Knowledge

Ecophysiology

Source 📝

966: 952: 938: 278: 599:
moisture as it is exposed to dry air. On the other hand, a moderately high wind allows the plant to cool its leaves more easily when exposed to full sunlight. Plants are not entirely passive in their interaction with wind. Plants can make their leaves less vulnerable to changes in wind speed, by coating their leaves in fine hairs (
634:
damaged or uprooted by wind. This has been a major selective pressure acting over terrestrial plants. Nowadays, it is one of the major threatening for agriculture and forestry even in temperate zones. It is worse for agriculture in hurricane-prone regions, such as the banana-growing Windward Islands in the Caribbean.
480: 524:
have shown that photosynthetic efficiency does indeed increase. Plant growth rates also increase, by an average of 17% for above-ground tissue and 30% for below-ground tissue. However, detrimental impacts of global warming, such as increased instances of heat and drought stress, mean that the overall
386:
Waterlogging reduces the supply of oxygen to the roots and can kill a plant within days. Plants cannot avoid waterlogging, but many species overcome the lack of oxygen in the soil by transporting oxygen to the root from tissues that are not submerged. Species that are tolerant of waterlogging develop
616:
results in shorter, stockier plants with strengthened stems, as well as to an improved anchorage. It was once believed that this occurs mostly in very windy areas. But it has been found that it happens even in areas with moderate winds, so that wind-induced signal were found to be a major ecological
391:
to allow the diffusion of oxygen from the shoot to the root. Roots that are not killed outright may also switch to less oxygen-hungry forms of cellular respiration. Species that are frequently submerged have evolved more elaborate mechanisms that maintain root oxygen levels, such as the aerial roots
114:
Plant ecophysiology is concerned largely with two topics: mechanisms (how plants sense and respond to environmental change) and scaling or integration (how the responses to highly variable conditions—for example, gradients from full sunlight to 95% shade within tree canopies—are coordinated with one
633:
Wind can damage most of the organs of the plants. Leaf abrasion (due to the rubbing of leaves and branches or to the effect of airborne particles such as sand) and leaf of branch breakage are rather common phenomena, that plants have to accommodate. In the more extreme cases, plants can be mortally
598:
and in effect insulates the leaf from the environment, providing an atmosphere rich in moisture and less prone to convective heating or cooling. As wind speed increases, the leaf environment becomes more closely linked to the surrounding environment. It may become difficult for the plant to retain
508:. This would be expected to increase the efficiency of photosynthesis and possibly increase the overall rate of plant growth. This possibility has attracted considerable interest in recent years, as an increased rate of plant growth could absorb some of the excess CO 316:
plants found in the uplands of New Zealand are said to resemble 'vegetable sheep' as they form tight cushion-like clumps to insulate the most vulnerable plant parts and shield them from cooling winds. The same principle has been applied in agriculture by using
289:. Plants can reduce light absorption using reflective leaf hairs, scales, and waxes. These features are so common in warm dry regions that these habitats can be seen to form a 'silvery landscape' as the light scatters off the canopies. Some species, such as 920:
diagram, which formed the basis for much of Rahn's future work. Rahn's research into applications of this diagram led to the development of aerospace medicine and advancements in hyperbaric breathing and high-altitude respiration. Rahn later joined the
611:
Plants can sense the wind through the deformation of its tissues. This signal leads to inhibits the elongation and stimulates the radial expansion of their shoots, while increasing the development of their root system. This syndrome of responses known as
335:
Too much or too little water can damage plants. If there is too little water then tissues will dehydrate and the plant may die. If the soil becomes waterlogged then the soil will become anoxic (low in oxygen), which can kill the roots of the plant.
525:
effect is likely to be a reduction in plant productivity. Reduced plant productivity would be expected to accelerate the rate of global warming. Overall, these observations point to the importance of avoiding further increases in atmospheric CO
265:
and become a gel in cold conditions or to become leaky in hot conditions. This can affect the movement of compounds across the membrane. To prevent these changes, plants can change the composition of their membranes. In cold conditions, more
620:
Trees have a particularly well-developed capacity to reinforce their trunks when exposed to wind. From the practical side, this realisation prompted arboriculturalists in the UK in the 1960s to move away from the practice of staking young
925:
in 1956 as the Lawrence D. Bell Professor and Chairman of the Department of Physiology. As Chairman, Rahn surrounded himself with outstanding faculty and made the University an international research center in environmental physiology.
171:
has a positive slope representing the efficiency of light use, and is called quantum efficiency; the x-intercept is the light intensity at which biochemical assimilation (gross assimilation) balances leaf respiration so that the net
484: 2404:. Definitions and Opinions by: G. A. Bartholomew, A. F. Bennett, W. D. Billings, B. F. Chabot, D. M. Gates, B. Heinrich, R. B. Huey, D. H. Janzen, J. R. King, P. A. McClure, B. K. McNab, P. C. Miller, P. S. Nobel, B. R. Strain. 195:
Excess light occurs at the top of canopies and on open ground when cloud cover is low and the sun's zenith angle is low, typically this occurs in the tropics and at high altitudes. Excess light incident on a leaf can result in
482: 399:
However, for many terminally overwatered houseplants, the initial symptoms of waterlogging can resemble those due to drought. This is particularly true for flood-sensitive plants that show drooping of their leaves due to
770:
In both types of temperature-related stress, it is important to remain well-hydrated. Hydration reduces cardiovascular strain, enhances the ability of energy processes to occur, and reduces feelings of exhaustion.
603:) to break up the airflow and increase the boundary layer. In fact, leaf and canopy dimensions are often finely controlled to manipulate the boundary layer depending on the prevailing environmental conditions. 167:). The shape is typically described by a non-rectangular hyperbola. Three quantities of the light response curve are particularly useful in characterising a plant's response to light intensities. The inclined 483: 641:
occurs in natural systems, the only solution is to ensure that there is an adequate stock of seeds or seedlings to quickly take the place of the mature plants that have been lost- although, in many cases, a
379:. As well as closing their stomata, most plants can also respond to drought by altering their water potential (osmotic adjustment) and increasing root growth. Plants that are adapted to dry environments ( 187:
As with most abiotic factors, light intensity (irradiance) can be both suboptimal and excessive. Suboptimal light (shade) typically occurs at the base of a plant canopy or in an understory environment.
