Knowledge (XXG)

3D reconstruction

Source πŸ“

274: 170: 1849:, a centroid is chosen as the representative of all points. There are two approaches, the selection of the voxel centroid or select the centroid of the points lying within the voxel. To obtain internal points average has a higher computational cost, but offers better results. Thus, a subset of the input space is obtained that roughly represents the underlying surface. The Voxel Grid method presents the same problems as other filtering techniques: impossibility of defining the final number of points that represent the surface, geometric information loss due to the reduction of the points inside a voxel and sensitivity to noisy input spaces. 1783:, while other use a polyharmonic radial basis function is used to adjust the initial point set. Functions like Moving Least Squares, basic functions with local support, based on the Poisson equation have also been used. Loss of the geometry precision in areas with extreme curvature, i.e., corners, edges is one of the main issues encountered. Furthermore, pretreatment of information, by applying some kind of filtering technique, also affects the definition of the corners by softening them. There are several studies related to post-processing techniques used in the reconstruction for the 1726: 1791: 51: 427: 82: 1743:
of a two dimensional polygon and a three-dimensional polyhedron) which is neither convex nor necessarily connected. For a large value, the alpha-shape is identical to the convex-hull of S. The algorithm proposed by Edelsbrunner and Mucke eliminates all tetrahedrons which are delimited by a surrounding sphere smaller than Ξ±. The surface is then obtained with the external triangles from the resulting tetrahedron.
1833: 1755: 354: 282: 1804:
plane. This technique helps us to see comprehensively an entire compact structure of the object. Since the technique needs enormous amount of calculations, which requires strong configuration computers is appropriate for low contrast data. Two main methods for rays projecting can be considered as follows:
1750:
Both methods have been recently extended for reconstructing point clouds with noise. In this method the quality of points determines the feasibility of the method. For precise triangulation since we are using the whole point cloud set, the points on the surface with the error above the threshold will
1742:
Delaunay method involves extraction of tetrahedron surfaces from initial point cloud. The idea of β€˜shape’ for a set of points in space is given by concept of alpha-shapes. Given a finite point set S, and the real parameter alpha, the alpha-shape of S is a polytope (the generalization to any dimension
1465:
The aim of feature extraction is to gain the characteristics of the images, through which the stereo correspondence processes. As a result, the characteristics of the images closely link to the choice of matching methods. There is no such universally applicable theory for features extraction, leading
1262:
2D digital image acquisition is the information source of 3D reconstruction. Commonly used 3D reconstruction is based on two or more images, although it may employ only one image in some cases. There are various types of methods for image acquisition that depends on the occasions and purposes of the
120:
The research of 3D reconstruction has always been a difficult goal. By Using 3D reconstruction one can determine any object's 3D profile, as well as knowing the 3D coordinate of any point on the profile. The 3D reconstruction of objects is a generally scientific problem and core technology of a wide
1600:
According to precise correspondence, combined with camera location parameters, 3D geometric information can be recovered without difficulties. Due to the fact that accuracy of 3D reconstruction depends on the precision of correspondence, error of camera location parameters and so on, the previous
1803:
Entire volume transparence of the object is visualized using VR technique. Images will be performed by projecting rays through volume data. Along each ray, opacity and color need to be calculated at every voxel. Then information calculated along each ray will to be aggregated to a pixel on image
333:
Machine learning enables learning the correspondance between the subtle features in the input and the respective 3D equivalent. Deep neural networks have shown to be highly effective for 3D reconstruction from a single color image. This works even for non-photorealistic input images such as
406:
to observe one same object, acquiring two images from different points of view. In terms of trigonometry relations, depth information can be calculated from disparity. Binocular stereo vision method is well developed and stably contributes to favorable 3D reconstruction, leading to a better
1811:
Image-order or ray-casting method: Projecting rays go through volume from front to back (from image plane to volume).There exists some other methods to composite image, appropriate methods depending on the user's purposes. Some usual methods in medical image are
257:
methods refer to using one or more images from one viewpoint (camera) to proceed to 3D construction. It makes use of 2D characteristics(e.g. Silhouettes, shading and texture) to measure 3D shape, and that's why it is also named Shape-From-X, where X can be
1771:. A contour algorithm is used to extracting a zero-set which is used to obtain polygonal representation of the object. Thus, the problem of reconstructing a surface from a disorganized point cloud is reduced to the definition of the appropriate function 399:, or by one single camera at different time in different viewing angles, are used to restore its 3D geometric information and reconstruct its 3D profile and location. This is more direct than Monocular methods such as shape-from-shading. 471:
are in the same direction with x-axis and y-axis of the camera's coordinate system respectively. The origin of the image's coordinate system is located on the intersection of imaging plane and the optical axis. Suppose such world point
312:
This approach is more sophisticated than the shape-of-shading method. Images taken in different lighting conditions are used to solve the depth information. It is worth mentioning that more than one image is required by this approach.
1609:
Clinical routine of diagnosis, patient follow-up, computer assisted surgery, surgical planning etc. are facilitated by accurate 3D models of the desired part of human anatomy. Main motivation behind 3D reconstruction includes
107:
is the process of capturing the shape and appearance of real objects. This process can be accomplished either by active or passive methods. If the model is allowed to change its shape in time, this is referred to as
229:
Passive methods of 3D reconstruction do not interfere with the reconstructed object; they only use a sensor to measure the radiance reflected or emitted by the object's surface to infer its 3D structure through
334:
sketches. Thanks to the high level of accuracy in the reconstructed 3D features, deep learning based method has been employed for biomedical engineering applications to reconstruct CT imagery from X-ray.
1716:
Mostly algorithms available for 3D reconstruction are extremely slow and cannot be used in real-time. Though the algorithms presented are still in infancy but they have the potential for fast computation.
197:, laser range finder and other active sensing techniques. A simple example of a mechanical method would use a depth gauge to measure a distance to a rotating object put on a turntable. More applicable 1263:
specific application. Not only the requirements of the application must be met, but also the visual disparity, illumination, performance of camera and the feature of scenario should be considered.
273: 896: 1072: 825: 153:, etc. For instance, the lesion information of the patients can be presented in 3D on the computer, which offers a new and accurate approach in diagnosis and thus has vital clinical value. 759: 2955: 1204: 1151: 266:, texture etc. 3D reconstruction through monocular cues is simple and quick, and only one appropriate digital image is needed thus only one camera is adequate. Technically, it avoids 2104: 438:
of the camera's lens. However, to simplify the calculation, images are drawn in front of the optical center of the lens by f. The u-axis and v-axis of the image's coordinate system
1250: 1449: 957: 1590: 1534: 1387: 1331: 602: 546: 423:. The following picture provides a simple schematic diagram of horizontally sighted Binocular Stereo Vision, where b is the baseline between projective centers of two cameras. 3164: 696: 3194: 3116: 1626:
Helps in a number of clinical areas, such as radiotherapy planning and treatment verification, spinal surgery, hip replacement, neurointerventions and aortic stenting.
407:
performance when compared to other 3D construction. Unfortunately, it is computationally intensive, besides it performs rather poorly when baseline distance is large.
189:
approach and build the object in scenario based on model. These methods actively interfere with the reconstructed object, either mechanically or radiometrically using
469: 656: 629: 434:
The origin of the camera's coordinate system is at the optical center of the camera's lens as shown in the figure. Actually, the camera's image plane is behind the
1982:
Liping Zheng; Guangyao Li; Jing Sha (2007). "The survey of medical image 3D reconstruction". In Luo, Qingming; Wang, Lihong V.; Tuchin, Valery V.; Gu, Min (eds.).
