845:θ 1840:⁡ 1834:± 1824:θ 1819:⁡ 1716:θ 1678:θ 1674:⁡ 1668:± 1665:θ 1662:⁡ 1651:λ 1647:π 1633:⁡ 1603:θ 1567:θ 1536:≈ 1533:θ 1511:λ 1508:≫ 1482:θ 1459:λ 1456:≪ 1440:From the 1431:far field 1399:⁡ 1384:⁡ 1355:π 1347:θ 1322:π 1317:− 1311:θ 1283:θ 1231:θ 1197:θ 1194:⁡ 1186:λ 1182:π 1168:⁡ 1138:θ 1078:λ 1063:θ 1059:⁡ 1044:given by 1026:θ 1002:λ 976:θ 932:λ 920:θ 916:⁡ 901:given by 883:θ 853:θ 847:⁡ 807:λ 781:π 681:deli meat 445:methods. 423:far field 322:Mechanism 268:inflexion 162:(e.g., a 140:wavefront 114:θ 104:wavefront 36:of a red 6369:24914146 6312:10963603 6257:Archived 5989:Archived 5914:Archived 5903:Archived 5784:: 1–16. 5754:Archived 5673:Archived 5670:pp. 1–11 5651:25 April 5601:22447163 5460:Archived 5434:Original 5424:Archived 5275:See also 5188:neutrons 4999:momentum 4858:Patterns 4630:paraxial 4560:f-number 4437:effect. 4423:coherent 4378:′ 4366:′ 4349:′ 4328:′ 4293:′ 4282:′ 4059:Letting 4041:′ 4029:′ 4012:′ 3992:′ 3946:′ 3935:′ 3668:′ 3645:′ 3634:′ 3602:′ 3590:′ 3558:′ 3528:′ 3517:′ 3367:′ 3303:′ 3249:′ 3212:′ 3170:′ 3110:′ 3087:′ 3076:′ 3036:′ 3024:′ 3004:′ 2967:′ 2925:′ 2914:′ 2752:′ 2715:′ 2673:′ 2604:′ 768:coherent 654:aperture 623:A solar 569:hologram 526:Examples 349:and the 241:Da Vinci 197:such as 148:coherent 144:wavelets 53:aperture 42:aperture 6428:Physics 6414:Portals 6360:4052855 6320:4300920 6284:Bibcode 6051:Bibcode 5786:Bibcode 5609:5918772 5573:Bibcode 4997:is the 4973:is the 4828:(UTD). 4558:is the 4465:of the 1996:. The 696:jetties 425:), the 417:), the 373:In the 225:History 6367:  6357:  6318:  6310:  6302:  6276:Nature 6249:  6222:  6216:Optics 6197:  6170:  6145:  6020:  5927:TraitĂ© 5884:337–78 5880:246–96 5806:  5751:p. 254 5642:  5607:  5599:  5591:  5535:  5495:  5421:page 2 5184:X-rays 5095:where 4953:where 4906:, and 4687:where 4518:where 3770:  3758:  2932:  2346:where 2117:where 1881:where 1217:where 1093:where 947:where 609:corona 607:Lunar 579:corona 379:photon 363:phases 199:X-rays 57:shadow 6464:Stars 6316:S2CID 5981:Slate 5911:p. 15 5804:S2CID 5605:S2CID 5563:arXiv 5190:(and 5177:order 4877:sines 2522:) is 2474:(See 2215:is a 1525:only 625:glory 583:glory 449:out. 343:waves 253:Latin 38:laser 6365:PMID 6308:PMID 6300:ISSN 6247:ISBN 6220:ISBN 6195:ISBN 6168:ISBN 6143:ISBN 6018:ISBN 5997:2013 5962:2007 5653:2024 5640:ISBN 5597:PMID 5589:ISSN 5533:ISBN 5506:2023 5493:ISBN 4977:and 4780:The 4745:The 