Knowledge

Spectral line

Source 📝

202:. Which type of line is observed depends on the type of material and its temperature relative to another emission source. An absorption line is produced when photons from a hot, broad spectrum source pass through a cooler material. The intensity of light, over a narrow frequency range, is reduced due to absorption by the material and re-emission in random directions. By contrast, a bright emission line is produced when photons from a hot material are detected, perhaps in the presence of a broad spectrum from a cooler source. The intensity of light, over a narrow frequency range, is increased due to emission by the hot material. 2763: 2133: 2923: 2903: 25: 60: 2273: 2233: 2173: 1813: 1793: 1253: 2883: 2843: 2823: 2803: 2353: 2153: 2093: 1993: 1873: 1833: 1753: 1713: 1593: 1453: 1213: 1193: 1033: 1333: 39: 2723: 2633: 2573: 2513: 2413: 2373: 2213: 2193: 1973: 1693: 1633: 1433: 1393: 1373: 1293: 2433: 1413: 1133: 1093: 973: 2743: 2613: 2553: 2493: 2453: 2393: 2333: 2293: 2253: 2053: 1913: 1853: 1773: 1673: 1653: 1613: 1573: 1353: 1233: 1013: 2783: 1733: 2863: 2703: 2473: 2313: 2113: 2073: 1933: 1893: 1533: 1513: 1493: 1173: 993: 2013: 1273: 1113: 1073: 2668: 2033: 1313: 1053: 2593: 2533: 1553: 1473: 1153: 1953: 80: 382:). In addition, its center may be shifted from its nominal central wavelength. There are several reasons for this broadening and shift. These reasons may be divided into two general categories – broadening due to local conditions and broadening due to extended conditions. Broadening due to local conditions is due to effects which hold in a small region around the emitting element, usually small enough to assure 144: 457:: The collision of other particles with the light emitting particle interrupts the emission process, and by shortening the characteristic time for the process, increases the uncertainty in the energy emitted (as occurs in natural broadening). The duration of the collision is much shorter than the lifetime of the emission process. This effect depends on both the 487:. The form of the line profile is determined by the functional form of the perturbing force with respect to distance from the perturbing particle. There may also be a shift in the line center. The general expression for the lineshape resulting from quasistatic pressure broadening is a 4-parameter generalization of the Gaussian distribution known as a 191:), the photon is absorbed. Then the energy will be spontaneously re-emitted, either as one photon at the same frequency as the original one or in a cascade, where the sum of the energies of the photons emitted will be equal to the energy of the one absorbed (assuming the system returns to its original state). 411:) with the uncertainty of its energy. Some authors use the term "radiative broadening" to refer specifically to the part of natural broadening caused by the spontaneous radiative decay. A short lifetime will have a large energy uncertainty and a broad emission. This broadening effect results in an unshifted 835:
Each of these mechanisms can act in isolation or in combination with others. Assuming each effect is independent, the observed line profile is a convolution of the line profiles of each mechanism. For example, a combination of the thermal Doppler broadening and the impact pressure broadening yields a
3104:
Rothman, L.S.; Gordon, I.E.; Babikov, Y.; Barbe, A.; Chris Benner, D.; Bernath, P.F.; Birk, M.; Bizzocchi, L.; Boudon, V.; Brown, L.R.; Campargue, A.; Chance, K.; Cohen, E.A.; Coudert, L.H.; Devi, V.M.; Drouin, B.J.; Fayt, A.; Flaud, J.-M.; Gamache, R.R.; Harrison, J.J.; Hartmann, J.-M.; Hill, C.;
433:
depending on the velocity of the atom relative to the observer. The higher the temperature of the gas, the wider the distribution of velocities in the gas. Since the spectral line is a combination of all of the emitted radiation, the higher the temperature of the gas, the broader the spectral line
793:
Opacity broadening is an example of a non-local broadening mechanism. Electromagnetic radiation emitted at a particular point in space can be reabsorbed as it travels through space. This absorption depends on wavelength. The line is broadened because the photons at the line center have a greater
814:
due to a finite line-of-sight velocity projection. If different parts of the emitting body have different velocities (along the line of sight), the resulting line will be broadened, with the line width proportional to the width of the velocity distribution. For example, radiation emitted from a
770:
is a general term for broadening because some emitting particles are in a different local environment from others, and therefore emit at a different frequency. This term is used especially for solids, where surfaces, grain boundaries, and stoichiometry variations can create a variety of local
386:. Broadening due to extended conditions may result from changes to the spectral distribution of the radiation as it traverses its path to the observer. It also may result from the combining of radiation from a number of regions which are far from each other. 819:, will be broadened due to the line-of-sight variations in velocity on opposite sides of the star (this effect usually referred to as rotational broadening). The greater the rate of rotation, the broader the line. Another example is an imploding 843:
However, the different line broadening mechanisms are not always independent. For example, the collisional effects and the motional Doppler shifts can act in a coherent manner, resulting under some conditions even in a collisional
3271: 3245: 755: 688: 629: 574: 479:), thereby altering the frequency of the emitted radiation. The duration of the influence is much longer than the lifetime of the emission process. This effect depends on the 899:
because they remain largely unchanged for a given chemical element, independent of their chemical environment. Longer wavelengths correspond to lower energies, where the
91:
of this sunlight is the "source." This is the spectrum of a blue sky somewhat close to the horizon, looking east with the sun to the west at around 3–4 pm on a clear day.
127:. These "fingerprints" can be compared to the previously collected ones of atoms and molecules, and are thus used to identify the atomic and molecular components of 785:
Certain types of broadening are the result of conditions over a large region of space rather than simply upon conditions that are local to the emitting particle.
3057: 3037: 524: 3299: 703:
is often useful in describing the profile. The energy shift as a function of distance between the interacting particles is given in the wings by e.g. the
232:
Depending on the material and its physical conditions, the energy of the involved photons can vary widely, with the spectral lines observed across the
429:
The atoms in a gas which are emitting radiation will have a distribution of velocities. Each photon emitted will be "red"- or "blue"-shifted by the
581:
occurs when the perturbing particle is of the same type as the emitting particle, which introduces the possibility of an energy exchange process.