3488: 3189: 1863: 1094: 997: 977: 490: 1746:
Another algorithm called Tight Cocone labels the initial tetrahedrons as interior and exterior. The triangles found in and out generate the resulting surface.
3421: 3154: 2518: 3149: 1836:
Tracing a ray through a voxel grid. The voxels which are traversed in addition to those selected using a standard 8-connected algorithm are shown hatched.
2404:
Corona-Figueroa, Abril; Bond-Taylor, Sam; Bhowmik, Neelanjan; Gaus, Yona Falinie A.; Breckon, Toby P.; Shum, Hubert P. H.; Willcocks, Chris G. (2023).
3184: 3252: 2654:
Wang, Jun; Gu, Dongxiao; Yu, Zeyun; Tan, Changbai; Zhou, Laishui (December 2012). "A framework for 3D model reconstruction in reverse engineering".
2575: 169: 1099:
Therefore, once the coordinates of image points is known, besides the parameters of two cameras, the 3D coordinate of the point can be determined.
1592:
from two images. Certain interference factors in the scenario should be noticed, e.g. illumination, noise, surface physical characteristic, etc.
2970: 3269: 2238: 1868: 1767:
Reconstruction of the surface is performed using a distance function which assigns to each point in the space a signed distance to the surface
3289: 2548: 2347: 2181: 2130: 327:. Distortion and perspective measured in 2D images provide the hint for inversely solving depth of normal information of the object surface. 3199: 3169: 3159: 3139: 3109: 2895:
Hoppe, Hugues; DeRose, Tony; Duchamp, Tom; McDonald, John; Stuetzle, Werner (July 1992). "Surface reconstruction from unorganized points".
2320:
Feng, Qi; Shum, Hubert P. H.; Morishima, Shigeo (2022). "360 Depth Estimation in the Wild - The Depth360 Dataset and the SegFuse Network".
2694: 2484:
Mahmoudzadeh, Ahmadreza; Yeganeh, Sayna Firoozi; Golroo, Amir (2019-07-09). "3D pavement surface reconstruction using an RGB-D sensor".
2101: 1003:
of the camera. Visual disparity is defined as the difference in image point location of a certain world point acquired by two cameras,
3354: 3179: 3209: 3044: 3359: 2831: 2641: 3344: 3102: 1277:
Camera calibration in Binocular Stereo Vision refers to the determination of the mapping relationship between the image points
387:
Stereo vision obtains the 3-dimensional geometric information of an object from multiple images based on the research of human
2026: 2681: 109: 2858:
Lorensen, William E.; Cline, Harvey E. (July 1987). "Marching cubes: A high resolution 3D surface construction algorithm".
3525: 3453: 3384: 3235: 2471: 1878: 2723:
Angelopoulou, A.; Psarrou, A.; Garcia-Rodriguez, J.; Orts-Escolano, S.; Azorin-Lopez, J.; Revett, K. (20 February 2015).
831: 205:
towards the object and then measure its reflected part. Examples range from moving light sources, colored visible light,
2614: 1821: 1813: 1272: 319:
Suppose such an object with smooth surface covered by replicated texture units, and its projection from 3D to 2D causes
1451:
in the 3D scenario. Camera calibration is a basic and essential part in 3D reconstruction via Binocular Stereo Vision.
1008: 3204: 1845:
In this filtering technique input space is sampled using a grid of 3D voxels to reduce the number of points. For each
194: 765: 2724: 1779:
established the use of such methods. There are different variants for given algorithm, some use a discrete function
3349: 1659: 707: 2016:." International archives of photogrammetry remote sensing and spatial information sciences 34.3/W4 (2001): 37-44. 3401: 3314: 2707: 2154:
Saxena, Ashutosh; Sun, Min; Ng, Andrew Y. (2007). "3-D Reconstruction from Sparse Views using Monocular Vision".
1645: 604:
respectively on the left and right image plane. Assume two cameras are in the same plane, then y-coordinates of
3535: 3505: 3379: 1157: 1104: 158: 35: 2224: 3084: 3441: 3431: 3174: 2932:
Carr, J.C.; Beatson, R.K.; Cherrie, J.B.; Mitchell, T.J.; Fright, W.R.; McCallum, B.C.; Evans, T.R. (2001).
1480:
Stereo correspondence is to establish the correspondence between primitive factors in images, i.e. to match
186: 154: 39: 2287: 1210: 3478: 3446: 3225: 2904: 2867: 2159: 1790: 1729: 1392: 416: 372: 367: 343: 297: 2610:"From 3D reconstruction to virtual reality: A complete methodology for digital archaeological exhibition" 2572: 2207:"Synthesizing 3D Shapes via Modeling Multi-View Depth Maps and Silhouettes With Deep Generative Networks" 903: 362: 3483: 3294: 3240: 2505: 2044:"Estimating Pavement Roughness by Fusing Color and Depth Data Obtained from an Inexpensive RGB-D Sensor" 1908: 1697: 1539: 1483: 1336: 1280: 551: 495: 392: 267: 206: 142: 3062:
Synthesizing 3D Shapes via Modeling Multi-View Depth Maps and Silhouettes with Deep Generative Networks
2595: 2042:
Mahmoudzadeh, Ahmadreza; Golroo, Amir; Jahanshahi, Mohammad R.; Firoozi Yeganeh, Sayna (January 2019).
1808:
Object-order method: Projecting rays go through volume from back to front (from volume to image plane).
1775:
with a zero value for the sampled points and different to zero value for the rest. An algorithm called
1725: 242:(one, two or more) or video. In this case we talk about image-based reconstruction and the output is a 1620:
Can be used to plan, simulate, guide, or otherwise assist a surgeon in performing a medical procedure.
3406: 3389: 3369: 3339: 2789: 2725:"3D reconstruction of medical images from slices automatically landmarked with growing neural models" 2644:." Proceedings of the 24th annual ACM symposium on User interface software and technology. ACM, 2011. 2253: 2055: 3074: 2269: 1794:
Solid geometry with volume rendering Image courtesy of Patrick Chris Fragile Ph.D., UC Santa Barbara
3530: 3411: 3274: 3079: 2872: 2470:
McCoun, Jacques, and Lucien Reeves. Binocular vision: development, depth perception and disorders.
2164: 1701: 1667: 420: 231: 87: 2909: 2406:
Unaligned 2D to 3D Translation with Conditional Vector-Quantized Code Diffusion using Transformers
246:. By comparison to active methods, passive methods can be applied to a wider range of situations. 238:
is an image sensor in a camera sensitive to visible light and the input to the method is a set of
3426: 3334: 3319: 3279: 3038: 2805: 2779: 2554: 2533:
2011 International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission
2485: 2453: 2430: 2409: 2325: 2187: 1995: 1475: 1460: 661: 308: 130: 3089: 2013: 1928: 3364: 3309: 2544: 2386: 2343: 2177: 2136: 2126: 2083: 1883: 1817: 1684: 1676: 301: 126: 100: 441: 3473: 3436: 3284: 3144: 3061: 3026: 3003: 2914: 2877: 2840: 2797: 2747: 2739: 2663: 2623: 2536: 2445: 2376: 2335: 2302: 2261: 2225:
Shape from shading: A method for obtaining the shape of a smooth opaque object from one view
2206: 2169: 2073: 2063: 1987: 1825: 1784: 254: 634: 607: 277:
Generating and reconstructing 3D shapes from single or multi-view depth maps or silhouettes
3468: 3416: 3125: 2579: 2108: 1941: 1671: 1651: 146: 138: 134: 96: 31: 2363:
Nozawa, Naoki; Shum, Hubert P. H.; Feng, Qi; Ho, Edmond S. L.; Morishima, Shigeo (2022).
