Knowledge (XXG)

Waveguide

Source 📝

38: 1646:(an infinitely long cylinder is an example.) A large number of interesting results can be proven from these general conditions. It turns out that any tube with a bulge (where the width of the tube increases) admits at least one bound state that exist inside the mode gaps. The frequencies of all the bound states can be identified by using a pulse short in time. This can be shown using the variational principles. An interesting result by 156: 1526: 22: 244: 1079:. In other words, the impedance indicates the ratio of voltage to current of the circuit component (in this case a waveguide) during propagation of the wave. This description of the waveguide was originally intended for alternating current, but is also suitable for electromagnetic and sound waves, once the wave and material properties (such as 1101:
is important when components of an electric circuit are connected (waveguide to antenna for example): The impedance ratio determines how much of the wave is transmitted forward and how much is reflected. In connecting a waveguide to an antenna a complete transmission is usually required, so an effort
331:
The development of radio communication initially occurred at the lower frequencies because these could be more easily propagated over large distances. The long wavelengths made these frequencies unsuitable for use in hollow metal waveguides because of the impractically large diameter tubes required.
1645:
Waveguides are interesting objects of study from a strictly mathematical perspective. A waveguide (or tube) is defined as type of boundary condition on the wave equation such that the wave function must be equal to zero on the boundary and that the allowed region is finite in all dimensions but one
453:
Immediately after World War II waveguide was the technology of choice in the microwave field. However, it has some problems; it is bulky, expensive to produce, and the cutoff frequency effect makes it difficult to produce wideband devices. Ridged waveguide can increase bandwidth beyond an octave,
122:
The geometry of a waveguide reflects its function; in addition to more common types that channel the wave in one dimension, there are two-dimensional slab waveguides which confine waves to two dimensions. The frequency of the transmitted wave also dictates the size of a waveguide: each waveguide
1529:
In this military radar, microwave radiation is transmitted between the source and the reflector by a waveguide. The figure suggests that microwaves leave the box in a circularly symmetric mode (allowing the antenna to rotate), then they are converted to a linear mode, and pass through a flexible
507:
alongside a set of boundary conditions depending on the geometrical shape and materials bounding the region. The usual assumption for infinitely long uniform waveguides allows us to assume a propagating form for the wave, i.e. stating that every field component has a known dependency on the
471:). However, planar technologies really started to take off when printed circuits were introduced. These methods are significantly cheaper than waveguide and have largely taken its place in most bands. However, waveguide is still favoured in the higher microwave bands from around 2527:
Oliner, Arthur A. (January 30, 2006). "The evolution of electromagnetic waveguides: from hollow metallic guides to microwave integrated circuits". In Sarkar, T. K.; Mailloux, Robert; Oliner, Arthur A.; Salazar-Palma, Magdalena; Sengupta, Dipak L. (eds.).
1412: 222:), in which case the waveguide ensures that the power of the testing wave is conserved, or the specimen may be put inside the waveguide (as in a dielectric constant measurement, so that smaller objects can be tested and the accuracy is better. 783:
term represents the propagation constant (still unknown) along the direction along which the waveguide extends to infinity. The Helmholtz equation can be rewritten to accommodate such form and the resulting equality needs to be solved for
942:
of the guided wave is complex, in general. For a lossless case, the propagation constant might be found to take on either real or imaginary values, depending on the chosen solution of the eigenvalue equation and on the angular frequency
348:. Southworth at first took the theory from papers on waves in dielectric rods because the work of Lord Rayleigh was unknown to him. This misled him somewhat; some of his experiments failed because he was not aware of the phenomenon of 170:
The uses of waveguides for transmitting signals were known even before the term was coined. The phenomenon of sound waves guided through a taut wire have been known for a long time, as well as sound through a hollow pipe such as a
462:
conductors since TEM does not have a cutoff frequency. A shielded rectangular conductor can also be used and this has certain manufacturing advantages over coax and can be seen as the forerunner of the planar technologies
431:, first developed at Rad Lab. The German side, on the other hand, largely ignored the potential of waveguides in radar until very late in the war. So much so that when radar parts from a downed British plane were sent to 439:
At that time, microwave techniques were badly neglected in Germany. It was generally believed that it was of no use for electronic warfare, and those who wanted to do research work in this field were not allowed to do
2363: 1475:, and the VSWR is the voltage standing wave ratio, which value of 1 denotes full transmission, without reflection and thus no standing wave, while very large values mean high reflection and standing wave pattern. 332:
Consequently, research into hollow metal waveguides stalled and the work of Lord Rayleigh was forgotten for a time and had to be rediscovered by others. Practical investigations resumed in the 1930s by
1184: 761: 147:
across enormous distances. Any shape of cross section of waveguide can support EM waves. Irregular shapes are difficult to analyse. Commonly used waveguides are rectangular and circular in shape.
1469: 2382:
Institute of Electrical and Electronics, Engineers; Radatz, Jane; Standards Coordinating Committee, Terms and Definitions; IEEE Computer Society, Standards Coordinating Committee (1997).
218:
Waveguides are used in scientific instruments to measure optical, acoustic and elastic properties of materials and objects. The waveguide can be put in contact with the specimen (as in a
1987: 917: 1270: 846: 179:. Other uses of waveguides are in transmitting power between the components of a system such as radio, radar or optical devices. Waveguides are the fundamental principle of 674: 496:, there are only limited frequencies and forms for the wave function which can propagate in the waveguide. The lowest frequency in which a certain mode can propagate is the 391:
at the University of Birmingham in the United Kingdom, provided a good power source and made microwave radar feasible. The most important centre of US research was at the
215:
Rectangular and circular waveguides are commonly used to connect feeds of parabolic dishes to their electronics, either low-noise receivers or power amplifier/transmitters.