446:
The presence of nearby particles will affect the radiation emitted by an individual particle. There are two limiting cases by which this occurs:
108: 3249: 640:, which results from the interaction of an emitter with an electric field, causing a shift in energy that is quadratic in the field strength. 3391: 3185: 3053: 104: 794:
reabsorption probability than the photons at the line wings. Indeed, the reabsorption near the line center may be so great as to cause a
205:
Spectral lines are highly atom-specific, and can be used to identify the chemical composition of any medium. Several elements, including
415:. The natural broadening can be experimentally altered only to the extent that decay rates can be artificially suppressed or enhanced. 771:
environments for a given atom to occupy. In liquids, the effects of inhomogeneous broadening is sometimes reduced by a process called
359: 183:(which is connected to its frequency) to allow a change in the energy state of the system (in the case of an atom this is usually an 3356: 3333: 3045: 321: 383: 342: 3060:, Volume 36, by Instytut Podstawowych Problemów Techniki (Polska Akademia Nauk), publisher: Państwowe Wydawn. Naukowe., 1995, 879:. Many spectral lines occur at wavelengths outside this range. At shorter wavelengths, which correspond to higher energies, 3200:
For example, in the following article, decay was suppressed via a microwave cavity, thus reducing the natural broadening:
83:
Absorption lines for air, under indirect illumination, so that the gas is not directly between source and detector. Here,
798:
in which the intensity at the center of the line is less than in the wings. This process is also sometimes called
3002: 904: 876: 861: 766: 329: 233: 152: 3105:
Hodges, J.T.; Jacquemart, D.; Jolly, A.; Lamouroux, J.; Le Roy, R.J.; Li, G.; Long, D.A.; et al. (2013).
506:, which results from the interaction of an emitter with an electric field of a charged particle at a distance 710: 704: 643: 584: 529: 358:. These series exist across atoms of all elements, and the patterns for all atoms are well-predicted by the 148: 65: 3155: 2971: 637: 188: 3386: 400: 3283: 3211: 3118: 2961: 896: 700: 404: 399:
The lifetime of excited states results in natural broadening, also known as lifetime broadening. The
2956: 871:
The phrase "spectral lines", when not qualified, usually refers to lines having wavelengths in the
696: 503: 488: 466: 412: 371: 100: 88: 2991: 773: 424: 2762: 2132: 2922: 2902: 3352: 3329: 3227: 3181: 3134: 3049: 3041: 2981: 2976: 2540: 2272: 2232: 2172: 1812: 1792: 1252: 435: 160: 48: 44: 495:
Pressure broadening may also be classified by the nature of the perturbing force as follows:
3291: 3219: 3173: 3151: 3126: 2882: 2842: 2822: 2802: 2352: 2152: 2092: 1992: 1872: 1832: 1752: 1712: 1592: 1452: 1332: 1212: 1192: 1032: 939: 928: 872: 820: 284: 269: 268:, though some of the Fraunhofer "lines" are blends of multiple lines from several different 253: 84: 69: 2722: 2632: 2572: 2512: 2432: 2412: 2372: 2212: 2192: 1972: 1692: 1632: 1432: 1412: 1392: 1372: 1292: 1132: 1092: 972: 59: 24: 2986: 2782: 2742: 2612: 2552: 2492: 2452: 2392: 2332: 2292: 2252: 2052: 1912: 1852: 1772: 1732: 1672: 1652: 1612: 1572: 1352: 1232: 1012: 257: 475:: The presence of other particles shifts the energy levels in the emitting particle (see 3287: 3215: 3122: 2862: 2702: 2472: 2312: 2112: 2072: 2012: 1932: 1892: 1532: 1512: 1492: 1272: 1172: 1112: 1072: 992: 38: 3348: 3202:
Gabrielse, Gerald; H. Dehmelt (1985). "Observation of Inhibited Spontaneous Emission".
2667: 2032: 1312: 1052: 908: 509: 430: 379: 354: 222: 172: 119:
range, compared with the nearby frequencies. Spectral lines are often used to identify
2592: 2532: 1552: 1472: 1152: 3380: 3007: 2996: 916: 912: 837: 811: 476: 375: 337: 288: 280: 180: 1952: 79: 3012: 2750: 2120: 927:
For each element, the following table shows the spectral lines which appear in the
884: 849: 408: 348: 333: 143: 3367: 225:
of the material, so they are widely used to determine the physical conditions of
3130: 3017: 2910: 2890: 880: 484: 462: 218: 3295: 3223: 3156:
On a Heuristic Viewpoint Concerning the Production and Transformation of Light
2966: 2260: 2220: 2160: 1800: 1780: 1240: 313: 237: 3138: 3036:"Van der Waals profile" appears as lowercase in almost all sources, such as: 378:
with a nonzero range of frequencies, not a single frequency (i.e., a nonzero
2934: 2870: 2830: 2810: 2790: 2340: 2140: 2080: 1980: 1860: 1820: 1740: 1700: 1580: 1440: 1320: 1200: 1180: 1020: 317: 241: 217:, were discovered by spectroscopic means. Spectral lines also depend on the 116: 3231: 3106: 2710: 2675: 2640: 2620: 2560: 2500: 2420: 2400: 2360: 2200: 2180: 1960: 1680: 1620: 1420: 1400: 1380: 1360: 1280: 1120: 1080: 960: 900: 888: 325: 264:
for a line at 393.366 nm emerging from singly-ionized calcium atom,
210: 184: 168: 124: 3177: 3082: 2930: 2770: 2730: 2600: 2480: 2440: 2380: 2320: 2280: 2240: 2040: 1900: 1840: 1760: 1720: 1660: 1640: 1600: 1560: 1340: 1220: 1000: 824: 480: 458: 214: 2850: 2690: 2460: 2300: 2100: 2060: 2000: 1920: 1880: 1520: 1500: 1480: 1260: 1160: 1100: 1060: 980: 206: 176: 132: 275:
In other cases, the lines are designated according to the level of
229:
and other celestial bodies that cannot be analyzed by other means.