1954: 2793: 2257: 2059: 64:
Please help update this article to reflect recent events or newly available information.
3493: 3463: 3374: 3299: 3230: 3064:- Generate and reconstruct 3D shapes via modeling multi-view depth maps or silhouettes. 2829:; Goswami, Samrat (August 2006). "Probable surface reconstruction from noisy samples". 2708:
Real time hand tracking and 3d gesture recognition for interactive interfaces using hmm
2697:." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014. 2078: 2043: 2027:
Investigating landslides with space-borne Synthetic Aperture Radar (SAR) interferometry
1898: 1776: 1692: 1079: 982: 962: 475: 435: 426: 239: 85:
3D reconstruction of the general anatomy of the right side view of a small marine slug
2994:
Wang, C.L. (June 2006). "Incremental reconstruction of sharp edges on mesh surfaces".
2770:
Edelsbrunner, Herbert; MΓΌcke, Ernst (January 1994). "Three-dimensional alpha shapes".
81: 3519: 3458: 2642:
KinectFusion: real-time 3D reconstruction and interaction using a moving depth camera
2609: 2306: 1705: 396: 388: 324: 214: 174: 150: 2941:
28th Annual Conference on Computer Graphics and Interactive Techniques SIGGRAPH 2001
2457: 2191: 1999: 1601:
procedures must be done carefully to achieve relatively accurate 3D reconstruction.
3396: 2809: 2558: 1466:
to a great diversity of stereo correspondence in Binocular Stereo Vision research.
1000: 699: 403: 391:. The results are presented in form of depth maps. Images of an object acquired by 2573:
Real-time 3D computed tomographic reconstruction using commodity graphics hardware
2956:"Implicit Surface Modelling with a Globally Regularised Basis of Compact Support" 2933: 2844: 2743: 2627: 3304: 2531:
Poullis, Charalambos; You, Suya (May 2011). "3D Reconstruction of Urban Areas".
2111:." Fibers' 91, Boston, MA. International Society for Optics and Photonics, 1991. 1903: 1858: 1832: 1623:
The precise position and orientation of the patient's anatomy can be determined.
286: 259: 218: 198: 190: 3030: 3021:
Connolly, C. (1984). "Cumulative generation of octree models from range data".
2381: 2365:"3D Car Shape Reconstruction from a Contour Sketch using GAN and Lazy Learning" 2364: 2339: 1984:
Fifth International Conference on Photonics and Imaging in Biology and Medicine
3007: 2667: 2173: 1931:." Foundations and Trends in Computer Graphics and Vision 4.4 (2010): 287-404. 1873: 320: 281: 210: 2934:"Reconstruction and representation of 3d objects with radial basis functions" 2390: 2239:"Photometric method for determining surface orientation from multiple images" 2211:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
2140: 2826: 2540: 2521:." Exploring artificial intelligence in the new millennium 1.1-35 (2002): 1. 1888: 402:
Binocular stereo vision method requires two identical cameras with parallel
182: 2087: 1754: 3085:
http://research.microsoft.com/apps/search/default.aspx?q=3d+reconstruction
3023:
Proceedings. 1984 IEEE International Conference on Robotics and Automation
2918: 2801: 2205:
Soltani, A.A.; Huang, H.; Wu, J.; Kulkarni, T.D.; Tenenbaum, J.B. (2017).
1816:(maximum intensity projection), MinIP (minimum intensity projection), AC ( 17: 243: 202: 2881: 2125:. Gool, Luc van., Vergauwen, Maarten. Hanover, MA: Now Publishers, Inc. 2752: 2449: 2265: 419:
to acquire object's 3D geometric information is on the basis of visual
263: 157:
can be reconstructed using methods such as airborne laser altimetry or
2068: 1991: 2784: 2695:
Analysis by synthesis: 3d object recognition by object reconstruction
1893: 235: 296:
Due to the analysis of the shade information in the image, by using
2490: 2414: 2330: 2322:
2022 IEEE Conference on Virtual Reality and 3D User Interfaces (VR)
2014:
3D building model reconstruction from point clouds and ground plans
3094: 1846: 1831: 1789: 1753: 1724: 1635:
3D reconstruction has applications in many fields. They include:
425: 280: 272: 168: 80: 3075:
http://www.nature.com/subjects/3d-reconstruction#news-and-comment
1986:. Proceedings of SPIE. Vol. 6534. pp. 65342K–65342K–6. 3080:
http://6.869.csail.mit.edu/fa13/lectures/lecture11shapefromX.pdf
2684:." Computer vision and image understanding 81.3 (2001): 231-268. 122: 3098: 347: 304:
information of the object surface is restored to reconstruct.
44: 3090:
https://research.google.com/search.html#q=3D%20reconstruction
27:
Process of capturing the shape and appearance of real objects
2429:
Kass, Michael; Witkin, Andrew; Terzopoulos, Demetri (1988).
1787:
but these methods increase the complexity of the solution.
121:
variety of fields, such as Computer Aided Geometric Design (
2508:." ACM Transactions on Graphics. Vol. 22. No. 3. ACM, 2003. 2156:
2007 IEEE 11th International Conference on Computer Vision
2123:
3D reconstruction from multiple images. Part 1, Principles
1254:
The 3D reconstruction consists of the following sections:
1929:
3D reconstruction from multiple images part 1: Principles
2582:." Physics in Medicine & Biology 52.12 (2007): 3405. 1942:
Real-time non-rigid reconstruction using an RGB-D camera
2288:"Recovering surface shape and orientation from texture" 2682:
A survey of computer vision-based human motion capture
2598:." Journal of Cultural Heritage 15.3 (2014): 318-325. 1751:
be explicitly represented on reconstructed geometry.