87:
There are different types of waveguides for different types of waves. The original and most common meaning is a hollow conductive metal pipe used to carry high frequency
573: 622: 1204: 1069: 1001: 981: 961: 940: 866: 802: 781: 1258: 1231: 2832: 1263:
An impedance mismatch creates a reflected wave, which added to the incoming waves creates a standing wave. An impedance mismatch can be also quantified with the
1021: 642: 526: 983:
is purely real, the mode is said to be "below cutoff", since the amplitude of the field phasors tends to exponentially decrease with propagation; an imaginary
2199: 1574:, which guides waves by any of several distinct mechanisms. Guides in the form of a hollow tube with a highly reflective inner surface have also been used as 500:
of that mode. The mode with the lowest cutoff frequency is the fundamental mode of the waveguide, and its cutoff frequency is the waveguide cutoff frequency.
364:
mode in circular waveguide losses go down with frequency and at one time this was a serious contender for the format for long-distance telecommunications.
320:
The study of dielectric waveguides (such as optical fibers, see below) began as early as the 1920s, by several people, most famous of which are Rayleigh,
400: 80:
Without the physical constraint of a waveguide, waves would expand into three-dimensional space and their intensities would decrease according to the
2404: 2132: 1206:(Gamma) is the reflection coefficient (0 denotes full transmission, 1 full reflection, and 0.5 is a reflection of half the incoming voltage), 2842: 2799: 2691: 2670: 2539: 2517: 2496: 2464: 2393: 2352: 2188: 2167: 2142: 1831: 1040: 450:
German academics were even allowed to continue publicly publishing their research in this field because it was not felt to be important.
1003:, instead, represents modes said to be "in propagation" or "above cutoff", as the complex amplitude of the phasors does not change with 1578:
for illumination applications. The inner surfaces may be polished metal, or may be covered with a multilayer film that guides light by
2852: 2020: 2290: 2239: 2036: 676:), and rewrite the Helmholtz equation and boundary conditions accordingly. Then, every unknown field is forced to have a form like 1741: 1587: 1112: 49:
is a structure that guides waves by restricting the transmission of energy to one direction. Common types of waveguides include
1628: 492:
in a waveguide is one solution of the wave equations, or, in other words, the form of the wave. Due to the constraints of the
302: 1702: 1627:
is also used to describe elastic waves guided in micro-scale devices, like those employed in piezoelectric delay lines and in
2837: 317:
wavelengths using waveguides, and in 1897 described to the Royal Institution in London his research carried out in Kolkata.
679: 1589:—such confinement is necessarily imperfect, however, since total internal reflection can never truly guide light within a 194:
Optical fibers transmit light and signals for long distances with low attenuation and a wide usable range of wavelengths.
1611:
is a physical structure for guiding sound waves. Sound in an acoustic waveguide behaves like electromagnetic waves on a
259: 328:. Optical fiber began to receive special attention in the 1960s due to its importance to the communications industry. 2847: 1663: 1489: 576: 160: 1417: 392: 349: 1881: 269: 1558: 66: 1651: 1499: 1260:
are the impedance of the first component (from which the wave enters) and the second component, respectively.
1076: 871: 435:
for analysis, even though they were recognised as microwave components, their purpose could not be identified.
384: 314: 1530:
stage. Their polarisation is then rotated in a twisted stage and finally they irradiate the parabolic antenna.
427:
was also briefly at Rad Lab, but while there he produced his small aperture theory which proved important for
2787: 1407:{\displaystyle \mathrm {VSWR} ={\frac {|V|_{\rm {max}}}{|V|_{\rm {min}}}}={\frac {1+|\Gamma |}{1-|\Gamma |}}} 489: 219: 1571: 1106: 376: 184: 163: 2713: 423:
of waveguide structures so that components in waveguide could be analysed with standard circuit theory.
139:
which have a much larger wavelength. Some naturally occurring structures can also act as waveguides. The
1697: 1602: 1511: 310: 2219: 2118: 1619:, are a simple example of an acoustic waveguide. Another example are pressure waves in the pipes of an 301:
in 1894. The first mathematical analysis of electromagnetic waves in a metal cylinder was performed by
2615: 2562: 2433: 2313: 2270: 1717: 1712: 1036: 807: 420: 404: 333: 209: 116: 96: 70: 2148: 1267:(SWR or VSWR for voltage), which is connected to the impedance ratio and reflection coefficient by: 647: 1707: 1554: 1264: 1088: 1044: 493: 432: 180: 2301: 1545:
Waveguides used at optical frequencies are typically dielectric waveguides, structures in which a
2774: 2647: 2245: 2114: 1685: 1669: 1540: 1098: 504: 81: 50: 531: 273: 253: 2795: 2766: 2733: 2687: 2666: 2639: 2631: 2590: 2535: 2513: 2492: 2460: 2389: 2348: 2329: 2286: 2235: 2184: 2163: 2138: 1681: 1647: 1616: 1612: 1493: 1072: 586: 528:). More specifically, the common approach is to first replace all unknown time-varying fields 321: 226: 124: 58: 2819:
Sophocles J. Orfanidis, Department of Electrical and Computer Engineering, Rutgers University
2258: 1557:, is surrounded by a material with lower permittivity. The structure guides optical waves by 1189: 1054: 986: 966: 946: 925: 851: 787: 766: 2758: 2725: 2623: 2580: 2570: 2441: 2321: 2278: 2227: 1677: 1673: 1579: 1092: 497: 428: 412: 408: 357: 341: 306: 208:
In a radar, a waveguide transfers radio frequency energy to and from the antenna, where the
30: 2551:"Review of Current Guided Wave Ultrasonic Testing (GWUT) Limitations and Future Directions" 1236: 1209: 1722: 1519: 455: 416: 108: 37: 2619: 2566: 2437: 2317: 2274: 2627: 2585: 2550: 2388:(6th ed.). New York, New York: Institute of Electrical and Electronics Engineers. 1583: 1472: 1032: 1006: 627: 511: 353: 265: 198: 155: 2826: 2729: 1640: 1563: 294: 140: 128: 100: 41:
Electric field Ex component of the TE31 mode inside an x-band hollow metal waveguide.
2816: 2651: 2341:
Han, C.C.; Hwang, Y. (2012). "Satellite attenas". In Lo, Y. T.; Lee, S. W. (eds.).