4662:1.22 4497:1.22 4110:and 3693:and 2188:and 1624:sinc 1381:sinc 1159:sinc 689:wave 675:The 441:and 400:1909 308:1818 306:and 304:1816 296:1803 280:1675 276:1638 260:1665 235:1803 201:and 73:1660 6355:PMC 6347:doi 6343:369 6292:doi 6280:406 6118:doi 6089:doi 6059:doi 5920:: 5794:doi 5705:149 5679:: 5632:doi 5581:doi 5525:doi 5430:: 5074:sin 4784:or 4650:sin 4636:is 4409:). 4143:sin 4134:sin 4092:cos 4083:sin 3999:sin 3979:cos 3967:sin 3788:cos 3761:sin 3749:sin 3725:cos 3716:sin 2280:), 2083:sin 2063:sin 1837:sin 1816:sin 1671:sin 1659:sin 1396:sin 1339:to 1191:sin 1056:sin 980:min 924:min 913:sin 887:min 844:sin 398:in 337:In 294:in 130:In 6500:: 6397:. 6393:. 6363:. 6353:. 6341:. 6337:. 6314:. 6306:. 6298:. 6290:. 6278:. 6274:. 6255:. 6181:^ 6130:^ 6114:62 6112:. 6085:55 6083:. 6057:. 6047:13 6045:. 6041:. 5987:. 5983:. 5979:. 5886:.) 5882:, 5802:. 5792:. 5782:94 5780:. 5774:. 5729:95 5707:. 5638:, 5626:, 5603:. 5595:. 5587:. 5579:. 5571:. 5557:. 5531:. 5051:: 4902:, 1555:. 1426:. 1301:), 762:. 691:. 318:. 262:. 221:. 189:, 75:. 32:A 6416:: 6401:. 6371:. 6349:: 6322:. 6294:: 6286:: 6228:. 6203:. 6124:. 6120:: 6095:. 6091:: 6065:. 6061:: 6053:: 6026:. 5999:. 5964:. 5900:… 5852:V 5810:. 5796:: 5788:: 5760:. 5731:. 5634:: 5611:. 5583:: 5575:: 5565:: 5559:7 5541:. 5527:: 5508:. 5202:d 5163:m 5123:d 5083:, 5071:d 5068:2 5065:= 5059:m 4985:p 4961:h 4941:, 4935:p 4932:h 4927:= 4695:D 4675:, 4670:D 4659:= 4628:( 4616:1 4610:N 4590:D 4570:f 4546:N 4506:, 4503:N 4494:= 4491:x 4472:. 4382:, 4375:y 4371:d 4363:x 4359:d 4353:) 4346:y 4340:y 4336:k 4332:+ 4325:x 4319:x 4315:k 4311:( 4308:i 4301:e 4297:) 4290:y 4286:, 4279:x 4275:( 4269:c 4266:n 4263:i 4258:E 4249:e 4246:r 4243:u 4240:t 4237:r 4234:e 4231:p 4228:a 4216:r 4210:4 4204:r 4201:k 4198:i 4194:e 4185:) 4182:r 4179:( 4153:, 4131:k 4128:= 4123:y 4119:k 4080:k 4077:= 4072:x 4068:k 4045:. 4038:y 4034:d 4026:x 4022:d 4016:) 4009:y 3996:+ 3989:x 3976:( 3964:k 3961:i 3954:e 3950:) 3943:y 3939:, 3932:x 3928:( 3922:c 3919:n 3916:i 3911:E 3902:e 3899:r 3896:u 3893:t 3890:r 3887:e 3884:p 3881:a 3869:r 3863:4 3857:r 3854:k 3851:i 3847:e 3838:) 3835:r 3832:( 3809:, 3800:z 3785:+ 3776:y 3746:+ 3737:x 3713:= 3704:r 3675:y 3665:y 3661:+ 3652:x 3642:x 3638:= 3630:r 3606:. 