3040:
by Clive Anthony Croxton, 1980, A Wiley-Interscience publication,
2655: 2020: 1300: 1040: 892: 526:, causing a shift in energy that is linear in the field strength. 291:
I, singly ionized atoms with II, and so on, so that, for example:
142: 112: 78: 3084:
NIST Atomic Spectra Database, NIST Standard Reference Database 78
340:. Originally all spectral lines were classified into series: the 2580: 2520: 1540: 1460: 1140: 816: 434:
emitted from that gas. This broadening effect is described by a
226: 164: 128: 120: 3272:"Theory of the pressure broadening and shift of spectral lines" 1940: 276: 3111:
Journal of Quantitative Spectroscopy and Radiative Transfer
99:
is a weaker or stronger region in an otherwise uniform and
3168:
Krainov, Vladimir; Reiss, Howard; Smirnov, Boris (1997).
16:
A distinctive narrow spectral feature of chemical species
695:
occurs when the emitting particle is being perturbed by
362:. These series were later associated with suborbitals. 159:
Spectral lines are the result of interaction between a
713: 646: 587: 532: 512: 324:(for molecular lines). Many spectral lines of atomic 465:
of the gas. The broadening effect is described by a
312:
More detailed designations usually include the line
810:Radiation emitted by a moving source is subject to 749: 682: 623: 568: 518: 3107:"The HITRAN2012 molecular spectroscopic database" 403:relates the lifetime of an excited state (due to 3087:, National Institute of Standards and Technology 2992:Table of emission spectra of gas discharge lamps 915:used to detect neutral hydrogen throughout the 328:also have designations within their respective 179:. When a photon has about the right amount of 907:of hydrogen. At even longer wavelengths, the 194:A spectral line may be observed either as an 8: 3081:Kramida, Alexander; Ralchenko, Yuri (1999), 370:There are a number of effects which control 254:visible part of the electromagnetic spectrum 3038:Statistical mechanics of the liquid surface 933: 738: 729: 712: 671: 662: 645: 612: 603: 586: 557: 548: 531: 511: 483:of the gas, but is rather insensitive to 3073: 3029: 954: 151:(mid) and discrete spectrum lines of a 135:, which would otherwise be impossible. 750:{\displaystyle (\Delta E\sim 1/r^{6})} 683:{\displaystyle (\Delta E\sim 1/r^{4})} 624:{\displaystyle (\Delta E\sim 1/r^{3})} 569:{\displaystyle (\Delta E\sim 1/r^{2})} 374:. A spectral line extends over a tiny 3372:. New York: McGraw-Hill book Company. 3170:Radiative Processes in Atomic Physics 891:. At the much shorter wavelengths of 469:and there may be an associated shift. 287:. Neutral atoms are denoted with the 7: 3345:Spectral Line Broadening by Plasmas 856:Spectral lines of chemical elements 781:Broadening due to non-local effects 717: 650: 591: 536: 438:and there is no associated shift. 14: 3326:Principles of Plasma Spectroscopy 3248:. Fas.harvard.edu. Archived from 815:distant rotating body, such as a 2921: 2901: 2881: 2861: 2841: 2821: 2801: 2781: 2761: 2741: 2721: 2701: 2666: 2631: 2611: 2591: 2571: 2551: 2531: 2511: 2491: 2471: 2451: 2431: 2411: 2391: 2371: 2351: 2331: 2311: 2291: 2271: 2251: 2231: 2211: 2191: 2171: 2151: 2131: 2111: 2091: 2071: 2051: 2031: 2011: 1991: 1971: 1951: 1931: 1911: 1891: 1871: 1851: 1831: 1811: 1791: 1771: 1751: 1731: 1711: 1691: 1671: 1651: 1631: 1611: 1591: 1571: 1551: 1531: 1511: 1491: 1471: 1451: 1431: 1411: 1391: 1371: 1351: 1331: 1311: 1291: 1271: 1251: 1231: 1211: 1191: 1171: 1151: 1131: 1111: 1091: 1071: 1051: 1031: 1011: 991: 971: 58: 37: 23: 3328:. Cambridge: University Press. 