2249: 1550: 624:, sufficient to fully describe any infinitely long single-tone signal at frequency 372: 305:
in 1897. For sound waves, Lord Rayleigh published a full mathematical analysis of
298: 1848: 1510:
frequency ranges. Depending on the frequency, they can be constructed from either
2702: 2681: 2660: 2529: 2507: 2486: 2475: 2454: 2383: 2342: 2178: 2157: 352:
already found in Lord Rayleigh's work. Serious theoretical work was taken up by
325: 176: 144: 112: 99:
are used at higher radio frequencies, and transparent dielectric waveguides and
2421: 2445: 2325: 2231: 1620: 1582:(this is a special case of a photonic-crystal fiber). One can also use small 1575: 1546: 1525: 1515: 468: 424: 388: 136: 88: 74: 21: 2770: 2737: 2635: 1593:-index core (in the prism case, some light leaks out at the prism corners). 1503: 464: 380: 337: 272:
to the section by replacing the section with a link and a summary or by
202: 127:
determined by its size and will not conduct waves of greater wavelength; an
104: 92: 2603: 2594: 2333: 2643: 2259:"The work of Jagadis Chandra Bose: 100 years of millimeter-wave research" 1080: 2604:"Orientation by means of long range acoustic signaling in baleen whales" 2120:
Transmission/Reflection and short-Circuit Line Permittivity Measurements
1498:
Waveguides can be constructed to carry waves over a wide portion of the
2778: 2746: 1654:
is that any tube of constant width with a twist, admits a bound state.
1084: 472: 459: 2575: 2282: 2409:
International Journal of Emerging Technology and Advanced Engineering
1507: 580: 2762: 2549:
Olisa, Samuel Chukwuemeka; Khan, Muhammad A.; Starr, Andrew (2021).
2126:. Boulder, Colorado: National Institute of Standards and Technology. 25:
An example of a waveguide: A section of flexible waveguide used for
2714:"Prismatic film light guides: Performance and recent developments" 1586:
around the pipe which reflect light via total internal reflection
1524: 368: 154: 132: 62: 54: 36: 26: 20: 2422:"A History of Microwave Filter Research, Design, and Development" 2405:"Review of Impedance Matching Networks for Bandwidth Enhancement" 2220:"The work of Jagadis Chandra Bose: 100 years of mm-wave research" 212:
needs to be matched for efficient power transmission (see below).
2385:
The IEEE Standard Dictionary of Electrical and Electronics Terms
403:. The head of the Fundamental Development Group at Rad Lab was 172: 399:
but many others took part in the US, and in the UK such as the
2477:
Theory and Application of Mathieu Functions, By N.W. Mclachlan
2364:"Optical Fiber: A waveguide for light and internal reflection" 1048: 396: 345: 237: 115:, and specially-shaped metal rods conduct ultrasonic waves in 2680:
Ramo, Simon; Whinnery, John R.; Van Duzer, Theodore (1994).
375:
gave a great impetus to waveguide research, at least on the
111:
are used as waveguides for sound in musical instruments and
1570:
Other types of optical waveguide are also used, including
1179:{\displaystyle \Gamma ={\frac {Z_{2}-Z_{1}}{Z_{2}+Z_{1}}}} 2224:
1997 IEEE MTT-S International Microwave Symposium Digest
2000: 1998: 1996: 454:
but a better solution is to use a technology working in
445:
H. Mayer, wartime vice-president of Siemens & Halske
1861: 1859: 1857: 293:
The first structure for guiding waves was proposed by
1959: 1931: 1929: 1892: 1890: 1518:
materials. Waveguides are used for transferring both
1420: 1273: 1239: 1212: 1192: 1115: 1057: 1009: 989: 969: 949: 928: 874: 854: 810: 790: 769: 756:{\displaystyle U(x,y,z)={\hat {U}}(x,y)e^{-\gamma z}} 682: 650: 630: 589: 534: 514: 2426:
IEEE Transactions on Microwave Theory and Techniques
2263:
IEEE Transactions on Microwave Theory and Techniques
1071:). A waveguide in circuit theory is described by a 419:. Much of the Rad Lab work concentrated on finding 2786:Zhang, Hanqiao; Krooswyk, Steven; Ou, Jeff (2015). 2686:. New York: John Wiley and Sons. pp. 321–324. 1742:
Institute of Electrical and Electronics et al. 1997