358:). In irrigated fields, the fact that plants close their stomata in response to drying of the roots can be exploited to 'trick' plants into using less water without reducing yields (see 134:
that aid in acclimating to changing conditions. It is hypothesized that this large number of genes can be partly explained by plant species' need to live in a wider range of conditions.
1496:"What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2" 204:. Plants adapted to high light environments have a range of adaptations to avoid or dissipate the excess light energy, as well as mechanisms that reduce the amount of injury caused. 1538:
Climate Change 2007: Impacts, Adaptation and Vulnerability : Working Group II Contribution to the Fourth Assessment Report of the IPCC Intergovernmental Panel on Climate Change
821: 354:
In very dry soil, plants close their stomata to reduce transpiration and prevent water loss. The closing of the stomata is often mediated by chemical signals from the root (i.e.,
594:
Wind influences the way leaves regulate moisture, heat, and carbon dioxide. When no wind is present, a layer of still air builds up around each leaf. This is known as the
180:; and a horizontal asymptote representing the maximum assimilation rate. Sometimes after reaching the maximum assimilation declines for processes collectively known as 481: 2454: 2362: 493: 343:
of the root cells. When soil water content is low, plants can alter their water potential to maintain a flow of water into the roots and up to the leaves (
1996: 1464: 126:
are unable to move away and therefore must endure the adverse conditions or perish (animals go places, plants grow places). Plants are therefore
1049: 2347: 2322: 2299: 2280: 2261: 2242: 2217: 1546: 1234: 1208: 1069: 155:
is the food of plants, i.e. the form of energy that plants use to build themselves and reproduce. The organs harvesting light in plants are
2356:
Spicer, J. I., and K. J. Gaston. 1999. Physiological diversity and its ecological implications. Blackwell Science, Oxford, U.K. x + 241 pp.
1250:
Farrell, A. D.; Gilliland, T. J. (2011). "Yield and quality of forage maize grown under marginal climatic conditions in Northern Ireland".
722:, and detects changes in surrounding blood to make decisions of whether to stimulate internal heat production or to stimulate evaporation. 1438: 2155: 756:, circulatory adaptations (that provide an efficient transfer of heat to the epidermis), and increased blood flow to the extremities. 300: 2447: 521: 995: 896:(1912–1990) was an early leader in the field of environmental physiology. Starting out in the field of zoology with a Ph.D. from 825: 192:
plants have a range of adaptations to help them survive the altered quantity and quality of light typical of shade environments.
1327: 2722: 2410: 344: 1330:. Plant Physiology Online, A Companion to Plant Physiology, Fifth Edition by Lincoln Taiz and Eduardo Zeiger. Archived from 285:
Plants can avoid overheating by minimising the amount of sunlight absorbed and by enhancing the cooling effects of wind and
1814:
Jaffe, M. J. (1 June 1973). "Thigmomorphogenesis: The response of plant growth and development to mechanical stimulation".
1386: 277: 2844: 666:. Environmental effects on human physiology are numerous; one of the most carefully studied effects is the alterations in 105: 2864: 2440: 461: 69: 1662: 230: 1734:"Wind effects on juvenile trees: a review with special reference to toppling of radiata pine growing in New Zealand" 2854: 1689:
Gardiner, Barry; Berry, Peter; Moulia, Bruno (2016). "Review: Wind impacts on plant growth, mechanics and damage".
1038:: "I proposed long ago to call this special part of biology œcology (the science of home-relations) or bionomy." " 2859: 659: 559:) and of energy (heat) between the plant and the atmosphere by renewing the air at the contact with the leaves ( 383:) have a range of more specialized mechanisms to maintain water and/or protect tissues when desiccation occurs. 347:). This remarkable mechanism allows plants to lift water as high as 120 m by harnessing the gradient created by 122:
are able to escape unfavourable and changing environmental factors such as heat, cold, drought or floods, while
207:
Light intensity is also an important component in determining the temperature of plant organs (energy budget).
177: 109: 2016:
Płoszczyca, Kamila; Czuba, Miłosz; Chalimoniuk, Małgorzata; Gajda, Robert; Baranowski, Marcin (15 June 2021).
1140:"Lighting from Top and Side Enhances Photosynthesis and Plant Performance by Improving Light Usage Efficiency" 2018:"Red Blood Cell 2,3-Diphosphoglycerate Decreases in Response to a 30 km Time Trial Under Hypoxia in Cyclists" 763:
protects itself against damage by warming the incoming air to 80-90 degrees Fahrenheit before it reaches the
2869: 2755: 2522: 985: 901: 897: 788: 359: 250: 115:
another), and how their collective effect on plant growth and gas exchange can be understood on this basis.
85: 2874: 2765: 2164: 980: 887: 841: 530: 366: 81: 2077: 1010: 922: 875: 725:
There are two main types of stresses that can be experienced due to extreme environmental temperatures:
643: 638: 582: 127: 718:
The hypothalamus plays an important role in thermoregulation. It connects to thermal receptors in the
2760: 2687: 2484: 2109: 1921: 1882: 1823: 1698: 1618: 1571: 1259: 883: 271: 2169: 2097: 2849: 2806: 2796: 2742: 2489: 698:
To achieve this, the body alters three main things to achieve a constant, normal body temperature:
613: 567: 2791: 2697: 2662: 2563: 2541: 2463: 2395: 2387: 1855: 1644: 971: 784: 760: 465: 453: 246: 238: 143: 2339: 2333: 2234: 2228: 436:
gain and water loss is central to plant productivity. The trade-off is all the more critical as
293:, can move their leaves throughout the day so that they are always orientated to avoid the sun ( 163:. The response of photosynthesis to light is called light response curve of net photosynthesis ( 1092: 362:). The use of this technique was largely developed by Dr Peter Dry and colleagues in Australia 249:
increases. Metabolic imbalances associated with temperature extremes result in the build-up of
2770: 2712: 2707: 2575: 2551: 2546: 2379: 2343: 2318: 2295: 2276: 2257: 2238: 2213: 2192: 2184: 2127: 2057: 2039: 1978: 1970: 1898: 1847: 1839: 1796: 1755: 1714: 1636: 1587: 1542: 1536: 1517: 1368: 1308: 1230: 1204: 1179: 1161: 1110: 1065: 737: 671: 767:. This means that not even the most frigid of temperatures can damage the respiratory tract. 2667: 2639: 2371: 2174: 2117: 2047: 2029: 1960: 1929: 1890: 1831: 1786: 1745: 1706: 1626: 1579: 1507: 1358: 1298: 1267: 1169: 1151: 1118: 1100: 1057: 1000: 965: 703: 667: 542: 295: 234: 201: 886:(1915–2007) was also an important contributor to this specific scientific field as well as 2818: 2801: 2775: 2732: 2727: 2702: 2672: 2001: 1287:"Effect of long-term drought and waterlogging stress on photosynthetic pigments in potato" 1005: 905: 882:
from 1947 to 1989, and almost 1,200 individuals can trace their academic lineages to him.