473:Quasistatic pressure broadening 390:Broadening due to local effects 384:local thermodynamic equilibrium 806:Macroscopic Doppler broadening 744: 714: 699:. For the quasistatic case, a 677: 647: 618: 588: 563: 533: 1: 320:number (for atomic lines) or 297:— copper ion with +1 charge, 252:Strong spectral lines in the 3392:Spectrum (physical sciences) 3058:Journal of technical physics 3131:10.1016/j.jqsrt.2013.07.002 903:spectral lines include the 883:spectral lines include the 405:spontaneous radiative decay 306:— iron ion with +2 charge, 3408: 931:at about 400-700 nm. 859: 634:Quadratic Stark broadening 451:Impact pressure broadening 422: 419:Thermal Doppler broadening 283:to the designation of the 147:Continuous spectrum of an 3296:10.1080/00018738100101467 3224:10.1103/PhysRevLett.55.67 895:, the lines are known as 366:Line broadening and shift 3246:"Collisional Broadening" 3003:Hydrogen spectral series 877:electromagnetic spectrum 862:Hydrogen spectral series 767:Inhomogeneous broadening 761:Inhomogeneous broadening 693:Van der Waals broadening 234:electromagnetic spectrum 3366:Griem, Hans R. (1964). 3343:Griem, Hans R. (1974). 3324:Griem, Hans R. (1997). 3204:Physical Review Letters 705:Lennard-Jones potential 500:Linear Stark broadening 2972:Electron configuration 751: 684: 638:quadratic Stark effect 625: 570: 520: 455:collisional broadening 156: 92: 897:characteristic X-rays 752: 701:Van der Waals profile 685: 626: 571: 521: 401:uncertainty principle 260:designation, such as 146: 139:Types of line spectra 103:. It may result from 82: 2962:Atomic spectral line 711: 697:Van der Waals forces 644: 585: 579:Resonance broadening 530: 510: 360:Rydberg-Ritz formula 256:often have a unique 3369:Plasma Spectroscopy 3288:1981AdPhy..30..367P 3276:Advances in Physics 3216:1985PhRvL..55...67G 3123:2013JQSRT.130....4R 2957:Absorption spectrum 942: 504:linear Stark effect 489:stable distribution 442:Pressure broadening 372:spectral line shape 101:continuous spectrum 89:Rayleigh scattering 72:(discrete spectrum) 66:Absorption spectrum 30:Continuous spectrum 3270:Peach, G. (1981). 3178:10.1002/3527605606 934: 789:Opacity broadening 774:motional narrowing 747: 680: 621: 566: 516: 467:Lorentzian profile 425:Doppler broadening 413:Lorentzian profile 395:Natural broadening 316:and may include a 157: 93: 3187:978-0-471-12533-4 3054:978-0-471-27663-0 2982:Fourier transform 2977:Emission spectrum 2948: 2947: 940:chemical elements 519:{\displaystyle r} 149:incandescent lamp 49:discrete spectrum 3399: 3373: 3362: 3339: 3311: 3310: 3308: 3307: 3298:. Archived from 3267: 3261: 3260: 3258: 3257: 3242: 3236: 3235: 3198: 3192: 3191: 3165: 3159: 3152:Einstein, Albert 3149: 3143: 3142: 3101: 3095: 3094: 3093: 3092: 3078: 3061: 3034: 2925: 2905: 2885: 2865: 2845: 2825: 2805: 2785: 2765: 2745: 2725: 2705: 2670: 2635: 2615: 2595: 2575: 2555: 2535: 2515: 2495: 2475: 2455: 2435: 2415: 2395: 2375: 2355: 2335: 2315: 2295: 2275: 2255: 2235: 2215: 2195: 2175: 2155: 2135: 2115: 2095: 2075: 2055: 2035: 2015: 1995: 1975: 1955: 1935: 1915: 1895: 1875: 1855: 1835: 1815: 1795: 1775: 1755: 1735: 1715: 1695: 1675: 1655: 1635: 1615: 1595: 1575: 1555: 1535: 1515: 1495: 1475: 1455: 1435: 1415: 1395: 1375: 1355: 1335: 1315: 1295: 1275: 1255: 1235: 1215: 1195: 1175: 1155: 1135: 1115: 1095: 1075: 1055: 1035: 1015: 995: 975: 943: 929:visible spectrum 831:Combined effects 756: 754: 753: 748: 743: 742: 733: 689: 687: 686: 681: 676: 675: 666: 630: 628: 627: 622: 617: 616: 607: 575: 573: 572: 567: 562: 561: 552: 525: 523: 522: 517: 436:Gaussian profile 343:principal series 322:band designation 285:chemical element 167:, but sometimes 153:fluorescent lamp 87:in sunlight and 85:Fraunhofer lines 70:Absorption lines 62: 41: 27: 3407: 3406: 3402: 3401: 3400: 3398: 3397: 3396: 3377: 3376: 3365: 3359: 3342: 3336: 3323: 3320: 3318:Further reading 3315: 3314: 3305: 3303: 3269: 3268: 3264: 3255: 3253: 3244: 3243: 3239: 3201: 3199: 3195: 3188: 3167: 3166: 3162: 3150: 3146: 3103: 3102: 3098: 3090: 3088: 3080: 3079: 3075: 3070: 3065: 3064: 3035: 3031: 3026: 2987:Fraunhofer line 2953: 955:Spectral lines 925: 869: 864: 858: 848:, known as the 833: 808: 800:self-absorption 791: 783: 763: 734: 709: 708: 667: 642: 641: 636:occurs via the 608: 583: 582: 553: 528: 527: 508: 507: 502:occurs via the 444: 427: 421: 397: 392: 368: 258:Fraunhofer line 250: 200:absorption line 175:) and a single 141: 77: 76: 75: 74: 73: 63: 54: 53: 52: 42: 33: 32: 31: 28: 17: 12: 11: 5: 3405: 3403: 3395: 3394: 3389: 3379: 3378: 3375: 3374: 3363: 3357: 3349:Academic Press 3340: 3334: 3319: 3316: 3313: 3312: 3282:(3): 367–474. 