575:(assuming for simplicity to describe the fields in 1471:are the minimum and maximum values of the voltage 1463: 1406: 1252: 1225: 1198: 1178: 1063: 1015: 995: 975: 955: 934: 911: 860: 840: 796: 775: 755: 668: 636: 616: 567: 520: 848:, yielding in the end an eigenvalue equation for 360:. This work led to the discovery that for the TE 205:, where waves are formed, to the cooking chamber. 1091:) are properly converted into electrical terms ( 297:in 1893, and was first experimentally tested by 2032: 437: 2817:Electromagnetic Waves and Antennas: Waveguides 2084: 1765: 1464:{\displaystyle \left|V\right|_{\rm {min/max}}} 503:Propagation modes are computed by solving the 229:is a commonly used specific type of waveguide. 2683:Fields and Waves in Communication Electronics 2016: 1983: 309:in his seminal work, "The Theory of Sound". 8: 2788:"Chapter 1 - Transmission line fundamentals" 2701:Rayleigh, John William Strutt Baron (1894). 1777: 2534:. John Wiley & Sons. pp. 543–566. 1830:sfn error: no target: CITEREFEmerson1997a ( 2608:Annals of the New York Academy of Sciences 2453:Lo, Y. T.; Lee, S. W. (December 6, 2012). 143:layer in the ocean can guide the sound of 2584: 2574: 2459:. Springer Science & Business Media. 2456:Antenna Handbook: Volume III Applications 2347:. Springer Science & Business Media. 2344:Antenna Handbook: Volume III Applications 2004: 1971: 1801: 1753: 1444: 1434: 1433: 1419: 1396: 1388: 1375: 1367: 1358: 1339: 1338: 1333: 1324: 1309: 1308: 1303: 1294: 1291: 1274: 1272: 1244: 1238: 1217: 1211: 1191: 1167: 1154: 1142: 1129: 1122: 1114: 1056: 1008: 988: 968: 948: 927: 912:{\displaystyle {\hat {U}}(x,y)_{\gamma }} 903: 876: 875: 873: 853: 812: 811: 809: 789: 768: 741: 711: 710: 681: 649: 629: 588: 533: 513: 401:Telecommunications Research Establishment 2156:Beranek, Leo Leroy; Mellow, Tim (2012). 1920: 1908: 1844: 1825: 1813: 1789: 1615:. Waves on a string, like the ones in a 1561:. An example of an optical waveguide is 484:Propagation modes and cutoff frequencies 2159:Acoustics: Sound Fields and Transducers 2048: 1865: 1734: 16:Structure that guides waves efficiently 1935: 1896: 1877: 1672:as computational elements to simulate 2833:Applied and interdisciplinary physics 2096: 1947: 201:a waveguide transfers power from the 7: 2747:"Physical Modeling Synthesis Update" 2403:Khare, Rashmi; Nema, Rajesh (2012). 2300:Goldstone, J.; Jaffe, R. L. (1992). 2072: 260:Waveguide (electromagnetism)#History 103:serve as waveguides for light. In 1960:Ramo, Whinnery & Van Duzer 1994 1502:, but are especially useful in the 1102:is made to match their impedances. 2794:. Morgan Kaufmann. pp. 1–26. 2628:10.1111/j.1749-6632.1971.tb13093.x 2509:Fundamentals of Optical Waveguides 2474:McLachlan, Norman William (1964). 2060: 1455: 1452: 1449: 1441: 1438: 1435: 1393: 1372: 1346: 1343: 1340: 1316: 1313: 1310: 1284: 1281: 1278: 1275: 1193: 1116: 1058: 868:and a corresponding eigenfunction 183:(GWT), one of the many methods of 159:Waveguide supplying power for the 14: 2226:. Vol. 2. pp. 553–556. 919:for each solution of the former. 458:(that is, non-waveguide) such as 2302:"Bound states in twisting tubes" 2180:Microwave and Optical Waveguides 2131:Balanis, Constantine A. (1989). 242: 1629:stimulated Brillouin scattering 841:{\displaystyle {\hat {U}}(x,y)} 579:components) with their complex 1397: 1389: 1376: 1368: 1334: 1325: 1304: 1295: 900: 887: 881: 835: 823: 817: 734: 722: 716: 704: 686: 669:{\displaystyle \omega =2\pi f} 611: 593: 562: 538: 1: 2420:Levy, R.; Cohn, S.B. (1984). 2033:Zhang, Krooswyk & Ou 2015 415:, Carol Gray Montgomery, and 2843:Telecommunications equipment 2730:10.1016/0165-1633(89)90026-9 2602:Payne, R.; Webb, D. (1971). 2480:. New York, New York: Dover. 2134:Engineering Electromagnetics 2021:Pressure and density effects 1766:Olisa, Khan & Starr 2021 1095:and impedance for example). 508:propagation direction (i.e. 407:. His researchers included 2506:Okamoto, Katsunari (2010). 2368:Test & Measurement Tips 1664:Digital waveguide synthesis 1522:and communication signals. 1490:Waveguide (radio frequency) 256:the scope of other articles 161:Argonne National Laboratory 2869: 2485:Marcuvitz, Nathan (1951). 2085:Goldstone & Jaffe 1992 1703:Earth–ionosphere waveguide 1661: 1638: 1600: 1538: 1487: 1484:Radio-frequency waveguides 1479:Electromagnetic waveguides 568:{\displaystyle u(x,y,z,t)} 350:waveguide cutoff frequency 185:non-destructive evaluation 67:radio-frequency waveguides 2853:Electromagnetic radiation 2792:High Speed Digital Design 2745:Smith, Julius O. (1996). 2665:. John Wiley & Sons. 2446:10.1109/TMTT.1984.1132817 2326:10.1103/PhysRevB.45.14100 2232:10.1109/MWSYM.1997.602853 2183:. CRC Press. p. 38. 2017:Beranek & Mellow 2012 1984:Beranek & Mellow 2012 1559:total internal reflection 1109:can be calculated using: 922:The propagation constant 2712:Saxe, Steven G. (1989). 