853: 783:
also pose serious physiological challenges on the body. Some of these effects are reduced
741: 683: 372: 340: 330: 197: 181: 1997:"We mustn't abandon the Windward Islands' farmers | Renwick Rose and Nick Mathiason" 339:
The ability of plants to access water depends on the structure of their roots and on the
321:
to insulate the growing points of crops in cool climates in order to boost plant growth.
2113: 1925: 1886: 1827: 1702: 1622: 1575: 1263: 1123: 2629: 2624: 2617: 2585: 2479: 2206: 2052: 2017: 1174: 1139: 1061: 957: 943: 878:(1919–2006) was a founder of animal physiological ecology. He served on the faculty at 833: 595: 574: 546: 513: 420:
is vital for plant growth, as it is the substrate for photosynthesis. Plants take in CO
189: 160: 147: 2098:"History of Ecological Sciences, Part 64: History of Physiological Ecology of Animals" 1894: 1562:
Long, S. P.; Ort, D. R. (2010). "More than taking the heat: Crops and global change".
1413: 1285:
Orsák, Matyáš; Kotíková, Zora; Hnilička, František; Lachman, Jaromír (25 April 2023).
2838: 2682: 2644: 2612: 2604: 2590: 2580: 2499: 2311: 2081: 1965: 1948: 1933: 1791: 1774: 1512: 1495: 1331: 1271: 780: 501: 355: 348: 318: 286: 258: 225:. These protect them from the damaging effects of ice formation and falling rates of 89: 23: 2424: 2399: 1859: 1648: 2823: 2717: 2692: 2634: 2512: 2507: 1710: 1015: 893: 622: 566:
It is sensed as a signal driving a wind-acclimation syndrome by the plant known as
505: 307: 262: 261:
are also affected by changes in temperature and can cause the membrane to lose its
216: 1363: 1346: 1224: 1198: 2750: 2471: 1732:
Moore, J. R.; Tombleson, J. D.; Turner, J. A.; van der Colff, M. (1 July 2008).
1390: 860: 749: 730: 726: 709: 687: 254: 1105: 951: 646:
stage will be needed before the ecosystem can be restored to its former state.
371:
If drought continues, the plant tissues will dehydrate, resulting in a loss of
2536: 2531: 2034: 1750: 1733: 1583: 933: 864: 849: 837: 829: 745: 663: 570:, leading to modified growth and development and eventually to wind hardening. 560: 388: 380: 281:
Infrared image showing the importance of transpiration in keeping leaves cool.
267: 77: 2383: 2188: 2131: 2043: 1974: 1843: 1759: 1312: 1165: 1114: 577:
can damage the plant (leaf abrasion, wind ruptures in branches and stems and
2654: 2208:
Vertebrate ecophysiology: an introduction to its principles and applications
1631: 1606: 1347:"Hormonal changes induced by partial rootzone drying of irrigated grapevine" 1303: 600: 578: 168: 2196: 2179: 2150: 2061: 1982: 1902: 1851: 1800: 1718: 1640: 1591: 1521: 1372: 1286: 1183: 759:
There is one part of the body fully equipped to deal with cold stress. The
16:
Study of adaptation of an organism's physiology to environmental conditions
1465:"Effects of Rising Atmospheric Concentrations of Carbon Dioxide on Plants" 2813: 1156: 859:
Environmental factors can play a huge role in the human body's fight for
753: 425: 401: 393: 242: 164: 73: 2391: 2254:
Physiological ecology: how animals process energy, nutrients, and toxins
1326:
George Koch; Stephen Sillett; Gregg Jennings; Stephen Davis (May 2006).
752:. Cold stress is physiologically combated by shivering, accumulation of 1835: 990: 764: 437: 376: 312: 306:
Plants can avoid the full impact of low temperatures by altering their
222: 66: 2432: 2122: 1775:"Leaves in the lowest and highest winds: temperature, force and shape" 2375: 2360:
Tracy, C. R.; J. S. Turner (1982). "What is physiological ecology?".
2317:. Ithaca and London: Comstock Publishing Associates. xxvii + 576 pp. 719: 675: 448:
in the leaf. Some plants overcome this difficulty by concentrating CO
226: 119: 2212:. Cambridge, U.K.: Cambridge University Press. p. xi + 287 pp. 1138:
Yang, Jingli; Song, Jinnan; Jeong, Byoung Ryong (23 February 2022).
1439:"Crassulacean Acid Metabolism - an overview | ScienceDirect Topics" 1091:
Zhang, Man; Ming, Yu; Wang, Hong-Bin; Jin, Hong-Lei (13 May 2024).
221:
In response to extremes of temperature, plants can produce various
2600: 2567: 2256:. Princeton, NJ: Princeton University Press. p. xv + 741 pp. 2074: 779:
Extreme temperatures are not the only obstacles that humans face.
679: 478: 276: 152: 123: 53: 159:
and the process through which light is converted into biomass is
2313:
The physiological ecology of vertebrates: a view from energetics
1949:"Plant growth forms: an ecological and evolutionary perspective" 879: 156: 131: 2436: 432:
enters the stomata, moisture escapes. This trade-off between CO
1050:"Radiation-Use Efficiency Under Different Climatic Conditions" 1663:"How Climate Change Will Affect Plants – State of the Planet" 836:
synthesis, enhanced circulation, and increased levels of the
46: 36: 26: 444:, is efficient only when there is a high concentration of CO 2335:
Physiological ecology of animals: an evolutionary approach
237:
at high temperatures. As temperatures fall, production of
1605:
Lobell, D. B.; Schlenker, W.; Costa-Roberts, J. (2011).