1542: 1486: 1395: 1339: 1283: 1213: 1160: 1107: 1082: 1011: 985: 965: 906: 834: 768: 710: 664: 637: 610: 554: 498: 478: 444: 3260: 3251: 3218: 3132: 2037: 2035: 1927:
Moons, Theo, Luc Van Gool, and Maarten Vergauwen. "
891:{\displaystyle v_{1}=v_{2}=f{\frac {y_{p}}{z_{p}}}} 181:Active methods, i.e. range data methods, given the 1584: 1528: 1443: 1381: 1325: 1244: 1198: 1145: 1088: 1066: 991: 971: 951: 890: 819: 753: 690: 650: 623: 596: 540: 484: 463: 1944:." ACM Transactions on Graphics 33.4 (2014): 156. 1067:{\displaystyle d=u_{1}-u_{2}=f{\frac {b}{z_{p}}}} 2954:Walder, C.; SchΓΆlkopf, B.; Chapelle, O. (2006). 2608:Bruno, Fabio; et al. (January–March 2010). 1614:Improved accuracy due to multi view aggregation. 820:{\displaystyle u_{2}=f{\frac {x_{p}-b}{z_{p}}}} 2029:." Engineering geology 88.3-4 (2006): 173-199. 38:. For 3D reconstruction of sound sources, see 3110: 2100:Buelthoff, Heinrich H., and Alan L. Yuille. " 1864:3D data acquisition and object reconstruction 754:{\displaystyle u_{1}=f{\frac {x_{p}}{z_{p}}}} 8: 2706:Keskin, Cem, Ayse Erkan, and Lale Akarun. " 2596:Learning cultural heritage by serious games 2102:Shape-from-X: Psychophysics and computation 361:It has been suggested that this section be 3257: 3117: 3103: 3095: 2590: 2588: 193:, in order to acquire the depth map, e.g. 2908: 2871: 2783: 2751: 2489: 2413: 2380: 2329: 2163: 2077: 2067: 1573: 1560: 1547: 1541: 1517: 1504: 1491: 1485: 1432: 1419: 1406: 1394: 1370: 1357: 1344: 1338: 1314: 1301: 1288: 1282: 1227: 1218: 1212: 1199:{\displaystyle y_{p}={\frac {bv_{1}}{d}}} 1184: 1174: 1165: 1159: 1146:{\displaystyle x_{p}={\frac {bu_{1}}{d}}} 1131: 1121: 1112: 1106: 1081: 1056: 1047: 1035: 1022: 1010: 984: 964: 940: 927: 914: 905: 880: 870: 864: 852: 839: 833: 809: 792: 785: 773: 767: 743: 733: 727: 715: 709: 682: 669: 663: 642: 636: 615: 609: 585: 572: 559: 553: 529: 516: 503: 497: 477: 449: 443: 2438:International Journal of Computer Vision 2213:. pp. 1511–1519 – via GitHub. 2025:Colesanti, Carlo, and Janusz Wasowski. " 2012:Vosselman, George, and Sander Dijkman. " 979:in the left camera's coordinate system, 289:" reconstructed from multiple viewpoints 2680:Moeslund, Thomas B., and Erik Granum. " 1977: 1975: 1920: 3270:3D reconstruction from multiple images 3036: 2656:Computers & Industrial Engineering 1869:3D reconstruction from multiple images 3290:Simultaneous localization and mapping 2821: 2819: 2765: 2763: 2718: 2716: 1245:{\displaystyle z_{p}={\frac {bf}{d}}} 492:whose corresponding image points are 365:out into another article titled 7: 2710:." ICANN/ICONIPP 2003 (2003): 26-29. 2693:Hejrati, Mohsen, and Deva Ramanan. " 2506:Free-viewpoint video of human actors 1444:{\displaystyle P(x_{p},y_{p},z_{p})} 1785:detection and refinement of corners 1605:3D Reconstruction of medical images 952:{\displaystyle (x_{p},y_{p},z_{p})} 3355:Automatic number-plate recognition 1585:{\displaystyle P_{2}(u_{2},v_{2})} 1529:{\displaystyle P_{1}(u_{1},v_{1})} 1382:{\displaystyle P_{2}(u_{2},v_{2})} 1326:{\displaystyle P_{1}(u_{1},v_{1})} 1076:based on which the coordinates of 597:{\displaystyle P_{2}(u_{2},v_{2})} 541:{\displaystyle P_{1}(u_{1},v_{1})} 25: 430:Geometry of a stereoscopic system 3360:Automated species identification 415:The approach of using Binocular 352: 331:Machine Learning Based Solutions 185:, reconstruct the 3D profile by 49: 3345:Audio-visual speech recognition 3025:. Vol. 1. pp. 25–32. 2431:"Snakes: Active contour models" 3190:Recognition and categorization 2897:ACM SIGGRAPH Computer Graphics 2860:ACM SIGGRAPH Computer Graphics 2571:Xu, Fang, and Klaus Mueller. " 1579: 1553: 1523: 1497: 1438: 1399: 1376: 1350: 1320: 1294: 946: 907: 591: 565: 535: 509: 1: 3454:Optical character recognition 3385:Content-based image retrieval 3043:: CS1 maint: date and year ( 2472:Nova Science Publishers, Inc. 1879:3D SEM surface reconstruction 2845:10.1016/j.comgeo.2005.10.006 2744:10.1016/j.neucom.2014.03.078 2628:10.1016/j.culher.2009.02.006 2615:Journal of Cultural Heritage 2307:10.1016/0004-3702(81)90019-9 1940:ZollhΓΆfer, Michael, et al. " 1273:Geometric camera calibration 411:Problem statement and basics 110:non-rigid or spatio-temporal 2237:Woodham, Robert J. (1980). 1955:"The Future of 3D Modeling" 1617:Detailed surface estimates. 691:{\displaystyle v_{1}=v_{2}} 270:, which is fairly complex. 177:map of an underwater canyon 116:Motivation and applications 3552: 3350:Automatic image annotation 3185:Noise reduction techniques 3031:10.1109/ROBOT.1984.1087212 2594:Mortara, Michela, et al. " 2382:10.1007/s00371-020-02024-y 2375:(4). Springer: 1317–1330. 2340:10.1109/VR51125.2022.00087 2324:. IEEE. pp. 664–673. 2286:Witkin, Andrew P. (1981). 1660:Tomographic reconstruction 1473: 1458: 1270: 393:two cameras simultaneously 341: 29: 3502: 3315:Free viewpoint television 3008:10.1016/j.cad.2006.02.009 2668:10.1016/j.cie.2012.07.009 2630:– via ResearchGate. 