2659:Pozar, David M. (2012). 1988:Characteristic Impedance 1500:electromagnetic spectrum 1077:characteristic impedance 617:{\displaystyle U(x,y,z)} 429:waveguide cavity filters 2257:Emerson, D.T. (1997b). 1635:Mathematical waveguides 1199:{\displaystyle \Gamma } 1064:{\displaystyle \Omega } 1039:is a generalization of 996:{\displaystyle \gamma } 976:{\displaystyle \gamma } 956:{\displaystyle \omega } 935:{\displaystyle \gamma } 861:{\displaystyle \gamma } 797:{\displaystyle \gamma } 776:{\displaystyle \gamma } 383:, developed in 1940 by 220:medical ultrasonography 2751:Computer Music Journal 2718:Solar Energy Materials 2218:Emerson, D.T. (1997). 2177:Cronin, N. J. (1995). 2037:Reflection coefficient 1572:photonic-crystal fiber 1531: 1465: 1408: 1254: 1227: 1200: 1180: 1107:reflection coefficient 1065: 1017: 997: 977: 957: 936: 913: 862: 842: 798: 777: 757: 670: 638: 618: 569: 522: 448: 167: 164:Advanced Photon Source 73:other than light like 42: 34: 2838:Electrical components 2662:Microwave Engineering 2005:Khare & Nema 2012 1754:Payne & Webb 1971 1698:Circular polarization 1668:Sound synthesis uses 1603:Waveguide (acoustics) 1528: 1466: 1409: 1255: 1253:{\displaystyle Z_{2}} 1228: 1226:{\displaystyle Z_{1}} 1201: 1181: 1066: 1047:, and is measured in 1041:electrical resistance 1018: 998: 978: 958: 937: 914: 863: 843: 799: 778: 758: 671: 644:, (angular frequency 639: 619: 570: 523: 421:lumped element models 311:Jagadish Chandra Bose 274:splitting the content 268:and help introduce a 158: 97:Dielectric waveguides 71:electromagnetic waves 40: 24: 1921:Han & Hwang 2012 1909:Levy & Cohn 1984 1713:Orthomode transducer 1418: 1271: 1237: 1210: 1190: 1113: 1075:having a length and 1055: 1007: 987: 967: 947: 926: 872: 852: 808: 788: 767: 680: 648: 628: 587: 532: 512: 433:Siemens & Halske 405:Edward Mills Purcell 393:Radiation Laboratory 334:George C. Southworth 117:ultrasonic machining 2704:The Theory of Sound 2620:1971NYASA.188..110P 2567:2021Senso..21..811O 2531:History of Wireless 2438:1984ITMTT..32.1055L 2318:1992PhRvB..4514100G 2312:(24): 14100–14107. 2275:1997ITMTT..45.2267E 2198:EETech Media, LLC. 2115:Baker-Jarvis, James 1708:Linear polarization 1670:digital delay lines 1597:Acoustic waveguides 1555:index of refraction 1549:material with high 1265:standing wave ratio 1089:dielectric constant 1045:alternating current 494:boundary conditions 276:into a new article. 190:Specific examples: 181:guided wave testing 51:acoustic waveguides 2848:British inventions 2488:Waveguide Handbook 2204:All About Circuits 2162:. Academic Press. 1686:string instruments 1625:acoustic waveguide 1609:acoustic waveguide 1541:Waveguide (optics) 1535:Optical waveguides 1532: 1461: 1404: 1250: 1223: 1196: 1176: 1099:Impedance matching 1061: 1027:Impedance matching 1013: 993: 973: 953: 932: 909: 858: 838: 794: 773: 753: 666: 634: 614: 565: 518: 505:Helmholtz equation 367:The importance of 266:discuss this issue 168: 135:will not transmit 82:inverse square law 59:optical waveguides 43: 35: 2801:978-0-12-418663-7 2693:978-0-471-58551-0 2672:978-0-470-63155-3 2576:10.3390/s21030811 2541:978-0-471-78301-5 2519:978-0-08-045506-8 2498:978-0-86341-058-1 2466:978-1-4615-2638-4 2395:978-1-55937-833-8 2354:978-1-4615-2638-4 2306:Physical Review B 2283:10.1109/22.643830 2269:(12): 2267–2273. 2190:978-0-7503-0216-6 2169:978-0-12-391421-7 2144:978-0-471-62194-2 1778:Baker-Jarvis 1990 1682:vibrating strings 1648:Jeffrey Goldstone 1617:tin can telephone 1613:transmission line 1494:Transmission line 1402: 1353: 1174: 1073:transmission line 1016:{\displaystyle z} 884: 820: 719: 637:{\displaystyle f} 521:{\displaystyle z} 307:propagation modes 291: 290: 227:transmission line 125:cutoff wavelength 2860: 2805: 2782: 2741: 2708: 2697: 2676: 2655: 2598: 2588: 2578: 2545: 2523: 2502: 2481: 2470: 2449: 2432:(9): 1055–1067. 2416: 2399: 2378: 2376: 2374: 2358: 2337: 2296: 2253: 2214: 2212: 2210: 2194: 2173: 2152: 2151:on May 14, 2009. 