516:. Extensive experiments growing plants under elevated CO 555:
It affects the exchanges of mass (water evaporation, CO
270:
are placed in the membrane and in hot conditions, more
80:
to environmental conditions. It is closely related to
1607:"Climate Trends and Global Crop Production Since 1980" 1328:"How Water Climbs to the Top of a 112 Meter-Tall Tree" 1054:
Changing Climate and Resource Use Efficiency in Plants
736:
Heat stress is physiologically combated in four ways:
2338:. Oxford: Blackwell Scientific Publications. p.  791: 910:
A Graphical Analysis of the Respiratory Gas Exchange
2784: 2741: 2653: 2599: 2562: 2521: 2498: 2470: 1387:"The Impact of Flooding Stress on Plants and Crops" 1093:"Strategies for adaptation to high light in plants" 2310: 2205: 815: 2233:. Cambridge: Cambridge University Press. p.  2151:"The academic genealogy of George A. Bartholomew" 2102:The Bulletin of the Ecological Society of America 1873:Ennos, A (1997). "Wind as an ecological factor". 863:. However, humans have found ways to adapt, both 551:Wind has three very different effects on plants. 299:). Knowledge of these mechanisms has been key to 1916:Grace, J. (1988). "3. Plant response to wind". 245:increases. As temperatures rise, production of 229:catalysis at low temperatures, and from enzyme 900:(1933), Rahn began teaching physiology at the 2448: 2363:Bulletin of the Ecological Society of America 904:in 1941. It is there that he partnered with 428:pores on their leaves. At the same time as CO 8: 2252:Karasov, W. H.; C. Martinez del Rio (2007). 1200:Nature's Palette: The Science of Plant Color 912:in 1955. This paper included the landmark O 690:must remain at consistent, balanced levels. 387:specialised roots near the soil surface and 1541:. Cambridge University Press. p. 214. 1144:International Journal of Molecular Sciences 2455: 2441: 2433: 1947:Rowe, Nick; Speck, Thomas (1 April 2005). 2178: 2168: 2121: 2051: 2033: 1964: 1918:Agriculture, Ecosystems & Environment 1790: 1749: 1630: 1511: 1362: 1302: 1173: 1155: 1122: 1104: 805: 799: 798: 796: 790: 674:. This is necessary because in order for 476:whenever photosynthesis is taking place. 472:and must open their stomata to take in CO 1345:Stoll, M.; Loveys, B.; Dry, P. (2000). 1027: 2091: 2089: 1494:Ainsworth, E. A.; Long, S. P. (2004). 816:{\displaystyle P_{{\mathrm {O} }_{2}}} 1684: 1682: 1680: 1418:A Guide to the Mangroves of Singapore 1412:Ng, Peter K.L.; Sivasothi, N (2001). 488:Plant Productivity in a Warming World 176:exchange of the leaf is zero, called 7: 96:is sometimes employed as a synonym. 2156:Integrative and Comparative Biology 662:can have major influences on human 2230:Evolutionary physiological ecology 2096:Egerton, Frank N. (October 2019). 1414:"How plants cope in the mangroves" 1062:10.1016/B978-0-12-816209-5.00002-7 800: 301:breeding for heat stress tolerance 14: 1875:Trends in Ecology & Evolution 844:, which promotes off-loading of O 522:Free-Air Concentration Enrichment 2204:Bradshaw, Sidney Donald (2003). 2149:Bennett, A. F.; C. Lowe (2005). 1966:10.1111/j.1469-8137.2004.01309.x 1792:10.1111/j.1469-8137.2009.02854.x 1564:Current Opinion in Plant Biology 1513:10.1111/j.1469-8137.2004.01224.x 1272:10.1111/j.1365-2494.2010.00778.x 996:Phylogenetic comparative methods 964: 950: 936: 826:acid-base content in body fluids 130:and have an impressive array of 72:that studies the response of an 2332:Sibly, R. M.; P. Calow (1986). 1203:. University of Chicago Press. 440:, the enzyme used to capture CO 345:Soil plant atmosphere continuum 1711:10.1016/j.plantsci.2016.01.006 1351:Journal of Experimental Botany 682:to flow, and for various body 217:Plant adaptations to wildfires 1: 2275:. New York: Springer-Verlag. 1895:10.1016/s0169-5347(96)10066-5 1056:, Elsevier, pp. 51–109, 1048:Bhattacharya, Amitav (2019), 625:to offer artificial support. 464:. However, most species used 106:Plant perception (physiology) 1934:10.1016/0167-8809(88)90008-4 462:Crassulacean acid metabolism 253:, which can be countered by 2292:Physiological plant ecology 2273:Plant physiological ecology 1535:Martin Lewis Parry (2007). 1291:Plant, Soil and Environment 714:The rate of heat production 670:in the body due to outside 590:Exchange of mass and energy 2891: 2294:(4th ed.). Springer. 1469:Nature Education Knowledge 1364:10.1093/jexbot/51.350.1627 1106:10.1007/s42994-024-00164-6 581:and toppling in trees and 540: 452:within their leaves using 364: 328: 214: 141: 103: 47: 37: 27: 2425:Resources in your library 2035:10.3389/fphys.2021.670977 1584:10.1016/j.pbi.2010.04.008 824:, the rebalancing of the 1475:(10). www.nature.com. 21 1463:Taub, Daniel R. (2010). 