2519:Robotic mapping: A survey 2174:10.1109/ICCV.2007.4409219 1737:Delaunay and alpha-shapes 58:This article needs to be 30:For 3D reconstruction in 3380:Computer-aided diagnosis 2640:Izadi, Shahram, et al. " 2504:Carranza, Joel, et al. " 159:synthetic aperture radar 155:Digital elevation models 36:Iterative reconstruction 3442:Moving object detection 3432:Medical image computing 3195:Research infrastructure 3165:Image sensor technology 2541:10.1109/3dimpvt.2011.14 2295:Artificial Intelligence 1389:, and space coordinate 464:{\displaystyle O_{1}uv} 187:numerical approximation 40:3D sound reconstruction 3479:Video content analysis 3447:Small object detection 3226:Computer stereo vision 2943:. ACM. pp. 67–76. 2832:Computational Geometry 1837: 1795: 1759: 1733: 1730:Delaunay triangulation 1586: 1530: 1445: 1383: 1327: 1246: 1200: 1147: 1090: 1068: 993: 973: 953: 892: 821: 755: 692: 652: 625: 598: 542: 486: 465: 431: 368:Computer stereo vision 344:Computer stereo vision 298:Lambertian reflectance 290: 278: 250:Monocular cues methods 178: 92: 3484:Video motion analysis 3295:Structure from motion 3241:3D object recognition 2996:Computer-Aided Design 2919:10.1145/142920.134011 2802:10.1145/174462.156635 1909:Structure from motion 1835: 1793: 1757: 1728: 1698:3D object recognition 1587: 1531: 1470:Stereo correspondence 1446: 1384: 1328: 1247: 1201: 1148: 1091: 1069: 994: 974: 954: 893: 822: 756: 693: 653: 651:{\displaystyle P_{2}} 626: 624:{\displaystyle P_{1}} 599: 543: 487: 466: 429: 284: 276: 268:stereo correspondence 172: 143:computational science 84: 3526:3D computer graphics 3407:Foreground detection 3390:Reverse image search 3370:Bioimage informatics 3340:Activity recognition 2223:Horn, Berthold KP. " 2121:Moons, Theo (2010). 1824:(non-photorealistic 1721:Existing Approaches: 1668:Virtual environments 1648:video reconstruction 1639:Pavement engineering 1540: 1484: 1393: 1337: 1281: 1211: 1158: 1105: 1080: 1009: 983: 963: 904: 832: 766: 708: 662: 658:are identical, i.e., 635: 608: 552: 496: 476: 442: 3474:Autonomous vehicles 3412:Gesture recognition 3275:2D to 3D conversion 2969:(3). Archived from 2882:10.1145/37402.37422 2794:1994math.....10208E 2517:Thrun, Sebastian. " 2258:1980OptEn..19..139W 2246:Optical Engineering 2060:2019Senso..19.1655M 1702:gesture recognition 1689:Reverse engineering 1096:can be worked out. 959:are coordinates of 232:image understanding 88:Pseudunela viatoris 3489:Video surveillance 3427:Landmark detection 3335:3D pose estimation 3320:Volumetric capture 3280:Gaussian splatting 3236:Object recognition 3150:Commercial systems 2578:2016-03-19 at the 2535:. pp. 33–40. 2450:10.1007/BF00133570 2266:10.1117/12.7972479 2107:2011-01-07 at the 1838: 1796: 1760: 1734: 1712:Problem Statement: 1582: 1526: 1476:Image registration 1461:Feature extraction 1455:Feature extraction 1441: 1379: 1323: 1267:Camera calibration 1242: 1196: 1143: 1086: 1064: 989: 969: 949: 888: 817: 751: 688: 648: 621: 594: 538: 482: 461: 432: 317:Shape-from-texture 309:Photometric Stereo 294:Shape-from-shading 291: 279: 221:for more details. 179: 131:computer animation 93: 3513: 3512: 3422:Image restoration 3365:Augmented reality 3330: 3329: 3310:4D reconstruction 3262:3D reconstruction 3155:Feature detection 2738:(Part A): 16–25. 2550:978-1-61284-429-9 2349:978-1-6654-9617-9 2183:978-1-4244-1630-1 2132:978-1-60198-285-8 2069:10.3390/s19071655 1992:10.1117/12.741321 1884:4D reconstruction 1818:alpha compositing 1685:Augmented reality 1677:Earth observation 1258:Image acquisition 1240: 1194: 1141: 1089:{\displaystyle P} 1062: 992:{\displaystyle f} 972:{\displaystyle P} 886: 815: 749: 485:{\displaystyle P} 385: 384: 380: 234:. Typically, the 127:computer graphics 105:3D reconstruction 101:computer graphics 79: 78: 16:(Redirected from 3543: 3437:Object detection 3402:Face recognition 3285:Shape from focus 3258: 3145:Digital geometry 3119: 3112: 3105: 3096: 3049: 3048: 3042: 3034: 3018: 3012: 3011: 2991: 2985: 2984: 2982: 2981: 2975: 2960: 2951: 2945: 2944: 2938: 2929: 2923: 2922: 2912: 2892: 2886: 2885: 2875: 2855: 2849: 2848: 2839:(1–2): 124–141. 2823: 2814: 2813: 2787: 2772:ACM Trans. Graph 2767: 2758: 2757: 2755: 2729: 2720: 2711: 2704: 2698: 2691: 2685: 2678: 2672: 2671: 2662:(4): 1189–1200. 2651: 2645: 2638: 2632: 2631: 2605: 2599: 2592: 2583: 2569: 2563: 2562: 2528: 2522: 2515: 2509: 2502: 2496: 2495: 2493: 2481: 2475: 2468: 2462: 2461: 2435: 2426: 2420: 2419: 2417: 2401: 2395: 2394: 2384: 2360: 2354: 2353: 2333: 2317: 2311: 2310: 2292: 2283: 2277: 2276: 2274: 2268:. Archived from 2243: 2234: 2228: 2221: 2215: 2214: 2202: 2196: 2195: 2167: 2158:. pp. 1–8. 2151: 2145: 2144: 2118: 2112: 2098: 2092: 2091: 2081: 2071: 2039: 2030: 2023: 2017: 2010: 2004: 2003: 1979: 1970: 1969: 1967: 1966: 1951: 1945: 1938: 1932: 1925: 1826:volume rendering 1763:Zero set Methods 1591: 1589: 1588: 1583: 1578: 1577: 1565: 1564: 1552: 1551: 1535: 1533: 1532: 1527: 1522: 1521: 1509: 1508: 1496: 1495: 1450: 1448: 1447: 1442: 1437: 1436: 1424: 1423: 1411: 1410: 1388: 1386: 1385: 1380: 1375: 1374: 1362: 1361: 1349: 1348: 1332: 1330: 1329: 1324: 1319: 1318: 1306: 1305: 1293: 1292: 1251: 1249: 1248: 1243: 1241: 1236: 1228: 1223: 1222: 1205: 1203: 1202: 1197: 1195: 1190: 1189: 1188: 1175: 1170: 1169: 1152: 1150: 1149: 1144: 1142: 1137: 1136: 1135: 1122: 1117: 1116: 1095: 1093: 1092: 1087: 1073: 1071: 1070: 1065: 1063: 1061: 1060: 1048: 1040: 1039: 1027: 1026: 998: 996: 995: 990: 978: 976: 975: 970: 958: 956: 955: 950: 945: 944: 932: 931: 919: 918: 897: 895: 894: 889: 887: 885: 884: 875: 874: 865: 857: 856: 844: 843: 826: 824: 823: 818: 816: 814: 813: 804: 797: 796: 786: 778: 777: 760: 758: 757: 752: 750: 748: 747: 738: 737: 728: 720: 719: 697: 695: 694: 689: 687: 686: 674: 673: 657: 655: 654: 649: 647: 646: 630: 628: 627: 622: 620: 619: 603: 601: 600: 595: 590: 589: 577: 576: 564: 563: 547: 545: 544: 539: 534: 533: 521: 520: 508: 507: 491: 489: 488: 483: 470: 468: 467: 462: 454: 453: 376: 356: 355: 348: 195:structured light 112:reconstruction. 