3599:y 3595:d 3587:x 3583:d 3577:) 3568:r 3554:r 3549:( 3546:k 3543:i 3536:e 3532:) 3525:y 3521:, 3514:x 3510:( 3504:c 3501:n 3498:i 3493:E 3484:e 3481:r 3478:u 3475:t 3472:r 3469:e 3466:p 3463:a 3451:r 3445:4 3439:r 3436:k 3433:i 3429:e 3420:) 3417:r 3414:( 3386:) 3377:r 3363:r 3358:( 3355:k 3352:i 3345:e 3338:r 3332:4 3326:r 3323:k 3320:i 3316:e 3310:= 3307:) 3299:r 3293:| 3288:r 3284:( 3261:, 3254:| 3245:r 3236:r 3231:| 3224:4 3217:| 3208:r 3199:r 3194:| 3190:k 3187:i 3183:e 3177:= 3174:) 3166:r 3160:| 3155:r 3151:( 3126:. 3117:y 3107:y 3103:+ 3094:x 3084:x 3080:= 3072:r 3040:, 3033:y 3029:d 3021:x 3017:d 3009:| 3000:r 2991:r 2986:| 2979:4 2972:| 2963:r 2954:r 2949:| 2945:k 2942:i 2938:e 2929:) 2922:y 2918:, 2911:x 2907:( 2901:c 2898:n 2895:i 2890:E 2881:e 2878:r 2875:u 2872:t 2869:r 2866:e 2863:p 2860:a 2848:) 2845:r 2842:( 2816:) 2813:y 2810:, 2807:x 2804:( 2798:c 2795:n 2792:i 2787:E 2764:. 2757:| 2748:r 2739:r 2734:| 2727:4 2720:| 2711:r 2702:r 2697:| 2693:k 2690:i 2686:e 2680:= 2677:) 2669:r 2663:| 2658:r 2654:( 2626:r 2600:r 2576:. 2570:r 2564:4 2558:r 2555:k 2552:i 2548:e 2542:= 2539:) 2536:r 2533:( 2508:t 2502:i 2495:e 2460:. 2457:) 2451:r 2448:( 2440:2 2436:r 2426:2 2414:r 2411:1 2406:= 2398:2 2365:) 2361:r 2357:( 2334:, 2331:) 2327:r 2323:( 2317:= 2309:2 2305:k 2301:+ 2293:2 2256:r 2201:1 2197:J 2172:/ 2165:2 2145:k 2125:a 2105:, 2100:2 2095:) 2080:a 2077:k 2072:) 2060:a 2057:k 2054:( 2049:1 2045:J 2041:2 2035:( 2028:0 2024:I 2020:= 2017:) 2011:( 2008:I 1936:m 1916:d 1894:i 1869:, 1863:m 1860:= 1856:) 1849:i 1828:m 1812:( 1808:d 1797:m 1793:θ 1734:. 1720:i 1691:] 1687:) 1682:i 1656:( 1644:d 1637:[ 1628:2 1617:0 1613:I 1609:= 1606:) 1600:( 1597:I 1571:i 1539:0 1523:, 1505:d 1494:, 1471:, 1453:d 1433:( 1420:, 1406:x 1402:x 1390:= 1387:x 1358:2 1350:= 1325:2 1314:= 1289:0 1286:= 1275:( 1259:0 1255:I 1234:) 1228:( 1225:I 1205:, 1201:) 1179:d 1172:( 1163:2 1152:0 1148:I 1144:= 1141:) 1135:( 1132:I 1101:n 1081:, 1075:n 1072:= 1067:n 1052:d 1030:n 955:d 935:, 929:= 909:d 860:2 856:) 850:( 841:d 827:. 815:2 811:/ 778:2 611:. 278:– 274:( 90:d

Index

refraction

diffraction pattern
laser
aperture
aperture
shadow
propagating
Francesco Maria Grimaldi
1660

wavefront
classical physics
Huygens–Fresnel principle
wavefront
wavelets
coherent
wavelength
interference
closely spaced openings
diffraction grating
light wave
refractive index
sound wave
acoustic impedance
gravitational waves
water waves
electromagnetic waves
X-rays
radio waves

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