1252:Grass and Forage Science 303:in agricultural plants. 178:light compensation point 110:Plant stress measurement 59:environmental physiology 45:, "nature, origin"; and 2756:Ecological anthropology 2022:Frontiers in Physiology 1751:10.1093/forestry/cpn023 1632:10.1126/science.1204531 986:Evolutionary physiology 902:University of Rochester 898:University of Rochester 512:and reduce the rate of 404:(rather than wilting). 360:partial rootzone drying 268:unsaturated fatty acids 251:reactive oxygen species 86:evolutionary physiology 2766:Ecological engineering 981:Comparative physiology 888:comparative physiology 842:2,3 diphosphoglycerate 817: 531:runaway climate change 504:and the combustion of 489: 367:Nominative determinism 291:Macroptilium purpureum 282: 128:phenotypically plastic 82:comparative physiology 2309:McNab, B. K. (2002). 1443:www.sciencedirect.com 1334:on 14 September 2013. 1304:10.17221/415/2022-pse 1011:Theodore Garland, Jr. 923:University at Buffalo 876:George A. Bartholomew 818: 702:Heat transfer to the 492:The concentration of 487: 365:Further information: 280: 272:saturated fatty acids 104:Further information: 63:physiological ecology 2845:Subfields of ecology 2761:Ecological economics 2688:Evolutionary ecology 2655:Ecological phenomena 2485:Quantitative ecology 2290:Larcher, W. (2001). 2271:Lambers, H. (1998). 2180:10.1093/icb/45.2.231 1157:10.3390/ijms23052448 884:Knut Schmidt-Nielsen 789: 529:rather than risking 2865:Ecology terminology 2807:Restoration ecology 2797:Glossary of ecology 2743:Interdisciplinarity 2490:Theoretical ecology 2464:Branches of ecology 2114:2019BuESA.100E1616E 2005:. 23 December 2010. 1926:1988AgEE...22...71G 1887:1997TEcoE..12..108E 1828:1973Plant.114..143J 1703:2016PlnSc.245...94G 1623:2011Sci...333..616L 1576:2010COPB...13..240L 1264:2011GForS..66..214F 1036:The Wonders of Life 614:thigmomorphogenesis 568:thigmomorphogenesis 375:that is visible as 247:heat shock proteins 239:antifreeze proteins 2792:History of ecology 2698:Functional ecology 2663:Behavioral ecology 2542:Population ecology 2227:Calow, P. (1987). 1836:10.1007/bf00387472 1773:Vogel, S. (2009). 1357:(350): 1627–1634. 1229:. Springer. 2005. 1197:David Lee (2010). 972:Environment portal 813: 761:respiratory system 637:When this type of 490: 283: 144:Photomorphogenesis 2855:Animal physiology 2832: 2831: 2771:Political ecology 2713:Molecular ecology 2708:Landscape ecology 2576:Microbial ecology 2552:Ecosystem ecology 2547:Community ecology 2411:Library resources 2349:978-0-632-01494-1 2324:978-0-8014-3913-1 2301:978-3-540-43516-7 2282:978-0-387-98326-4 2263:978-0-691-07453-5 2244:978-0-521-32058-0 2219:978-0-521-81797-4 2123:10.1002/bes2.1616 1665:. 27 January 2022 1617:(6042): 616–620. 1548:978-0-521-88010-7 1236:978-3-540-20833-4 1210:978-0-226-47105-1 1071:978-0-12-816209-5 500:is rising due to 498:in the atmosphere 485: 351:from the leaves. 35:, "house(hold)"; 2882: 2860:Plant physiology 2668:Chemical ecology 2640:Tropical ecology 2457: 2450: 2443: 2434: 2403: 2376:10.2307/20166334 2353: 2328: 2316: 2305: 2286: 2267: 2248: 2223: 2211: 2200: 2182: 2172: 2136: 2135: 2125: 2093: 2084: 2072: 2066: 2065: 2055: 2037: 2013: 2007: 2006: 1993: 1987: 1986: 1968: 1944: 1938: 1937: 1920:. 22–23: 71–88. 1913: 1907: 1906: 1870: 1864: 1863: 1811: 1805: 1804: 1794: 1770: 1764: 1763: 1753: 1729: 1723: 1722: 1686: 1675: 1674: 1672: 1670: 1659: 1653: 1652: 1634: 1602: 1596: 1595: 1559: 1553: 1552: 1532: 1526: 1525: 1515: 1491: 1485: 1484: 1482: 1480: 1460: 1454: 1453: 1451: 1449: 1435: 1429: 1428: 1426: 1424: 1409: 1403: 1402: 1400: 1398: 1389:. Archived from 1383: 1377: 1376: 1366: 1342: 1336: 1335: 1323: 1317: 1316: 1306: 1282: 1276: 1275: 1247: 1241: 1240: 1221: 1215: 1214: 1194: 1188: 1187: 1177: 1159: 1135: 1129: 1128: 1126: 1108: 1088: 1082: 1081: 1080: 1078: 1045: 1039: 1032: 1001:Plant physiology 974: 969: 968: 960: 955: 954: 946: 941: 940: 939: 822: 820: 819: 814: 812: 811: 810: 809: 804: 803: 694:Thermoregulation 668:thermoregulation 543:wind pollination 486: 296:paraheliotropism 263:fluid properties 235:photorespiration 202:photodestruction 50: 49: 40: 39: 30: 29: 2890: 2889: 2885: 2884: 2883: 2881: 2880: 2879: 2835: 2834: 2833: 2828: 2819:Natural history 2802:Applied ecology 2780: 2776:Systems ecology 2737: 2733:Thermal ecology 2728:Spatial ecology 2703:Genetic ecology 2673:Disease ecology 2649: 2605:biogeographical 2595: 2558: 2517: 2494: 2466: 2461: 2431: 2430: 2429: 2419: 2418: 2414: 2407: 2359: 2350: 2331: 2325: 2308: 2302: 2289: 2283: 2270: 2264: 2251: 2245: 2226: 2220: 2203: 2170:10.1.1.589.3158 2148: 2144: 2142:Further reading 2139: 2095: 2094: 