3262: 3237: 3193: 3186: 3160: 3144: 3096: 3072: 3071: 3069: 3066: 3063: 3062: 3028: 3027: 3025: 3022: 3021: 3020: 3015: 3010: 3005: 3000: 2994: 2989: 2984: 2979: 2974: 2969: 2964: 2959: 2952: 2949: 2946: 2945: 2943: 2940: 2939:100–118 2937: 2927: 2926: 2919: 2916: 2913: 2907: 2906: 2899: 2896: 2893: 2887: 2886: 2879: 2876: 2873: 2867: 2866: 2859: 2856: 2853: 2847: 2846: 2839: 2836: 2833: 2827: 2826: 2819: 2816: 2813: 2807: 2806: 2799: 2796: 2793: 2787: 2786: 2779: 2776: 2773: 2767: 2766: 2759: 2756: 2753: 2747: 2746: 2739: 2736: 2733: 2727: 2726: 2719: 2716: 2713: 2707: 2706: 2699: 2696: 2693: 2687: 2686: 2684: 2681: 2678: 2672: 2671: 2664: 2661: 2658: 2652: 2651: 2649: 2646: 2643: 2637: 2636: 2629: 2626: 2623: 2617: 2616: 2609: 2606: 2603: 2597: 2596: 2589: 2586: 2583: 2577: 2576: 2569: 2566: 2563: 2557: 2556: 2549: 2546: 2543: 2537: 2536: 2529: 2526: 2523: 2517: 2516: 2509: 2506: 2503: 2497: 2496: 2489: 2486: 2483: 2477: 2476: 2469: 2466: 2463: 2457: 2456: 2449: 2446: 2443: 2437: 2436: 2429: 2426: 2423: 2417: 2416: 2409: 2406: 2403: 2397: 2396: 2389: 2386: 2383: 2377: 2376: 2369: 2366: 2363: 2357: 2356: 2349: 2346: 2343: 2337: 2336: 2329: 2326: 2323: 2317: 2316: 2309: 2306: 2303: 2297: 2296: 2289: 2286: 2283: 2277: 2276: 2269: 2266: 2263: 2257: 2256: 2249: 2246: 2243: 2237: 2236: 2229: 2226: 2223: 2217: 2216: 2209: 2206: 2203: 2197: 2196: 2189: 2186: 2183: 2177: 2176: 2169: 2166: 2163: 2157: 2156: 2149: 2146: 2143: 2137: 2136: 2129: 2126: 2123: 2117: 2116: 2109: 2106: 2103: 2097: 2096: 2089: 2086: 2083: 2077: 2076: 2069: 2066: 2063: 2057: 2056: 2049: 2046: 2043: 2037: 2036: 2029: 2026: 2023: 2017: 2016: 2009: 2006: 2003: 1997: 1996: 1989: 1986: 1983: 1977: 1976: 1969: 1966: 1963: 1957: 1956: 1949: 1946: 1943: 1937: 1936: 1929: 1926: 1923: 1917: 1916: 1909: 1906: 1903: 1897: 1896: 1889: 1886: 1883: 1877: 1876: 1869: 1866: 1863: 1857: 1856: 1849: 1846: 1843: 1837: 1836: 1829: 1826: 1823: 1817: 1816: 1809: 1806: 1803: 1797: 1796: 1789: 1786: 1783: 1777: 1776: 1769: 1766: 1763: 1757: 1756: 1749: 1746: 1743: 1737: 1736: 1729: 1726: 1723: 1717: 1716: 1709: 1706: 1703: 1697: 1696: 1689: 1686: 1683: 1677: 1676: 1669: 1666: 1663: 1657: 1656: 1649: 1646: 1643: 1637: 1636: 1629: 1626: 1623: 1617: 1616: 1609: 1606: 1603: 1597: 1596: 1589: 1586: 1583: 1577: 1576: 1569: 1566: 1563: 1557: 1556: 1549: 1546: 1543: 1537: 1536: 1529: 1526: 1523: 1517: 1516: 1509: 1506: 1503: 1497: 1496: 1489: 1486: 1483: 1477: 1476: 1469: 1466: 1463: 1457: 1456: 1449: 1446: 1443: 1437: 1436: 1429: 1426: 1423: 1417: 1416: 1409: 1406: 1403: 1397: 1396: 1389: 1386: 1383: 1377: 1376: 1369: 1366: 1363: 1357: 1356: 1349: 1346: 1343: 1337: 1336: 1329: 1326: 1323: 1317: 1316: 1309: 1306: 1303: 1297: 1296: 1289: 1286: 1283: 1277: 1276: 1269: 1266: 1263: 1257: 1256: 1249: 1246: 1243: 1237: 1236: 1229: 1226: 1223: 1217: 1216: 1209: 1206: 1203: 1197: 1196: 1189: 1186: 1183: 1177: 1176: 1169: 1166: 1163: 1157: 1156: 1149: 1146: 1143: 1137: 1136: 1129: 1126: 1123: 1117: 1116: 1109: 1106: 1103: 1097: 1096: 1089: 1086: 1083: 1077: 1076: 1069: 1066: 1063: 1057: 1056: 1049: 1046: 1043: 1037: 1036: 1029: 1026: 1023: 1017: 1016: 1009: 1006: 1003: 997: 996: 989: 986: 983: 977: 976: 969: 966: 963: 957: 956: 953: 950: 947: 936:Spectral lines 924: 921: 909:radio spectrum 905:Paschen series 868: 865: 857: 854: 832: 829: 807: 804: 790: 787: 782: 779: 762: 759: 758: 757: 746: 741: 737: 732: 728: 725: 722: 719: 716: 690: 679: 674: 670: 665: 661: 658: 655: 652: 649: 631: 620: 615: 611: 606: 602: 599: 596: 593: 590: 576: 565: 560: 556: 551: 547: 544: 541: 538: 535: 515: 493: 492: 470: 443: 440: 431:Doppler effect 423:Main article: 420: 417: 396: 393: 391: 388: 380:spectral width 367: 364: 355:diffuse series 332:, such as the 249: 246: 161:quantum system 140: 137: 64: 57: 56: 55: 45:Emission lines 43: 36: 35: 34: 29: 22: 21: 20: 19: 18: 15: 13: 10: 9: 6: 4: 3: 2: 3404: 3393: 