74: 71: 65: 53: 52: 45: 21: 3551: 3550: 3546: 3545: 3544: 3542: 3541: 3540: 3536:Computer vision 3516: 3515: 3514: 3509: 3498: 3469:Robotic mapping 3417:Image denoising 3326: 3247: 3214: 3180:Motion analysis 3128: 3126:Computer vision 3123: 3071: 3058: 3053: 3052: 3035: 3020: 3019: 3015: 2993: 2992: 2988: 2979: 2977: 2973: 2958: 2953: 2952: 2948: 2936: 2931: 2930: 2926: 2894: 2893: 2889: 2857: 2856: 2852: 2825: 2824: 2817: 2769: 2768: 2761: 2727: 2722: 2721: 2714: 2705: 2701: 2692: 2688: 2679: 2675: 2653: 2652: 2648: 2639: 2635: 2607: 2606: 2602: 2593: 2586: 2580:Wayback Machine 2570: 2566: 2551: 2530: 2529: 2525: 2516: 2512: 2503: 2499: 2483: 2482: 2478: 2469: 2465: 2433: 2428: 2427: 2423: 2403: 2402: 2398: 2369:Visual Computer 2362: 2361: 2357: 2350: 2319: 2318: 2314: 2290: 2285: 2284: 2280: 2272: 2241: 2236: 2235: 2231: 2222: 2218: 2204: 2203: 2199: 2184: 2153: 2152: 2148: 2133: 2120: 2119: 2115: 2109:Wayback Machine 2099: 2095: 2041: 2040: 2033: 2024: 2020: 2011: 2007: 1981: 1980: 1973: 1964: 1962: 1953: 1952: 1948: 1939: 1935: 1926: 1922: 1917: 1855: 1672:virtual tourism 1652:Robotic mapping 1607: 1598: 1569: 1556: 1543: 1538: 1537: 1513: 1500: 1487: 1482: 1481: 1478: 1472: 1463: 1457: 1428: 1415: 1402: 1391: 1390: 1366: 1353: 1340: 1335: 1334: 1310: 1297: 1284: 1279: 1278: 1275: 1269: 1260: 1229: 1214: 1209: 1208: 1180: 1176: 1161: 1156: 1155: 1127: 1123: 1108: 1103: 1102: 1078: 1077: 1052: 1031: 1018: 1007: 1006: 981: 980: 961: 960: 936: 923: 910: 902: 901: 876: 866: 848: 835: 830: 829: 805: 788: 787: 769: 764: 763: 739: 729: 711: 706: 705: 698:. According to 678: 665: 660: 659: 638: 633: 632: 611: 606: 605: 581: 568: 555: 550: 549: 525: 512: 499: 494: 493: 474: 473: 445: 440: 439: 413: 381: 357: 353: 346: 340: 300:, the depth of 252: 227: 225:Passive methods 167: 147:virtual reality 139:medical imaging 135:computer vision 118: 97:computer vision 75: 69: 66: 63: 54: 50: 43: 32:medical imaging 28: 23: 22: 15: 12: 11: 5: 3549: 3547: 3539: 3538: 3533: 3528: 3518: 3517: 3511: 3510: 3503: 3500: 3499: 3497: 3496: 3494:Video tracking 3491: 3486: 3481: 3476: 3471: 3466: 3464:Remote sensing 3461: 3456: 3451: 3450: 3449: 3444: 3434: 3429: 3424: 3419: 3414: 3409: 3404: 3399: 3394: 3393: 3392: 3382: 3377: 3375:Blob detection 3372: 3367: 3362: 3357: 3352: 3347: 3342: 3337: 3331: 3328: 3327: 3325: 3324: 3323: 3322: 3317: 3307: 3302: 3300:View synthesis 3297: 3292: 3287: 3282: 3277: 3272: 3266: 3264: 3255: 3249: 3248: 3246: 3245: 3244: 3243: 3233: 3231:Motion capture 3228: 3222: 3220: 3216: 3215: 3213: 3212: 3207: 3202: 3197: 3192: 3187: 3182: 3177: 3172: 3167: 3162: 3157: 3152: 3147: 3142: 3136: 3134: 3130: 3129: 3124: 3122: 3121: 3114: 3107: 3099: 3093: 3092: 3087: 3082: 3077: 3070: 3069:External links 3067: 3066: 3065: 3057: 3056:External links 3054: 3051: 3050: 3013: 3002:(6): 689–702. 2986: 2946: 2924: 2887: 2873:10.1.1.545.613 2866:(4): 163–169. 2850: 2815: 2759: 2732:Neurocomputing 2712: 2699: 2686: 2673: 2646: 2633: 2600: 2584: 2564: 2549: 2523: 2510: 2497: 2476: 2463: 2444:(4): 321–331. 2421: 2396: 2355: 2348: 2312: 2301:(1–3): 17–45. 2278: 2275:on 2014-03-27. 2252:(1): 138–141. 2229: 2216: 2197: 2182: 2165:10.1.1.78.5303 2146: 2131: 2113: 2093: 2031: 2018: 2005: 1971: 1946: 1933: 1919: 1918: 1916: 1913: 1912: 1911: 1906: 1901: 1899:Photogrammetry 1896: 1891: 1886: 1881: 1876: 1871: 1866: 1861: 1854: 1851: 1830: 1829: 1809: 1777:marching cubes 1758:Marching Cubes 1748: 1747: 1744: 1709: 1708: 1695: 1693:Motion capture 1690: 1687: 1682: 1679: 1674: 1665: 1662: 1657: 1654: 1649: 1646:Free-viewpoint 1643: 1640: 1628: 1627: 1624: 1621: 1618: 1615: 1606: 1603: 1597: 1594: 1581: 1576: 1572: 1568: 1563: 1559: 1555: 1550: 1546: 1525: 1520: 1516: 1512: 1507: 1503: 1499: 1494: 1490: 1474:Main article: 1471: 1468: 1459:Main article: 1456: 1453: 1440: 1435: 1431: 1427: 1422: 1418: 1414: 1409: 1405: 1401: 1398: 1378: 1373: 1369: 1365: 1360: 1356: 1352: 1347: 1343: 1322: 1317: 1313: 1309: 1304: 1300: 1296: 1291: 1287: 1271:Main article: 1268: 1265: 1259: 1256: 1239: 1235: 1232: 1226: 1221: 1217: 1193: 1187: 1183: 1179: 1173: 1168: 1164: 1140: 1134: 1130: 1126: 1120: 1115: 1111: 1085: 1059: 1055: 1051: 1046: 1043: 1038: 1034: 1030: 1025: 1021: 1017: 1014: 988: 968: 948: 943: 939: 935: 930: 926: 922: 917: 913: 909: 883: 879: 873: 869: 863: 860: 855: 851: 847: 842: 838: 812: 808: 803: 800: 795: 791: 784: 781: 776: 772: 746: 742: 736: 732: 726: 723: 718: 714: 685: 681: 677: 672: 668: 645: 641: 618: 614: 593: 588: 584: 580: 575: 571: 567: 562: 558: 537: 532: 528: 524: 519: 515: 511: 506: 502: 481: 460: 457: 452: 448: 436:optical center 412: 409: 397:viewing angles 383: 382: 378:(October 2021) 360: 358: 351: 342:Main article: 339: 336: 255:Monocular cues 251: 248: 