2087: 2080:7 July 2012 at 2073: 2069: 2015: 2014: 2010: 2002:TheGuardian.com 1995: 1994: 1990: 1953:New Phytologist 1946: 1945: 1941: 1915: 1914: 1910: 1872: 1871: 1867: 1813: 1812: 1808: 1779:New Phytologist 1772: 1771: 1767: 1731: 1730: 1726: 1688: 1687: 1678: 1668: 1666: 1661: 1660: 1656: 1604: 1603: 1599: 1561: 1560: 1556: 1549: 1534: 1533: 1529: 1500:New Phytologist 1493: 1492: 1488: 1478: 1476: 1462: 1461: 1457: 1447: 1445: 1437: 1436: 1432: 1422: 1420: 1411: 1410: 1406: 1396: 1394: 1385: 1384: 1380: 1344: 1343: 1339: 1325: 1324: 1320: 1284: 1283: 1279: 1249: 1248: 1244: 1237: 1223: 1222: 1218: 1211: 1196: 1195: 1191: 1137: 1136: 1132: 1090: 1089: 1085: 1076: 1074: 1072: 1047: 1046: 1042: 1034:Ernst Haeckel, 1033: 1029: 1025: 1020: 1006:Raymond B. Huey 970: 963: 956: 949: 942: 937: 935: 932: 919: 915: 906:Wallace O. Fenn 873: 865:physiologically 854:hypoxic tissues 847: 797: 792: 787: 786: 777: 696: 660:The environment 657: 652: 631: 609: 592: 558: 549: 539: 528: 519: 511: 497: 479: 475: 470:carbon fixation 469: 458:carbon fixation 457: 451: 447: 443: 435: 431: 423: 419: 414: 411: 373:turgor pressure 369: 341:water potential 333: 331:Moisture stress 327: 310:. For example, 219: 213: 198:photoinhibition 182:photoinhibition 175: 150: 140: 118:In many cases, 112: 102: 17: 12: 11: 5: 2888: 2886: 2878: 2877: 2872: 2870:Animal ecology 2867: 2862: 2857: 2852: 2847: 2837: 2836: 2830: 2829: 2827: 2826: 2821: 2816: 2811: 2810: 2809: 2799: 2794: 2788: 2786: 2782: 2781: 2779: 2778: 2773: 2768: 2763: 2758: 2753: 2747: 2745: 2739: 2738: 2736: 2735: 2730: 2725: 2723:Social ecology 2720: 2715: 2710: 2705: 2700: 2695: 2690: 2685: 2680: 2675: 2670: 2665: 2659: 2657: 2651: 2650: 2648: 2647: 2642: 2637: 2632: 2630:Forest ecology 2627: 2625:Desert ecology 2622: 2621: 2620: 2618:Arctic ecology 2609: 2607: 2597: 2596: 2594: 2593: 2588: 2586:Insect ecology 2583: 2578: 2572: 2570: 2560: 2559: 2557: 2556: 2555: 2554: 2549: 2544: 2534: 2528: 2526: 2519: 2518: 2516: 2515: 2510: 2504: 2502: 2496: 2495: 2493: 2492: 2487: 2482: 2476: 2474: 2468: 2467: 2462: 2460: 2459: 2452: 2445: 2437: 2428: 2427: 2421: 2420: 2409: 2408: 2406: 2405: 2370:(4): 340–347. 2357: 2354: 2348: 2329: 2323: 2306: 2300: 2287: 2281: 2268: 2262: 2249: 2243: 2224: 2218: 2201: 2163:(2): 231–233. 2145: 2143: 2140: 2138: 2137: 2085: 2067: 2008: 1988: 1939: 1908: 1881:(3): 108–111. 1865: 1822:(2): 143–157. 1806: 1765: 1744:(3): 377–387. 1724: 1676: 1654: 1597: 1554: 1547: 1527: 1506:(2): 351–371. 1486: 1455: 1430: 1404: 1378: 1337: 1318: 1297:(4): 152–160. 1277: 1242: 1235: 1216: 1209: 1189: 1130: 1083: 1070: 1040: 1026: 1024: 1021: 1019: 1018: 1013: 1008: 1003: 998: 993: 988: 983: 977: 976: 975: 961: 958:Biology portal 947: 944:Ecology portal 931: 928: 917: 913: 872: 869: 867:and tangibly. 845: 808: 802: 795: 781:High altitudes 776: 773: 716: 715: 712: 706: 695: 692: 656: 653: 651: 648: 630: 627: 608: 605: 596:boundary layer 591: 588: 587: 586: 571: 564: 556: 547:seed dispersal 538: 535: 526: 517: 514:global warming 509: 495: 473: 467: 455: 449: 445: 441: 433: 429: 421: 417: 413: 409: 406: 326: 323: 274:are inserted. 259:Cell membranes 233:and increased 212: 209: 190:Shade tolerant 173: 161:photosynthesis 148:Photoperiodism 139: 136: 101: 98: 15: 13: 10: 9: 6: 4: 3: 2: 2887: 2876: 2875:Plant ecology 2873: 2871: 2868: 2866: 2863: 2861: 2858: 2856: 2853: 2851: 2848: 2846: 2843: 2842: 2840: 2825: 2822: 2820: 2817: 2815: 2812: 2808: 2805: 2804: 2803: 2800: 2798: 2795: 2793: 2790: 2789: 2787: 2783: 2777: 2774: 2772: 2769: 2767: 2764: 2762: 2759: 2757: 2754: 2752: 2749: 2748: 2746: 2744: 2740: 2734: 2731: 2729: 2726: 2724: 2721: 2719: 2716: 2714: 2711: 2709: 2706: 2704: 2701: 2699: 2696: 2694: 2691: 2689: 2686: 2684: 2683:Ecotoxicology 2681: 2679: 2678:Ecophysiology 2676: 2674: 2671: 2669: 2666: 2664: 2661: 2660: 2658: 2656: 2652: 2646: 2645:Urban ecology 2643: 2641: 2638: 2636: 2633: 2631: 2628: 2626: 2623: 2619: 2616: 2615: 2614: 2613:Polar ecology 2611: 2610: 2608: 2606: 2602: 2598: 2592: 2591:Human ecology 2589: 2587: 2584: 2582: 2581:Plant ecology 2579: 2577: 2574: 2573: 2571: 2569: 2565: 2561: 2553: 2550: 2548: 2545: 2543: 2540: 2539: 2538: 2535: 2533: 2530: 2529: 2527: 2524: 2520: 2514: 2511: 2509: 2506: 2505: 2503: 2501: 2500:Spatial scale 2497: 2491: 2488: 2486: 2483: 2481: 2480:Field ecology 2478: 2477: 2475: 2473: 2469: 2465: 2458: 2453: 2451: 2446: 2444: 2439: 2438: 2435: 2426: 2423: 2422: 2417: 2416:Ecophysiology 2412: 2401: 2397: 2393: 2389: 2385: 2381: 2377: 2373: 2369: 2365: 2364: 2358: 2355: 2351: 2345: 2341: 2337: 2336: 2330: 2326: 2320: 2315: 2314: 2307: 2303: 2297: 2293: 2288: 2284: 2278: 2274: 2269: 2265: 