3390: 3388: 3385: 3384: 3382: 3371: 3370: 3364: 3360: 3358:0-12-302850-7 3354: 3350: 3346: 3341: 3337: 3335:0-521-45504-9 3331: 3327: 3322: 3321: 3317: 3302:on 2013-01-14 3301: 3297: 3293: 3289: 3285: 3281: 3277: 3273: 3266: 3263: 3252:on 2015-09-24 3251: 3247: 3241: 3238: 3233: 3229: 3225: 3221: 3217: 3213: 3209: 3205: 3197: 3194: 3189: 3183: 3179: 3175: 3171: 3164: 3161: 3157: 3153: 3148: 3145: 3140: 3136: 3132: 3128: 3124: 3120: 3116: 3112: 3108: 3100: 3097: 3086: 3085: 3077: 3074: 3067: 3059: 3055: 3051: 3047: 3046:0-471-27663-4 3043: 3039: 3033: 3030: 3023: 3019: 3016: 3014: 3011: 3009: 3008:Spectral band 3006: 3004: 3001: 2998: 2997:Hydrogen line 2995: 2993: 2990: 2988: 2985: 2983: 2980: 2978: 2975: 2973: 2970: 2968: 2965: 2963: 2960: 2958: 2955: 2954: 2950: 2944: 2941: 2938: 2936: 2932: 2929: 2928: 2924: 2920: 2917: 2914: 2912: 2909: 2908: 2904: 2900: 2897: 2894: 2892: 2889: 2888: 2884: 2880: 2877: 2874: 2872: 2869: 2868: 2864: 2860: 2857: 2854: 2852: 2849: 2848: 2844: 2840: 2837: 2834: 2832: 2829: 2828: 2824: 2820: 2817: 2814: 2812: 2809: 2808: 2804: 2800: 2797: 2794: 2792: 2789: 2788: 2784: 2780: 2777: 2774: 2772: 2769: 2768: 2764: 2760: 2757: 2754: 2752: 2749: 2748: 2744: 2740: 2737: 2734: 2732: 2729: 2728: 2724: 2720: 2717: 2714: 2712: 2709: 2708: 2704: 2700: 2697: 2694: 2692: 2689: 2688: 2685: 2682: 2679: 2677: 2674: 2673: 2669: 2665: 2662: 2659: 2657: 2654: 2653: 2650: 2647: 2644: 2642: 2639: 2638: 2634: 2630: 2627: 2624: 2622: 2619: 2618: 2614: 2610: 2607: 2604: 2602: 2599: 2598: 2594: 2590: 2587: 2584: 2582: 2579: 2578: 2574: 2570: 2567: 2564: 2562: 2559: 2558: 2554: 2550: 2547: 2544: 2542: 2539: 2538: 2534: 2530: 2527: 2524: 2522: 2519: 2518: 2514: 2510: 2507: 2504: 2502: 2499: 2498: 2494: 2490: 2487: 2484: 2482: 2479: 2478: 2474: 2470: 2467: 2464: 2462: 2459: 2458: 2454: 2450: 2447: 2444: 2442: 2439: 2438: 2434: 2430: 2427: 2424: 2422: 2419: 2418: 2414: 2410: 2407: 2404: 2402: 2399: 2398: 2394: 2390: 2387: 2384: 2382: 2379: 2378: 2374: 2370: 2367: 2364: 2362: 2359: 2358: 2354: 2350: 2347: 2344: 2342: 2339: 2338: 2334: 2330: 2327: 2324: 2322: 2319: 2318: 2314: 2310: 2307: 2304: 2302: 2299: 2298: 2294: 2290: 2287: 2284: 2282: 2279: 2278: 2274: 2270: 2267: 2264: 2262: 2259: 2258: 2254: 2250: 2247: 2244: 2242: 2239: 2238: 2234: 2230: 2227: 2224: 2222: 2219: 2218: 2214: 2210: 2207: 2204: 2202: 2199: 2198: 2194: 2190: 2187: 2184: 2182: 2179: 2178: 2174: 2170: 2167: 2164: 2162: 2159: 2158: 2154: 2150: 2147: 2144: 2142: 2139: 2138: 2134: 2130: 2127: 2124: 2122: 2119: 2118: 2114: 2110: 2107: 2104: 2102: 2099: 2098: 2094: 2090: 2087: 2084: 2082: 2079: 2078: 2074: 2070: 2067: 2064: 2062: 2059: 2058: 2054: 2050: 2047: 2044: 2042: 2039: 2038: 2034: 2030: 2027: 2024: 2022: 2019: 2018: 2014: 2010: 2007: 2004: 2002: 1999: 1998: 1994: 1990: 1987: 1984: 1982: 1979: 1978: 1974: 1970: 1967: 1964: 1962: 1959: 1958: 1954: 1950: 1947: 1944: 1942: 1939: 1938: 1934: 1930: 1927: 1924: 1922: 1919: 1918: 1914: 1910: 1907: 1904: 1902: 1899: 1898: 1894: 1890: 1887: 1884: 1882: 1879: 1878: 1874: 1870: 1867: 1864: 1862: 1859: 1858: 1854: 1850: 1847: 1844: 1842: 1839: 1838: 1834: 1830: 1827: 1824: 1822: 1819: 1818: 1814: 1810: 1807: 1804: 1802: 1799: 1798: 1794: 1790: 1787: 1784: 1782: 1779: 1778: 1774: 1770: 1767: 1764: 1762: 1759: 1758: 1754: 1750: 1747: 1744: 1742: 1739: 1738: 1734: 1730: 1727: 1724: 1722: 1719: 1718: 1714: 1710: 1707: 1704: 1702: 1699: 1698: 1694: 1690: 1687: 1684: 1682: 1679: 1678: 1674: 1670: 1667: 1664: 1662: 1659: 1658: 1654: 1650: 1647: 1644: 1642: 1639: 1638: 1634: 1630: 1627: 1624: 1622: 1619: 1618: 1614: 1610: 1607: 1604: 1602: 1599: 1598: 1594: 1590: 1587: 1584: 1582: 1579: 1578: 1574: 1570: 1567: 1564: 1562: 1559: 1558: 1554: 1550: 1547: 1544: 1542: 1539: 1538: 1534: 1530: 1527: 1524: 1522: 1519: 1518: 1514: 1510: 1507: 1504: 1502: 1499: 1498: 1494: 1490: 1487: 1484: 1482: 1479: 1478: 1474: 1470: 1467: 1464: 1462: 1459: 1458: 1454: 1450: 1447: 1444: 1442: 1439: 1438: 1434: 1430: 1427: 1424: 1422: 1419: 1418: 1414: 1410: 1407: 