2147:. Archived from 2127: 2125: 2100: 2094: 2088: 2082: 2076: 2070: 2064: 2058: 2052: 2046: 2040: 2030: 2024: 2014: 2008: 2002: 1991: 1981: 1975: 1969: 1963: 1957: 1951: 1945: 1939: 1933: 1924: 1918: 1912: 1906: 1900: 1894: 1885: 1875: 1869: 1863: 1852: 1842: 1836: 1835: 1823: 1817: 1811: 1805: 1799: 1793: 1787: 1781: 1775: 1769: 1763: 1757: 1751: 1745: 1739: 1678:wind instruments 1674:wave propagation 1580:Bragg reflection 1553:, and thus high 1470: 1468: 1467: 1462: 1460: 1459: 1458: 1448: 1432: 1413: 1411: 1410: 1405: 1403: 1401: 1400: 1392: 1380: 1379: 1371: 1359: 1354: 1352: 1351: 1350: 1349: 1337: 1328: 1322: 1321: 1320: 1319: 1307: 1298: 1292: 1287: 1259: 1257: 1256: 1251: 1249: 1248: 1232: 1230: 1229: 1224: 1222: 1221: 1205: 1203: 1202: 1197: 1185: 1183: 1182: 1177: 1175: 1173: 1172: 1171: 1159: 1158: 1148: 1147: 1146: 1134: 1133: 1123: 1070: 1068: 1067: 1062: 1022: 1020: 1019: 1014: 1002: 1000: 999: 994: 982: 980: 979: 974: 962: 960: 959: 954: 941: 939: 938: 933: 918: 916: 915: 910: 908: 907: 886: 885: 877: 867: 865: 864: 859: 847: 845: 844: 839: 822: 821: 813: 803: 801: 800: 795: 782: 780: 779: 774: 762: 760: 759: 754: 752: 751: 721: 720: 712: 675: 673: 672: 667: 643: 641: 640: 635: 623: 621: 620: 615: 574: 572: 571: 566: 527: 525: 524: 519: 498:cutoff frequency 446: 413:Nathan Marcuvitz 409:Julian Schwinger 342:Wilmer L. Barrow 286: 283: 277: 246: 245: 238: 107:, air ducts and 2868: 2867: 2863: 2862: 2861: 2859: 2858: 2857: 2823: 2822: 2813: 2808: 2802: 2785: 2763:10.2307/3681331 2744: 2711: 2700: 2694: 2679: 2673: 2658: 2601: 2548: 2542: 2526: 2520: 2505: 2499: 2484: 2473: 2467: 2452: 2419: 2402: 2396: 2381: 2372: 2370: 2362:Herres, David. 2361: 2355: 2340: 2299: 2293: 2256: 2242: 2217: 2208: 2206: 2197: 2191: 2176: 2170: 2155: 2145: 2130: 2123: 2113: 2109: 2104: 2103: 2095: 2091: 2083: 2079: 2071: 2067: 2059: 2055: 2047: 2043: 2031: 2027: 2015: 2011: 2003: 1994: 1982: 1978: 1970: 1966: 1958: 1954: 1946: 1942: 1934: 1927: 1919: 1915: 1907: 1903: 1895: 1888: 1876: 1872: 1864: 1855: 1843: 1839: 1829: 1824: 1820: 1812: 1808: 1800: 1796: 1788: 1784: 1776: 1772: 1764: 1760: 1752: 1748: 1740: 1736: 1731: 1723:Flap attenuator 1694: 1666: 1660: 1658:Sound synthesis 1643: 1637: 1605: 1599: 1543: 1537: 1496: 1488:Main articles: 1486: 1481: 1422: 1421: 1416: 1415: 1381: 1360: 1332: 1323: 1302: 1293: 1269: 1268: 1240: 1235: 1234: 1213: 1208: 1207: 1188: 1187: 1163: 1150: 1149: 1138: 1125: 1124: 1111: 1110: 1053: 1052: 1043:in the case of 1029: 1005: 1004: 985: 984: 965: 964: 945: 944: 924: 923: 899: 870: 869: 850: 849: 806: 805: 786: 785: 765: 764: 737: 678: 677: 646: 645: 626: 625: 585: 584: 583:representation 530: 529: 510: 509: 486: 481: 447: 444: 417:Robert H. Dicke 363: 287: 281: 278: 263: 258:, specifically 247: 243: 236: 153: 91:, particularly 17: 12: 11: 5: 2866: 2864: 2856: 2855: 2850: 2845: 2840: 2835: 2825: 2824: 2821: 2820: 2812: 2811:External links 2809: 2807: 2806: 2800: 2783: 2742: 2709: 2698: 2692: 2677: 2671: 2656: 2614:(1): 110–141. 2599: 2546: 2540: 2524: 2518: 2503: 2497: 2482: 2471: 2465: 2450: 2417: 2400: 2394: 2379: 2359: 2353: 2338: 2297: 2291: 2254: 2240: 2215: 2195: 2189: 2174: 2168: 2153: 2143: 2128: 2110: 2108: 2105: 2102: 2101: 2089: 2077: 2065: 2053: 2041: 2025: 2009: 1992: 1976: 1972:Marcuvitz 1951 1964: 1952: 1940: 1925: 1913: 1901: 1886: 1870: 1853: 1837: 1818: 1806: 1802:McLachlan 1964 1794: 1782: 1770: 1758: 1746: 1733: 1732: 1730: 1727: 1726: 1725: 1720: 1715: 1710: 1705: 1700: 1693: 1690: 1662:Main article: 1659: 1656: 1639:Main article: 1636: 1633: 1601:Main article: 1598: 1595: 1539:Main article: 1536: 1533: 1485: 1482: 1480: 1477: 1473:absolute value 1457: 1454: 1451: 1447: 1443: 1440: 1437: 1431: 1428: 1425: 1399: 1395: 1391: 1387: 1384: 1378: 1374: 1370: 1366: 1363: 1357: 1348: 1345: 1342: 1336: 1331: 1327: 1318: 1315: 1312: 1306: 1301: 1297: 1290: 1286: 1283: 1280: 1277: 1247: 1243: 1220: 1216: 1195: 1170: 1166: 1162: 1157: 1153: 1145: 1141: 1137: 1132: 1128: 1121: 1118: 1060: 1033:circuit theory 1028: 1025: 1012: 992: 972: 952: 931: 906: 902: 898: 895: 892: 889: 883: 880: 857: 837: 834: 831: 828: 825: 819: 816: 793: 772: 750: 747: 744: 740: 736: 733: 730: 727: 724: 718: 715: 709: 706: 703: 700: 697: 694: 691: 688: 685: 665: 662: 659: 656: 653: 633: 613: 610: 607: 604: 601: 598: 595: 592: 564: 561: 558: 555: 552: 549: 546: 543: 540: 537: 517: 488:A propagation 485: 482: 480: 477: 442: 361: 358:Sallie P. Mead 354:John R. Carson 289: 288: 250: 248: 241: 235: 232: 231: 230: 223: 216: 213: 206: 199:microwave oven 195: 152: 149: 101:optical fibers 15: 13: 10: 9: 6: 4: 3: 2: 2865: 2854: 2851: 2849: 2846: 2844: 2841: 2839: 2836: 2834: 2831: 2830: 2828: 2818: 2815: 2814: 2810: 2803: 2797: 2793: 2789: 2784: 2780: 2776: 2772: 2768: 2764: 2760: 2756: 2752: 2748: 2743: 2739: 2735: 2731: 2727: 2724:(1): 95–109. 