2259: 2255: 2250: 2246: 2240: 2236: 2232: 2231: 2225: 2221: 2215: 2210: 2209: 2202: 2198: 2194: 2190: 2186: 2181: 2176: 2171: 2166: 2162: 2158: 2157: 2152: 2147: 2146: 2141: 2133: 2129: 2124: 2119: 2115: 2111: 2107: 2103: 2099: 2092: 2090: 2086: 2083: 2082:archive.today 2079: 2076: 2071: 2068: 2063: 2059: 2054: 2049: 2045: 2041: 2036: 2031: 2027: 2023: 2019: 2012: 2009: 2004: 2003: 1998: 1992: 1989: 1984: 1980: 1976: 1972: 1967: 1962: 1958: 1954: 1950: 1943: 1940: 1935: 1931: 1927: 1923: 1919: 1912: 1909: 1904: 1900: 1896: 1892: 1888: 1884: 1880: 1876: 1869: 1866: 1861: 1857: 1853: 1849: 1845: 1841: 1837: 1833: 1829: 1825: 1821: 1817: 1810: 1807: 1802: 1798: 1793: 1788: 1784: 1780: 1776: 1769: 1766: 1761: 1757: 1752: 1747: 1743: 1739: 1735: 1728: 1725: 1720: 1716: 1712: 1708: 1704: 1700: 1696: 1692: 1691:Plant Science 1685: 1683: 1681: 1677: 1664: 1658: 1655: 1650: 1646: 1642: 1638: 1633: 1628: 1624: 1620: 1616: 1612: 1608: 1601: 1598: 1593: 1589: 1585: 1581: 1577: 1573: 1569: 1565: 1558: 1555: 1550: 1544: 1540: 1539: 1531: 1528: 1523: 1519: 1514: 1509: 1505: 1501: 1497: 1490: 1487: 1474: 1470: 1466: 1459: 1456: 1444: 1440: 1434: 1431: 1419: 1415: 1408: 1405: 1393:on 3 May 2013 1392: 1388: 1382: 1379: 1374: 1370: 1365: 1360: 1356: 1352: 1348: 1341: 1338: 1333: 1329: 1322: 1319: 1314: 1310: 1305: 1300: 1296: 1292: 1288: 1281: 1278: 1273: 1269: 1265: 1261: 1257: 1253: 1246: 1243: 1238: 1232: 1228: 1227: 1226:Plant Ecology 1220: 1217: 1212: 1206: 1202: 1201: 1193: 1190: 1185: 1181: 1176: 1171: 1167: 1163: 1158: 1153: 1149: 1145: 1141: 1134: 1131: 1125: 1120: 1116: 1112: 1107: 1102: 1098: 1094: 1087: 1084: 1073: 1067: 1063: 1059: 1055: 1051: 1044: 1041: 1037: 1031: 1028: 1022: 1017: 1014: 1012: 1009: 1007: 1004: 1002: 999: 997: 994: 992: 989: 987: 984: 982: 979: 978: 973: 967: 962: 959: 953: 948: 945: 934: 929: 927: 924: 911: 907: 903: 899: 895: 891: 889: 885: 881: 877: 870: 868: 866: 862: 857: 855: 851: 843: 839: 835: 831: 827: 823: 806: 793: 782: 774: 772: 768: 766: 762: 757: 755: 751: 747: 743: 739: 734: 732: 728: 723: 721: 713: 711: 707: 705: 701: 700: 699: 693: 691: 689: 685: 681: 678:to function, 677: 673: 669: 665: 661: 654: 649: 647: 645: 640: 635: 628: 626: 624: 623:amenity trees 618: 615: 606: 604: 602: 597: 589: 584: 580: 576: 572: 569: 565: 562: 554: 553: 552: 548: 544: 536: 534: 532: 523: 515: 507: 503: 502:deforestation 499: 477: 471: 463: 459: 439: 427: 412:concentration 407: 405: 403: 397: 395: 390: 384: 382: 378: 374: 368: 363: 361: 357: 356:abscisic acid 352: 350: 349:transpiration 346: 342: 337: 332: 324: 322: 320: 319:plastic mulch 315: 314: 309: 304: 302: 298: 297: 292: 288: 287:transpiration 279: 275: 273: 269: 264: 260: 256: 252: 248: 244: 240: 236: 232: 228: 224: 218: 210: 208: 205: 203: 199: 193: 191: 185: 183: 179: 170: 166: 162: 158: 154: 149: 145: 137: 135: 133: 129: 125: 121: 116: 111: 107: 99: 97: 95: 91: 90:Ernst Haeckel 87: 83: 79: 75: 71: 68: 64: 60: 56: 55: 44: 34: 25: 21: 20:Ecophysiology 2824:Biogeography 2718:Paleoecology 2693:Fire ecology 2677: 2635:Soil ecology 2523:Organisation 2513:Macroecology 2508:Microecology 2415: 2367: 2361: 2334: 2312: 2291: 2272: 2253: 2229: 2207: 2160: 2154: 2105: 2101: 2075:BartGen Tree 2070: 2025: 2021: 2011: 2000: 1991: 1959:(1): 61–72. 1956: 1952: 1942: 1917: 1911: 1878: 1874: 1868: 1819: 1815: 1809: 1785:(1): 13–26. 1782: 1778: 1768: 1741: 1737: 1727: 1694: 1690: 1667:. Retrieved 1657: 1614: 1610: 1600: 1570:(3): 241–8. 1567: 1563: 1557: 1537: 1530: 1503: 1499: 1489: 1477:. Retrieved 1472: 1468: 1458: 1446:. Retrieved 1442: 1433: 1421:. Retrieved 1417: 1407: 1395:. Retrieved 1391:the original 1381: 1354: 1350: 1340: 1332:the original 1321: 1294: 1290: 1280: 1255: 1251: 1245: 1225: 1219: 1199: 1192: 1147: 1143: 1133: 1096: 1086: 1075:, retrieved 1053: 1043: 1035: 1030: 1016:Tyrone Hayes 909: 894:Hermann Rahn 892: 874: 858: 832:, increased 828:, increased 778: 769: 758: 735: 724: 717: 708:The rate of 697: 686:to operate, 658: 644:successional 636: 632: 619: 610: 593: 550: 506:fossil fuels 491: 415: 398: 385: 370: 353: 338: 334: 311: 308:microclimate 305: 294: 290: 284: 231:denaturation 220: 206: 194: 186: 151: 117: 113: 93: 62: 58: 52: 42: 32: 19: 18: 2751:Agroecology 2472:Methodology 1669:2 September 1448:1 September 1150:(5): 2448. 1077:1 September 908:to publish 861:homeostasis 750:evaporation 731:cold stress 727:heat stress 710:evaporation 688:temperature 639:disturbance 629:Wind damage 607:Acclimation 255:antioxidant 211:Temperature 92:'s coinage 2850:Physiology 2839:Categories 2537:Synecology 2532:Autecology 2028:: 670977. 1697:: 94–118. 1479:8 February 1258:(2): 214. 