1404: 1402: 1399: 1398: 1394: 1390: 1387: 1384: 1382: 1379: 1378: 1374: 1370: 1367: 1364: 1362: 1359: 1358: 1354: 1350: 1347: 1344: 1342: 1339: 1338: 1334: 1330: 1327: 1324: 1322: 1319: 1318: 1314: 1310: 1307: 1304: 1302: 1299: 1298: 1294: 1290: 1287: 1284: 1282: 1279: 1278: 1274: 1270: 1267: 1264: 1262: 1259: 1258: 1254: 1250: 1247: 1244: 1242: 1239: 1238: 1234: 1230: 1227: 1224: 1222: 1219: 1218: 1214: 1210: 1207: 1204: 1202: 1199: 1198: 1194: 1190: 1187: 1184: 1182: 1179: 1178: 1174: 1170: 1167: 1164: 1162: 1159: 1158: 1154: 1150: 1147: 1144: 1142: 1139: 1138: 1134: 1130: 1127: 1124: 1122: 1119: 1118: 1114: 1110: 1107: 1104: 1102: 1099: 1098: 1094: 1090: 1087: 1084: 1082: 1079: 1078: 1074: 1070: 1067: 1064: 1062: 1059: 1058: 1054: 1050: 1047: 1044: 1042: 1039: 1038: 1034: 1030: 1027: 1024: 1022: 1019: 1018: 1014: 1010: 1007: 1004: 1002: 999: 998: 994: 990: 987: 984: 982: 979: 978: 974: 970: 967: 964: 962: 959: 958: 951: 948: 945: 944: 941: 937: 932: 930: 923:Visible light 922: 920: 918: 914: 911:includes the 910: 906: 902: 898: 894: 890: 886: 882: 878: 874: 866: 863: 855: 853: 851: 847: 841: 839: 838:Voigt profile 830: 828: 826: 822: 818: 813: 812:Doppler shift 805: 803: 801: 797: 796:self reversal 788: 786: 780: 778: 776: 775: 769: 768: 760: 739: 735: 730: 726: 723: 720: 706: 702: 698: 694: 691: 672: 668: 663: 659: 656: 653: 639: 635: 632: 613: 609: 604: 600: 597: 594: 580: 577: 558: 554: 549: 545: 542: 539: 513: 505: 501: 498: 497: 496: 490: 486: 482: 478: 477:spectral band 474: 471: 468: 464: 460: 456: 452: 449: 448: 447: 441: 439: 437: 432: 426: 418: 416: 414: 410: 409:Auger process 406: 402: 394: 389: 387: 385: 381: 377: 376:spectral band 373: 365: 363: 361: 357: 356: 351: 350: 345: 344: 339: 338:Balmer series 335: 331: 327: 323: 319: 315: 310: 309: 305: 301: 300: 296: 292: 290: 289:Roman numeral 286: 282: 281:Roman numeral 278: 273: 271: 267: 263: 259: 255: 247: 245: 243: 239: 235: 230: 228: 224: 220: 216: 212: 208: 203: 201: 197: 196:emission line 192: 190: 186: 182: 178: 174: 173:atomic nuclei 170: 166: 162: 154: 150: 145: 138: 136: 134: 130: 126: 122: 118: 114: 110: 106: 102: 98: 97:spectral line 90: 86: 81: 71: 67: 61: 50: 46: 40: 26: 3387:Spectroscopy 3368: 3347:. New York: 3344: 3325: 3304:. Retrieved 3300:the original 3279: 3275: 3265: 3254:. Retrieved 3250:the original 3240: 3210:(1): 67–70. 3207: 3203: 3196: 3169: 3163: 3147: 3114: 3110: 3099: 3089:, retrieved 3083: 3076: 3032: 3013:Spectroscopy 2999:(21-cm line) 2942:Fm–Og 2751:protactinium 2121:praseodymium 935: 926: 885:Lyman series 875:of the full 873:visible band 870: 850:Dicke effect 845: 842: 834: 809: 799: 795: 792: 784: 772: 765: 764: 692: 633: 578: 499: 494: 472: 454: 450: 445: 428: 398: 369: 353: 349:sharp series 347: 341: 334:Lyman series 311: 307: 303: 302: 298: 294: 293: 279:by adding a 274: 265: 261: 251: 248:Nomenclature 231: 204: 199: 195: 193: 158: 115:in a narrow 96: 94: 3018:Splatalogue 2911:einsteinium 2891:californium 881:ultraviolet 823:shell in a 485:temperature 463:temperature 238:radio waves 219:temperature 3381:Categories 3306:2005-12-09 3256:2015-09-24 3091:2021-06-27 3068:References 2967:Bohr model 2261:dysprosium 2221:gadolinium 2161:promethium 1801:technetium 1781:molybdenum 1241:phosphorus 913:21-cm line 860:See also: 314:wavelength 277:ionization 242:gamma rays 109:absorption 3172:. Wiley. 3154:(1905). " 3139:0022-4073 3056:; and in 2935:oganesson 2871:berkelium 2831:americium 2811:plutonium 2791:neptunium 2341:ytterbium 2141:neodymium 2081:lanthanum 1981:tellurium 1861:palladium 1821:ruthenium 1741:zirconium 1701:strontium 1581:germanium 1441:manganese 1321:potassium 1201:aluminium 1181:magnesium 1021:beryllium 846:narrowing 724:∼ 718:Δ 657:∼ 651:Δ 598:∼ 592:Δ 543:∼ 537:Δ 318:multiplet 187:changing 169:molecules 163:(usually 125:molecules 117:frequency 3232:10031682 3117:: 4–50. 