2723: 2719: 2715: 2710: 2706: 2705: 2699: 2695: 2689: 2685: 2684: 2678: 2674: 2668: 2664: 2663: 2657: 2653: 2649: 2645: 2641: 2637: 2633: 2629: 2625: 2621: 2617: 2613: 2609: 2605: 2600: 2596: 2592: 2587: 2582: 2577: 2572: 2568: 2564: 2560: 2556: 2552: 2547: 2543: 2537: 2533: 2532: 2525: 2521: 2515: 2511: 2510: 2504: 2500: 2494: 2490: 2489: 2483: 2479: 2478: 2472: 2468: 2462: 2458: 2457: 2451: 2447: 2443: 2439: 2435: 2431: 2427: 2423: 2418: 2414: 2410: 2406: 2401: 2397: 2391: 2387: 2386: 2380: 2369: 2365: 2360: 2356: 2350: 2346: 2345: 2339: 2335: 2331: 2327: 2323: 2319: 2315: 2311: 2307: 2303: 2298: 2294: 2292:9780986488511 2288: 2284: 2280: 2276: 2272: 2268: 2264: 2260: 2255: 2251: 2247: 2243: 2241:0-7803-3814-6 2237: 2233: 2229: 2225: 2221: 2216: 2205: 2201: 2196: 2192: 2186: 2182: 2181: 2175: 2171: 2165: 2161: 2160: 2154: 2150: 2146: 2140: 2136: 2135: 2129: 2122: 2121: 2116: 2112: 2111: 2106: 2098: 2093: 2090: 2086: 2081: 2078: 2074: 2069: 2066: 2062: 2057: 2054: 2050: 2045: 2042: 2038: 2034: 2029: 2026: 2022: 2018: 2013: 2010: 2006: 2001: 1999: 1997: 1993: 1989: 1985: 1980: 1977: 1973: 1968: 1965: 1961: 1956: 1953: 1949: 1944: 1941: 1937: 1932: 1930: 1926: 1922: 1917: 1914: 1910: 1905: 1902: 1898: 1893: 1891: 1887: 1883: 1879: 1874: 1871: 1867: 1862: 1860: 1858: 1854: 1850: 1846: 1845:Emerson 1997b 1841: 1838: 1833: 1827: 1826:Emerson 1997a 1822: 1819: 1815: 1814:Rayleigh 1894 1810: 1807: 1803: 1798: 1795: 1791: 1786: 1783: 1779: 1774: 1771: 1767: 1762: 1759: 1755: 1750: 1747: 1743: 1738: 1735: 1728: 1724: 1721: 1719: 1716: 1714: 1711: 1709: 1706: 1704: 1701: 1699: 1696: 1695: 1691: 1689: 1687: 1683: 1679: 1675: 1671: 1665: 1657: 1655: 1653: 1649: 1642: 1641:Wave equation 1634: 1632: 1630: 1626: 1622: 1618: 1614: 1610: 1604: 1596: 1594: 1592: 1588: 1585: 1581: 1577: 1573: 1568: 1566: 1565: 1564:optical fiber 1560: 1556: 1552: 1548: 1542: 1534: 1527: 1523: 1521: 1517: 1513: 1509: 1505: 1501: 1495: 1491: 1483: 1478: 1476: 1474: 1445: 1429: 1426: 1423: 1385: 1382: 1364: 1361: 1355: 1329: 1299: 1288: 1266: 1261: 1245: 1241: 1218: 1214: 1168: 1164: 1160: 1155: 1151: 1143: 1139: 1135: 1130: 1126: 1119: 1108: 1103: 1100: 1096: 1094: 1090: 1086: 1082: 1078: 1074: 1050: 1046: 1042: 1038: 1034: 1026: 1024: 1010: 990: 970: 950: 929: 920: 904: 896: 893: 890: 878: 855: 832: 829: 826: 814: 791: 770: 748: 745: 742: 738: 731: 728: 725: 713: 707: 701: 698: 695: 692: 689: 683: 663: 660: 657: 654: 651: 631: 608: 605: 602: 599: 596: 590: 582: 578: 559: 556: 553: 550: 547: 544: 541: 535: 515: 506: 501: 499: 495: 491: 483: 478: 476: 474: 470: 466: 461: 457: 451: 441: 436: 434: 430: 426: 422: 418: 414: 410: 406: 402: 398: 395:(Rad Lab) at 394: 390: 386: 382: 378: 374: 370: 365: 359: 355: 351: 347: 343: 339: 335: 329: 327: 323: 318: 316: 312: 308: 304: 303:Lord Rayleigh 300: 296: 295:J. J. Thomson 285: 282:November 2020 275: 271: 270:summary style 267: 261: 257: 255: 251:This section 249: 240: 239: 233: 228: 224: 221: 217: 214: 211: 207: 204: 200: 196: 193: 192: 191: 188: 186: 182: 178: 174: 165: 162: 157: 150: 148: 146: 142: 141:SOFAR channel 138: 134: 130: 129:optical fiber 126: 120: 118: 114: 110: 106: 102: 98: 94: 90: 85: 83: 78: 76: 72: 69:which direct 68: 64: 61:which direct 60: 56: 53:which direct 52: 48: 39: 32: 28: 23: 19: 2791: 2757:(2): 44–56. 2754: 2750: 2721: 2717: 2707:. Macmillan. 2703: 2682: 2661: 2611: 2607: 2558: 2554: 2530: 2512:. Elsevier. 2508: 2487: 2476: 2455: 2429: 2425: 2412: 2408: 2384: 2371:. Retrieved 2367: 2343: 2309: 2305: 2266: 2262: 2223: 2209:December 31, 2207:. Retrieved 2203: 2200:"Waveguides" 2179: 2158: 2149:the original 2133: 2119: 2092: 2080: 2068: 2056: 2049:Okamoto 2010 2044: 2028: 2012: 1979: 1967: 1955: 1943: 1916: 1904: 1873: 1866:Balanis 1989 1840: 1821: 1809: 1797: 1790:EETech Media 1785: 1773: 1761: 1749: 1737: 1718:Polarization 1676:in tubes of 1667: 1652:Robert Jaffe 1644: 1624: 1608: 1606: 1590: 1569: 1562: 1551:permittivity 1544: 1497: 1262: 1104: 1097: 1030: 921: 763:, where the 502: 487: 452: 449: 438: 385:John Randall 373:World War II 366: 330: 319: 299:Oliver Lodge 292: 279: 252: 189: 169: 131:that guides 121: 113:loudspeakers 86: 79: 46: 44: 18: 2415:(1): 92–96. 