1023:References 871:Scientists 850:hemoglobin 840:byproduct 838:glycolysis 830:hemoglobin 746:convection 742:conduction 664:physiology 585:in crops). 579:windthrows 575:drag force 561:convection 541:See also: 389:aerenchyma 381:Xerophytes 329:See also: 215:See also: 142:See also: 78:physiology 70:discipline 67:biological 2384:0012-9623 2189:1540-7063 2165:CiteSeerX 2132:0012-9623 2044:1664-042X 1975:1469-8137 1844:0032-0935 1760:0015-752X 1313:1214-1178 1166:1422-0067 1115:2662-1738 785:arterial 738:radiation 704:epidermis 601:trichomes 396:forests. 257:systems. 243:dehydrins 169:asymptote 2814:Ecosophy 2564:Taxonomy 2525:or scope 2400:86354445 2392:20166334 2197:21676766 2078:Archived 2062:34211402 1983:15760351 1903:21237994 1860:25308919 1852:24458719 1801:19413689 1738:Forestry 1719:26940495 1649:19177121 1641:21551030 1592:20494611 1522:15720649 1423:19 April 1397:29 April 1373:11006312 1184:35269590 1124:11399379 1097:Abiotech 930:See also 775:Altitude 754:body fat 672:stresses 617:factor. 426:stomatal 424:through 402:epinasty 394:mangrove 392:seen in 223:proteins 165:PI curve 74:organism 2110:Bibcode 2053:8239298 1922:Bibcode 1883:Bibcode 1824:Bibcode 1699:Bibcode 1619:Bibcode 1611:Science 1572:Bibcode 1260:Bibcode 1175:8910434 991:Ecology 852:in the 765:bronchi 676:enzymes 650:Animals 583:lodging 438:Rubisco 377:wilting 313:Raoulia 120:animals 94:bionomy 2413:about 2398:  2390:  2382:  2346:  2340:179 pp 2321:  2298:  2279:  2260:  2241:  2235:239 pp 2216:  2195:  2187:  2167:  2130:  2060:  2050:  2042:  1981:  1973:  1901:  1858:  1850:  1842:  1816:Planta 1799:  1758:  1717:  1647:  1639:  1590:  1545:  1520:  1371:  1311:  1233:  1207:  1182:  1172:  1164:  1121:  1113:  1068:  748:, and 720:dermis 684:organs 655:Humans 520:using 227:enzyme 157:leaves 124:plants 100:Plants 54:-logia 48:-λογία 43:physis 22:(from 2785:Other 2601:Biome 2568:taxon 2396:S2CID 2388:JSTOR 2108:(4). 1856:S2CID 1645:S2CID 680:blood 325:Water 153:Light 138:Light 132:genes 65:is a 38:φύσις 33:oikos 28:οἶκος 24:Greek 2380:ISSN 2344:ISBN 2319:ISBN 2296:ISBN 2277:ISBN 2258:ISBN 2239:ISBN 2214:ISBN 2193:PMID 2185:ISSN 2128:ISSN 2058:PMID 2040:ISSN 1979:PMID 1971:ISSN 1899:PMID 1848:PMID 1840:ISSN 1797:PMID 1756:ISSN 1715:PMID 1671:2024 1637:PMID 1588:PMID 1543:ISBN 1518:PMID 1481:2023 1450:2024 1425:2019 1399:2013 1369:PMID 1309:ISSN 1231:ISBN 1205:ISBN 1180:PMID 1162:ISSN 1111:ISSN 1079:2024 1066:ISBN 880:UCLA 729:and 573:Its 545:and 537:Wind 241:and 200:and 146:and 108:and 84:and 2603:or 2566:or 2372:doi 2175:doi 2118:doi 2106:100 2048:PMC 2030:doi 1961:doi 1957:166 1930:doi 1891:doi 1832:doi 1820:114 1787:doi 1783:183 1746:doi 1707:doi 1695:245 1627:doi 1615:333 1580:doi 1508:doi 1504:165 1359:doi 1299:doi 1268:doi 1170:PMC 1152:doi 1119:PMC 1101:doi 1058:doi 916:-CO 848:by 834:RBC 460:or 76:'s 61:or 57:), 2841:: 2394:. 2386:. 2378:. 2368:63 2366:. 2342:. 2237:. 2191:. 2183:. 2173:. 2161:45 2159:. 2153:. 2126:. 2116:. 2104:. 2100:. 2088:^ 2056:. 2046:. 2038:. 2026:12 2024:. 2020:. 1999:. 1977:. 1969:. 1955:. 1951:. 1928:. 1897:. 1889:. 1879:12 1877:. 1854:. 1846:. 1838:. 1830:. 1818:. 1795:. 1781:. 1777:. 1754:. 1742:81 1740:. 1736:. 1713:. 1705:. 1693:. 1679:^ 1643:. 1635:. 1625:. 1613:. 1609:. 1586:. 1578:. 1568:13 1566:. 1516:. 1502:. 1498:. 1471:. 1467:. 1441:. 1416:. 1367:. 1355:51 1353:. 1349:. 1307:. 1295:69 1293:. 1289:. 1266:. 1256:66 1254:. 1178:. 1168:. 1160:. 1148:23 1146:. 1142:. 1117:. 1109:. 1099:. 1095:. 1064:, 1052:, 890:. 856:. 744:, 740:, 733:. 563:). 533:. 494:CO 416:CO 408:CO 184:. 172:CO 88:. 51:, 41:, 31:, 2456:e 2449:t 2442:v 2402:. 2374:: 2352:. 2327:. 2304:. 2285:. 2266:. 2247:. 2222:. 2199:. 2177:: 2134:. 2120:: 2112:: 2064:. 2032:: 1985:. 1963:: 1936:. 1932:: 1924:: 1905:. 1893:: 1885:: 1862:. 1834:: 1826:: 1803:. 1789:: 1762:. 1748:: 1721:. 1709:: 1701:: 1673:. 1651:. 1629:: 1621:: 1594:. 1582:: 1574:: 1551:. 1524:. 1510:: 1483:. 1473:3 1452:. 1427:. 1401:. 1375:. 1361:: 1315:. 1301:: 1274:. 1270:: 1262:: 1239:. 1213:. 1186:. 1154:: 1127:. 1103:: 1060:: 918:2 914:2 846:2 807:2 801:O 794:P 557:2 527:2 518:2 510:2 496:2 474:2 468:3 466:C 456:4 454:C 450:2 446:2 442:2 434:2 430:2 422:2 418:2 410:2 174:2

Index

Greek
-logia
biological
discipline
organism
physiology
comparative physiology
evolutionary physiology
Ernst Haeckel
Plant perception (physiology)
Plant stress measurement
animals
plants
phenotypically plastic
genes
Photomorphogenesis
Photoperiodism
Light
leaves
photosynthesis
PI curve
asymptote
light compensation point
photoinhibition
Shade tolerant
photoinhibition
photodestruction
Plant adaptations to wildfires
proteins
enzyme

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.