240:digital images 226: 223: 207:time-of-flight 166: 165:Active methods 163: 117: 114: 77: 76: 57: 55: 48: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3548: 3537: 3534: 3532: 3529: 3527: 3524: 3523: 3521: 3508: 3507: 3506:Main category 3501: 3495: 3492: 3490: 3487: 3485: 3482: 3480: 3477: 3475: 3472: 3470: 3467: 3465: 3462: 3460: 3459:Pose tracking 3457: 3455: 3452: 3448: 3445: 3443: 3440: 3439: 3438: 3435: 3433: 3430: 3428: 3425: 3423: 3420: 3418: 3415: 3413: 3410: 3408: 3405: 3403: 3400: 3398: 3395: 3391: 3388: 3387: 3386: 3383: 3381: 3378: 3376: 3373: 3371: 3368: 3366: 3363: 3361: 3358: 3356: 3353: 3351: 3348: 3346: 3343: 3341: 3338: 3336: 3333: 3332: 3321: 3318: 3316: 3313: 3312: 3311: 3308: 3306: 3303: 3301: 3298: 3296: 3293: 3291: 3288: 3286: 3283: 3281: 3278: 3276: 3273: 3271: 3268: 3267: 3265: 3263: 3259: 3256: 3254: 3250: 3242: 3239: 3238: 3237: 3234: 3232: 3229: 3227: 3224: 3223: 3221: 3217: 3211: 3208: 3206: 3203: 3201: 3198: 3196: 3193: 3191: 3188: 3186: 3183: 3181: 3178: 3176: 3173: 3171: 3168: 3166: 3163: 3161: 3158: 3156: 3153: 3151: 3148: 3146: 3143: 3141: 3138: 3137: 3135: 3131: 3127: 3120: 3115: 3113: 3108: 3106: 3101: 3100: 3097: 3091: 3088: 3086: 3083: 3081: 3078: 3076: 3073: 3072: 3068: 3063: 3060: 3059: 3055: 3046: 3040: 3032: 3028: 3024: 3017: 3014: 3009: 3005: 3001: 2997: 2990: 2987: 2976:on 2017-09-22 2972: 2968: 2964: 2957: 2950: 2947: 2942: 2935: 2928: 2925: 2920: 2916: 2911: 2910:10.1.1.5.3672 2906: 2902: 2898: 2891: 2888: 2883: 2879: 2874: 2869: 2865: 2861: 2854: 2851: 2846: 2842: 2838: 2834: 2833: 2828: 2827:Dey, Tamal K. 2822: 2820: 2816: 2811: 2807: 2803: 2799: 2795: 2791: 2786: 2781: 2777: 2773: 2766: 2764: 2760: 2754: 2749: 2745: 2741: 2737: 2733: 2726: 2719: 2717: 2713: 2709: 2703: 2700: 2696: 2690: 2687: 2683: 2677: 2674: 2669: 2665: 2661: 2657: 2650: 2647: 2643: 2637: 2634: 2629: 2625: 2621: 2617: 2616: 2611: 2604: 2601: 2597: 2591: 2589: 2585: 2581: 2577: 2574: 2568: 2565: 2560: 2556: 2552: 2546: 2542: 2538: 2534: 2527: 2524: 2520: 2514: 2511: 2507: 2501: 2498: 2492: 2487: 2480: 2477: 2473: 2467: 2464: 2459: 2455: 2451: 2447: 2443: 2439: 2432: 2425: 2422: 2416: 2411: 2407: 2400: 2397: 2392: 2388: 2383: 2378: 2374: 2370: 2366: 2359: 2356: 2351: 2345: 2341: 2337: 2332: 2327: 2323: 2316: 2313: 2308: 2304: 2300: 2296: 2289: 2282: 2279: 2271: 2267: 2263: 2259: 2255: 2251: 2247: 2240: 2233: 2230: 2226: 2220: 2217: 2212: 2208: 2201: 2198: 2193: 2189: 2185: 2179: 2175: 2171: 2166: 2161: 2157: 2150: 2147: 2142: 2138: 2134: 2128: 2124: 2117: 2114: 2110: 2106: 2103: 2097: 2094: 2089: 2085: 2080: 2075: 2070: 2065: 2061: 2057: 2053: 2049: 2045: 2038: 2036: 2032: 2028: 2022: 2019: 2015: 2009: 2006: 2001: 1997: 1993: 1989: 1985: 1978: 1976: 1972: 1960: 1956: 1950: 1947: 1943: 1937: 1934: 1930: 1924: 1921: 1914: 1910: 1907: 1905: 1902: 1900: 1897: 1895: 1892: 1890: 1887: 1885: 1882: 1880: 1877: 1875: 1872: 1870: 1867: 1865: 1862: 1860: 1857: 1856: 1852: 1850: 1848: 1843: 1842: 1834: 1827: 1823: 1819: 1815: 1810: 1807: 1806: 1805: 1801: 1800: 1792: 1788: 1786: 1782: 1778: 1774: 1770: 1765: 1764: 1756: 1752: 1745: 1741: 1740: 1739: 1738: 1731: 1727: 1723: 1722: 1718: 1714: 1713: 1707: 1706:hand tracking 1703: 1699: 1696: 1694: 1691: 1688: 1686: 1683: 1680: 1678: 1675: 1673: 1669: 1666: 1663: 1661: 1658: 1656:City planning 1655: 1653: 1650: 1647: 1644: 1641: 1638: 1637: 1636: 1633: 1632: 1631:Applications: 1625: 1622: 1619: 1616: 1613: 1612: 1611: 1604: 1602: 1595: 1593: 1574: 1570: 1566: 1561: 1557: 1548: 1544: 1518: 1514: 1510: 1505: 1501: 1492: 1488: 1477: 1469: 1467: 1462: 1454: 1452: 1433: 1429: 1425: 1420: 1416: 1412: 1407: 1403: 1396: 1371: 1367: 1363: 1358: 1354: 1345: 1341: 1315: 1311: 1307: 1302: 1298: 1289: 1285: 1274: 1266: 1264: 1257: 1255: 1252: 1237: 1233: 1230: 1224: 1219: 1215: 1206: 1191: 1185: 1181: 1177: 1171: 1166: 1162: 1153: 1138: 1132: 1128: 1124: 1118: 1113: 1109: 1100: 1097: 1083: 1074: 1057: 1053: 1049: 1044: 1041: 1036: 1032: 1028: 1023: 1019: 1015: 1012: 1004: 1002: 986: 966: 941: 937: 933: 928: 924: 920: 915: 911: 898: 881: 877: 871: 867: 861: 858: 853: 849: 845: 840: 836: 827: 810: 806: 801: 798: 793: 789: 782: 779: 774: 770: 761: 744: 740: 734: 730: 724: 721: 716: 712: 703: 701: 683: 679: 675: 670: 666: 643: 639: 616: 612: 586: 582: 578: 573: 569: 560: 556: 530: 526: 522: 517: 513: 504: 500: 479: 458: 455: 450: 446: 437: 428: 424: 422: 418: 417:stereo vision 410: 408: 405: 400: 398: 395:in different 394: 390: 389:visual system 379: 374: 370: 369: 364: 359: 350: 349: 345: 338:Stereo vision 337: 335: 332: 328: 326: 322: 318: 314: 311: 310: 305: 303: 299: 295: 288: 283: 275: 271: 269: 265: 261: 256: 249: 247: 245: 241: 237: 233: 224: 222: 220: 216: 215:3D ultrasound 212: 208: 204: 201:methods emit 200: 196: 192: 188: 184: 176: 175:echo sounding 171: 164: 162: 160: 156: 152: 151:digital media 148: 144: 140: 136: 132: 128: 124: 115: 113: 111: 106: 102: 98: 90: 89: 83: 73: 61: 56: 47: 46: 41: 37: 33: 19: 3504: 3397:Eye tracking 3261: 3253:Applications 3219:Technologies 3205:Segmentation 3022: 3016: 2999: 2995: 2989: 2978:. Retrieved 2971:the original 2966: 2963:Eurographics 2962: 2949: 2940: 2927: 2903:(2): 71–78. 2900: 2896: 2890: 2863: 2859: 2853: 2836: 2830: 2785:math/9410208 2778:(1): 43–72. 