1936:Cronin 1995 1897:Oliner 2006 1878:Oliner 2006 1623:. The term 1576:light pipes 379:side. The 313:researched 177:stethoscope 175:or medical 89:radio waves 75:radio waves 29:that has a 2827:Categories 2561:(3): 811. 2373:January 1, 2107:References 2097:Smith 1996 1948:Pozar 2012 1547:dielectric 1516:dielectric 1512:conductive 479:Properties 469:microstrip 425:Hans Bethe 389:Harry Boot 322:Sommerfeld 315:millimeter 254:duplicates 145:whale song 137:microwaves 93:microwaves 2771:0148-9267 2738:0165-1633 2636:0077-8923 2137:. Wiley. 2073:Saxe 1989 1504:microwave 1394:Γ 1386:− 1373:Γ 1194:Γ 1136:− 1117:Γ 1059:Ω 1037:impedance 991:γ 971:γ 951:ω 930:γ 905:γ 882:^ 856:γ 818:^ 792:γ 771:γ 746:γ 743:− 717:^ 661:π 652:ω 577:cartesian 475:upwards. 465:stripline 381:magnetron 338:Bell Labs 210:impedance 203:magnetron 105:acoustics 47:waveguide 2652:42324742 2595:33530407 2334:10001530 2117:(1990). 1692:See also 1680:and the 1414:, where 1186:, where 1081:pressure 456:TEM mode 443:—  2779:3681331 2644:5288850 2616:Bibcode 2586:7865912 2563:Bibcode 2555:Sensors 2491:. IET. 2434:Bibcode 2314:Bibcode 2271:Bibcode 2250:9039614 1882:Reprint 1849:Reprint 1508:optical 1093:current 1085:density 963:. When 581:phasors 473:Ku band 460:coaxial 264:Please 234:History 2798:  2777:  2769:  2736:  2690:  2669:  2650:  2642:  2634:  2593:  2583:  2538:  2516:  2495:  2463:  2392:  2351:  2332:  2289:  2248:  2238:  2187:  2166:  2141:  2061:Herres 1584:prisms 1035:, the 377:Allied 123:has a 65:, and 31:flange 2775:JSTOR 2648:S2CID 2246:S2CID 2124:(PDF) 1729:Notes 1621:organ 1591:lower 1520:power 369:radar 326:Debye 197:In a 133:light 109:horns 63:light 55:sound 27:RADAR 2796:ISBN 2767:ISSN 2734:ISSN 2688:ISBN 2667:ISBN 2640:PMID 2632:ISSN 2591:PMID 2536:ISBN 2514:ISBN 2493:ISBN 2461:ISBN 2390:ISBN 2375:2024 2349:ISBN 2330:PMID 2287:ISBN 2236:ISBN 2211:2023 2185:ISBN 2164:ISBN 2139:ISBN 1832:help 1650:and 1506:and 1492:and 1233:and 1105:The 1049:ohms 804:and 490:mode 467:and 387:and 356:and 340:and 324:and 173:cave 151:Uses 2759:doi 2726:doi 2624:doi 2612:188 2581:PMC 2571:doi 2442:doi 2322:doi 2279:doi 2228:doi 1684:of 1607:An 1514:or 1031:In 440:so. 397:MIT 371:in 346:MIT 344:at 336:at 95:. 2829:: 2790:. 2773:. 2765:. 2755:20 2753:. 2749:. 2732:. 2722:19 2720:. 2716:. 2646:. 2638:. 2630:. 2622:. 2610:. 2606:. 2589:. 2579:. 2569:. 2559:21 2557:. 2553:. 2440:. 2430:32 2428:. 2424:. 2411:. 2407:. 2366:. 2328:. 2320:. 2310:45 2308:. 2304:. 2285:. 2277:. 2267:45 2265:. 2261:. 2244:. 2234:. 2222:. 2202:. 2035:, 2019:, 1995:^ 1986:, 1928:^ 1889:^ 1880:, 1856:^ 1847:, 1688:. 1631:. 1567:. 1087:, 1083:, 1023:. 411:, 362:01 225:A 187:. 119:. 84:. 77:. 57:, 45:A 2804:. 2781:. 2761:: 2740:. 2728:: 2696:. 2675:. 2654:. 2626:: 2618:: 2597:. 2573:: 2565:: 2544:. 2522:. 2501:. 2469:. 2448:. 2444:: 2436:: 2413:2 2398:. 2377:. 2357:. 2336:. 2324:: 2316:: 2295:. 2281:: 2273:: 2252:. 2230:: 2213:. 2193:. 2172:. 2099:. 2087:. 2075:. 2063:. 2051:. 2039:. 2023:. 2007:. 1990:. 1974:. 1962:. 1950:. 1938:. 1923:. 1911:. 1899:. 1884:. 1868:. 1851:. 1834:) 1828:. 1816:. 1804:. 1792:. 1780:. 1768:. 1756:. 1744:. 1456:x 1453:a 1450:m 1446:/ 1442:n 1439:i 1436:m 1430:| 1427:V 1424:| 1398:| 1390:| 1383:1 1377:| 1369:| 1365:+ 1362:1 1356:= 1347:n 1344:i 1341:m 1335:| 1330:V 1326:| 1317:x 1314:a 1311:m 1305:| 1300:V 1296:| 1289:= 1285:R 1282:W 1279:S 1276:V 1246:2 1242:Z 1219:1 1215:Z 1169:1 1165:Z 1161:+ 1156:2 1152:Z 1144:1 1140:Z 1131:2 1127:Z 1120:= 1051:( 1011:z 901:) 897:y 894:, 891:x 888:( 879:U 836:) 833:y 830:, 827:x 824:( 815:U 749:z 739:e 735:) 732:y 729:, 726:x 723:( 714:U 708:= 705:) 702:z 699:, 696:y 693:, 690:x 687:( 684:U 664:f 658:2 655:= 632:f 612:) 609:z 606:, 603:y 600:, 597:x 594:( 591:U 563:) 560:t 557:, 554:z 551:, 548:y 545:, 542:x 539:( 536:u 516:z 463:( 284:) 280:( 262:. 166:. 33:.

Index


RADAR
flange
(animation) Electric field Ex component of the TE31 mode inside an x-band hollow metal waveguide. A cross-section of the waveguide allows a view of the field inside.
acoustic waveguides
sound
optical waveguides
light
radio-frequency waveguides
electromagnetic waves
radio waves
inverse square law
radio waves
microwaves
Dielectric waveguides
optical fibers
acoustics
horns
loudspeakers
ultrasonic machining
cutoff wavelength
optical fiber
light
microwaves
SOFAR channel
whale song

Argonne National Laboratory
Advanced Photon Source
cave

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.