2951:See also 2711:actinium 2676:francium 2641:astatine 2621:polonium 2561:thallium 2501:platinum 2421:tungsten 2401:tantalum 2361:lutetium 2201:europium 2181:samarium 1961:antimony 1681:rubidium 1621:selenium 1421:chromium 1401:vanadium 1381:titanium 1361:scandium 1281:chlorine 1121:fluorine 1081:nitrogen 961:hydrogen 946:Element 901:infrared 889:hydrogen 461:and the 326:hydrogen 211:thallium 189:orbitals 185:electron 155:(bottom) 105:emission 3284:Bibcode 3212:Bibcode 3119:Bibcode 2933:– 2931:fermium 2771:uranium 2731:thorium 2601:bismuth 2541:mercury 2481:iridium 2441:rhenium 2381:hafnium 2321:thulium 2281:holmium 2241:terbium 2041:caesium 1901:cadmium 1841:rhodium 1761:niobium 1721:yttrium 1661:krypton 1641:bromine 1601:arsenic 1561:gallium 1341:calcium 1221:silicon 1001:lithium 952:Symbol 938:of the 825:Z-pinch 481:density 459:density 407:or the 270:species 236:, from 223:density 215:caesium 133:planets 3355:  3332:  3230:  3184:  3137:  3052:  3044:  2851:curium 2691:radium 2461:osmium 2301:erbium 2101:cerium 2061:barium 2001:iodine 1921:indium 1881:silver 1521:copper 1501:nickel 1481:cobalt 1261:sulfur 1161:sodium 1101:oxygen 1061:carbon 981:helium 917:cosmos 893:X-rays 821:plasma 352:, and 330:series 304:Fe III 213:, and 207:helium 198:or an 181:energy 177:photon 3024:Notes 2656:radon 2021:xenon 1301:argon 1041:boron 867:Bands 295:Cu II 227:stars 165:atoms 129:stars 121:atoms 113:light 68:with 3353:ISBN 3330:ISBN 3228:PMID 3182:ISBN 3135:ISSN 3050:ISBN 3042:ISBN 2581:lead 2521:gold 1541:zinc 1461:iron 1141:neon 817:star 221:and 131:and 123:and 3292:doi 3220:doi 3174:doi 3127:doi 3115:130 2918:Es 2915:99 2898:Cf 2895:98 2878:Bk 2875:97 2858:Cm 2855:96 2838:Am 2835:95 2818:Pu 2815:94 2798:Np 2795:93 2775:92 2758:Pa 2755:91 2738:Th 2735:90 2718:Ac 2715:89 2698:Ra 2695:88 2683:Fr 2680:87 2663:Rn 2660:86 2648:At 2645:85 2628:Po 2625:84 2608:Bi 2605:83 2588:Pb 2585:82 2568:Tl 2565:81 2548:Hg 2545:80 2528:Au 2525:79 2508:Pt 2505:78 2488:Ir 2485:77 2468:Os 2465:76 2448:Re 2445:75 2425:74 2408:Ta 2405:73 2388:Hf 2385:72 2368:Lu 2365:71 2348:Yb 2345:70 2328:Tm 2325:69 2308:Er 2305:68 2288:Ho 2285:67 2268:Dy 2265:66 2248:Tb 2245:65 2228:Gd 2225:64 2208:Eu 2205:63 2188:Sm 2185:62 2168:Pm 2165:61 2148:Nd 2145:60 2128:Pr 2125:59 2108:Ce 2105:58 2088:La 2085:57 2068:Ba 2065:56 2048:Cs 2045:55 2028:Xe 2025:54 2005:53 1988:Te 1985:52 1968:Sb 1965:51 1948:Sn 1945:50 1941:tin 1928:In 1925:49 1908:Cd 1905:48 1888:Ag 1885:47 1868:Pd 1865:46 1848:Rh 1845:45 1828:Ru 1825:44 1808:Tc 1805:43 1788:Mo 1785:42 1768:Nb 1765:41 1748:Zr 1745:40 1725:39 1708:Sr 1705:38 1688:Rb 1685:37 1668:Kr 1665:36 1648:Br 1645:35 1628:Se 1625:34 1608:As 1605:33 1588:Ge 1585:32 1568:Ga 1565:31 1548:Zn 1545:30 1528:Cu 1525:29 1508:Ni 1505:28 1488:Co 1485:27 1468:Fe 1465:26 1448:Mn 1445:25 1428:Cr 1425:24 1405:23 1388:Ti 1385:22 1368:Sc 1365:21 1348:Ca 1345:20 1325:19 1308:Ar 1305:18 1288:Cl 1285:17 1265:16 1245:15 1228:Si 1225:14 1208:Al 1205:13 1188:Mg 1185:12 1168:Na 1165:11 1148:Ne 1145:10 1028:Be 1008:Li 988:He 887:of 453:or 336:or 240:to 171:or 111:of 107:or 3383:: 3351:. 3290:. 3280:30 3278:. 3274:. 3226:. 3218:. 3208:55 3206:. 3180:. 3158:". 3133:. 3125:. 3113:. 3109:. 3048:, 2778:U 2428:W 2008:I 1728:Y 1408:V 1328:K 1268:S 1248:P 1128:F 1125:9 1108:O 1105:8 1088:N 1085:7 1068:C 1065:6 1048:B 1045:5 1025:4 1005:3 985:2 968:H 965:1 949:Z 919:. 852:. 840:. 827:. 802:. 777:. 707:. 346:, 308:Fe 299:Cu 272:. 266:Ca 244:. 209:, 95:A 3361:. 3338:. 3309:. 3294:: 3286:: 3259:. 3234:. 3222:: 3214:: 3190:. 3176:: 3141:. 3129:: 3121:: 745:) 740:6 736:r 731:/ 727:1 721:E 715:( 678:) 673:4 669:r 664:/ 660:1 654:E 648:( 619:) 614:3 610:r 605:/ 601:1 595:E 589:( 564:) 559:2 555:r 550:/ 546:1 540:E 534:( 514:r 491:. 262:K 51:) 47:(

Index

Continuous spectrum
Emission lines
Emission lines
discrete spectrum
Absorption lines
Absorption spectrum
Absorption lines

Fraunhofer lines
Rayleigh scattering
continuous spectrum
emission
absorption
light
frequency
atoms
molecules
stars
planets

incandescent lamp
fluorescent lamp
quantum system
atoms
molecules
atomic nuclei
photon
energy
electron
orbitals

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.