2775: 2771: 2735: 2731: 2702: 2689: 2676: 2659: 2655: 2649: 2636: 2622:(1): 42–49. 2619: 2613: 2603: 2567: 2532: 2526: 2513: 2500: 2479: 2466: 2441: 2437: 2424: 2408:. IEEE/CVF. 2405: 2399: 2372: 2368: 2358: 2321: 2315: 2298: 2294: 2281: 2270:the original 2249: 2245: 2232: 2219: 2210: 2200: 2155: 2149: 2122: 2116: 2096: 2051: 2047: 2021: 2008: 1983: 1963:. Retrieved 1961:. 2017-05-27 1958: 1949: 1936: 1923: 1844: 1840: 1839: 1802: 1799:VR Technique 1798: 1797: 1780: 1772: 1768: 1766: 1762: 1761: 1749: 1736: 1735: 1720: 1719: 1715: 1711: 1710: 1634: 1630: 1629: 1608: 1599: 1479: 1464: 1276: 1261: 1253: 1207: 1154: 1101: 1098: 1075: 1005: 1001:focal length 899: 828: 762: 704: 700:trigonometry 433: 414: 404:optical axis 401: 386: 377: 366: 330: 329: 316: 315: 307: 306: 293: 292: 253: 228: 191:rangefinders 180: 119: 104: 94: 86: 70:October 2019 67: 59: 3305:Visual hull 3200:Researchers 2753:10045/42544 2054:(7): 1655. 1904:Stereoscopy 1859:3D modeling 1732:(25 Points) 1681:Archaeology 1596:Restoration 702:relations, 325:perspective 287:visual hull 260:silhouettes 219:3D scanning 209:lasers to 199:radiometric 3531:3D imaging 3520:Categories 3175:Morphology 3133:Categories 2980:2018-10-09 2491:1907.04124 2415:2308.14152 2331:2202.08010 2227:." (1970). 1965:2017-05-27 1959:GarageFarm 1915:References 1874:3D scanner 1841:Voxel Grid 321:distortion 211:microwaves 18:3D mapping 3039:cite book 2905:CiteSeerX 2868:CiteSeerX 2391:1432-2315 2160:CiteSeerX 2141:607557354 1889:Depth map 1029:− 799:− 421:disparity 183:depth map 3210:Software 3170:Learning 3160:Geometry 3140:Datasets 2576:Archived 2458:12849354 2192:17571812 2105:Archived 2088:30959936 2000:62548928 1853:See also 1642:Medicine 244:3D model 203:radiance 2810:1600979 2790:Bibcode 2559:1189988 2474:, 2010. 2254:Bibcode 2079:6479490 2056:Bibcode 2048:Sensors 373:Discuss 264:shading 60:updated 2907:  2870:  2808:  2557:  2547:  2456:  2389:  2346:  2190:  2180:  2162:  2139:  2129:  2086:  2076:  1998:  1894:Kinect 1820:) and 1664:Gaming 900:where 302:normal 236:sensor 217:. See 34:, see 2974:(PDF) 2959:(PDF) 2937:(PDF) 2806:S2CID 2780:arXiv 2728:(PDF) 2555:S2CID 2486:arXiv 2454:S2CID 2434:(PDF) 2410:arXiv 2326:arXiv 2291:(PDF) 2273:(PDF) 2242:(PDF) 2188:S2CID 1996:S2CID 1847:voxel 363:split 3045:link 2545:ISBN 2387:ISSN 2344:ISBN 2178:ISBN 2137:OCLC 2127:ISBN 2084:PMID 1822:NPVR 1704:and 1670:and 1536:and 1333:and 631:and 548:and 323:and 123:CAGD 99:and 3027:doi 3004:doi 2915:doi 2878:doi 2841:doi 2798:doi 2748:hdl 2740:doi 2736:150 2664:doi 2624:doi 2537:doi 2446:doi 2377:doi 2336:doi 2303:doi 2262:doi 2170:doi 2074:PMC 2064:doi 1988:doi 1814:MIP 999:is 371:. ( 285:A " 213:or 173:3D 125:), 95:In 3522:: 3041:}} 3037:{{ 3000:38 2998:. 2967:25 2965:. 2961:. 2939:. 2913:. 2901:26 2899:. 2876:. 2864:21 2862:. 2837:35 2835:. 2818:^ 2804:. 2796:. 2788:. 2776:13 2774:. 2762:^ 2746:. 2734:. 2730:. 2715:^ 2660:63 2658:. 2620:11 2618:. 2612:. 2587:^ 2553:. 2543:. 2452:. 2440:. 2436:. 2385:. 2373:38 2371:. 2367:. 2342:. 2334:. 2299:17 2297:. 2293:. 2260:. 2250:19 2248:. 2244:. 2209:. 2186:. 2176:. 2168:. 2135:. 2082:. 2072:. 2062:. 2052:19 2050:. 2046:. 2034:^ 1994:. 1974:^ 1957:. 1828:). 1700:, 375:) 262:, 161:. 149:, 145:, 141:, 137:, 133:, 129:, 103:, 3118:e 3111:t 3104:v 3047:) 3033:. 3029:: 3010:. 3006:: 2983:. 2921:. 2917:: 2884:. 2880:: 2847:. 2843:: 2812:. 2800:: 2792:: 2782:: 2756:. 2750:: 2742:: 2670:. 2666:: 2626:: 2561:. 2539:: 2494:. 2488:: 2460:. 2448:: 2442:1 2418:. 2412:: 2393:. 2379:: 2352:. 2338:: 2328:: 2309:. 2305:: 2264:: 2256:: 2194:. 2172:: 2143:. 2090:. 2066:: 2058:: 2002:. 1990:: 1968:. 1781:f 1773:f 1769:S 1580:) 1575:2 1571:v 1567:, 1562:2 1558:u 1554:( 1549:2 1545:P 1524:) 1519:1 1515:v 1511:, 1506:1 1502:u 1498:( 1493:1 1489:P 1439:) 1434:p 1430:z 1426:, 1421:p 1417:y 1413:, 1408:p 1404:x 1400:( 1397:P 1377:) 1372:2 1368:v 1364:, 1359:2 1355:u 1351:( 1346:2 1342:P 1321:) 1316:1 1312:v 1308:, 1303:1 1299:u 1295:( 1290:1 1286:P 1238:d 1234:f 1231:b 1225:= 1220:p 1216:z 1192:d 1186:1 1182:v 1178:b 1172:= 1167:p 1163:y 1139:d 1133:1 1129:u 1125:b 1119:= 1114:p 1110:x 1084:P 1058:p 1054:z 1050:b 1045:f 1042:= 1037:2 1033:u 1024:1 1020:u 1016:= 1013:d 987:f 967:P 947:) 942:p 938:z 934:, 929:p 925:y 921:, 916:p 912:x 908:( 882:p 878:z 872:p 868:y 862:f 859:= 854:2 850:v 846:= 841:1 837:v 811:p 807:z 802:b 794:p 790:x 783:f 780:= 775:2 771:u 745:p 741:z 735:p 731:x 725:f 722:= 717:1 713:u 684:2 680:v 676:= 671:1 667:v 644:2 640:P 617:1 613:P 592:) 587:2 583:v 579:, 574:2 570:u 566:( 561:2 557:P 536:) 531:1 527:v 523:, 518:1 514:u 510:( 505:1 501:P 480:P 459:v 456:u 451:1 447:O 91:. 72:) 68:( 62:. 42:. 20:)

Index

3D mapping
medical imaging
Iterative reconstruction
3D sound reconstruction

Pseudunela viatoris
computer vision
computer graphics
non-rigid or spatio-temporal
CAGD
computer graphics
computer animation
computer vision
medical imaging
computational science
virtual reality
digital media
Digital elevation models
synthetic aperture radar

echo sounding
depth map
numerical approximation
rangefinders
structured light
radiometric
radiance
time-of-flight
microwaves
3D ultrasound

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