Knowledge (XXG)

Ehrlichia

Source πŸ“

738:
and major outer membrane proteins can be expressed variously using 25 different genes. The glycoproteins are important targets of the host immune response, attachment to the host cell, and other features in the immune response. The more outer-membrane protein genes that can be expressed, the higher
1436:
Pritt, Sloane, Hoang-Johnson, Munderloh, Paskewitz, McElroy, McFadden, Binnicker, Neitzel, Liu, Nicholson, Nelson, Franson, Martin, Cunningham, Steward, Bogumill, Bjorgaard, Davis, McQuiston, Warshauer, Wilhelm, Patel, Trivedi, Eremeeva, Bobbi, Lynne, Diep, Ulrike, Susan, Kristina, Jevon, Matthew,
1263:
Pritt, Sloan, Johnson, Munderloh, Paskewtiz, McElroy, McFadden, Binnicker, Neitzel, Liu, Nicholson, Nelson, Franson, Martin, Cunningham, Steward, Bogumill, Bjorgaard, Davis, McQuiston, Warshauer, Wilhelm, Patel, Trivedi, Eremeeva, Bobbi, Lynne, Diep, Ulrike, Susan, Kristina, Jevon, Matthew, David,
803:
were recorded in southeastern, south-central and mid-Atlantic areas of the country in 2013. Despite the first cases of "E. ewingii" appearing in the Missouri in the year 1999, this strain was not reportable to health officials until 2008. Since 2008, there have been reported human cases of
818:
infections were reported through the National Notifiable Diseases Surveillance System (NNDSS). The incidence rate (IR) was 3.2 cases per million person-years (PYs). The hospitalization rate (HR) was 57% and the case fatality rate (CFR) was 1%. During that same time, 55 cases of
700:
coding DNA sequences, three coding DNA sequences were biased towards nonsynonymous substitutions that affect phenotype. In contrast, 181 coding DNA sequences were biased towards synonymous substitutions, which do not affect phenotype. This indicates that
1154:
Mavromatis, K.; Doyle, C. K.; Lykidis, A.; Ivanova, N.; Francino, M. P.; Chain, P.; Shin, M.; Malfatti, S.; Larimer, F.; Copeland, A.; Detter, J. C.; Land, M.; Richardson, P. M.; Yu, X. J.; Walker, D. H.; McBride, J. W.; Kyrpides, N. C. (17 May 2006).
231:. In 1945, an "infection and treatment" method for livestock was developed. This is still the only commercially available "vaccine" against the disease, which is not a true vaccine, but intentional exposure to the disease with monitoring and 598:
of the gene. These duplication, fusion, and fission events form multiple gene copies and fragments, which are able to accumulate mutations. These copies and fragments of membrane proteins can then recombine, through a process called
594:, which have gone through intense modification over long periods of time. The great diversity in outer membrane protein genes is thought to originate from gene duplication events, followed by the fusion and fission of resulting 758:
rates. The host metabolic pathway enzymes take control of the functions lost due to reductive evolution, and this contributes to its need for a host. Natural selection may not be the reason for small genomes.
1381:"Increasing Incidence of Ehrlichiosis in the United States: A Summary of National Surveillance of Ehrlichia chaffeensis and Ehrlichia ewingii Infections in the United States, 2008-2012" 1668: 907: 746:. The genome has had a severe loss of metabolic pathway enzymes compared to its ancestors. Reductive evolution in obligate intracellular pathogens is usually the direct result of 31: 1486: 1313: 734:
that do not show up in the previous lineages, which may indicate that these features may have contributed to a fitness advantage that kept this lineage going. Unique
684:
in Africa and the Caribbean, but also threatens the American mainland. Three strains have arisen from this species due to evolutionary change in their genomes. When
1642: 995:
Frutos, Roger; Viari, Alain; Vachiery, Nathalie; Boyer, FrΓ©dΓ©ric; Martinez, Dominique (September 2007). "Ehrlichia ruminantium: genomic and evolutionary features".
826:
In Minnesota and Wisconsin, four people reported symptoms that are associated with ehrlichiosis, and upon further research, neither of these cases was found to be
1681: 1629: 215:
during the 19th century. Its tick-borne nature was determined in 1900. The organism itself was demonstrated in 1925 when it was recognized to be a
1655: 1157:"The Genome of the Obligately Intracellular Bacterium Ehrlichia canis Reveals Themes of Complex Membrane Structure and Immune Evasion Strategies" 1264:
Gongping, William, Curtis, Joni, Scott, Scott, Christopher, Kay, Mary, Jeffrey, Jennifer, david, Mark, Robin, Vipul, Marina (August 4, 2011).
1526: 1437:
David, Gongping, William, Curtis, Joni, Scott, Scott, Christopher, Kay, Mary, Jeffrey, Jennifer, David, Mark, Robin, Vipul, Marina (2011).
823:
infections were reported through NNDSS. The national IR was 0.04 cases per million PY. The HR was 77% and the case fatality rate was 0%.
1330:
Harris, Rebecca M.; Couturier, Brianne A.; Sample, Stephan C.; Coulter, Katrina S.; Casey, Kathleen K.; Schlaberg, Robert (2016).
245:. This newly found organism has only been isolated from deer ticks in Wisconsin and Minnesota in the USA. The species is known as 865: 30: 1660: 195:
during initial stages of infection, whereas in the final stages of infection, the pathogen ruptures the host cell membrane.
1379:
Nichols Heitman, Kristen; Dahlgren, F. Scott; Drexler, Naomi A.; Massung, Robert F.; Behravesh, Casey Barton (2016-01-01).
626:, which vary highly among individuals and species. Over time, individuals may expand or contract parts of their genes and 658:
events, and this diversity persists because of the lack of selective constraints on rapid growth inside the host tissue.
871: 246: 730:
also shows evolution in its complex membrane structures and immune evasion strategies. These evolutionary features are
1071:"Structural basis for segmental gene conversion in generation of Anaplasma marginale outer membrane protein variants" 1686: 1727: 1520: 1332:"Expanded Geographic Distribution and Clinical Characteristics of Ehrlichia ewingii Infections, United States" 650:
show extreme diversity in the structure and content of their genomes. This diversity is direct result of rare
603:, resulting in a new gene variant. This has a profound effect on the fitness of an organism. The survival of 235:
treatment if needed. In 1985, the organism was first propagated reliably in tissue culture. A new species of
1722: 1543: 308: 188: 1480: 1307: 860: 751: 655: 350: 336: 280: 227: 1603: 1217: 942: 779: 380: 705:
to maintain protein function existed, and this selection acted against the nonsynonymous mutations.
1031: 82: 702: 364: 138: 47: 1694: 1647: 1590: 1468: 1418: 1400: 1361: 1295: 1245: 1186: 1136: 1092: 1051: 1012: 970: 669: 631: 591: 294: 241: 39: 1034:(October 2007). "Intracellular pathogens go extreme: genome evolution in the Rickettsiales". 615:
can evade the immune system of the host more effectively and establish persistent infection.
1699: 1503: 1458: 1450: 1408: 1392: 1351: 1343: 1285: 1277: 1235: 1225: 1176: 1168: 1126: 1082: 1043: 1004: 960: 950: 723: 608: 600: 322: 270: 1581: 1532: 1331: 1221: 946: 173:
bacteria that are transmitted to vertebrates by ticks. These bacteria cause the disease
1463: 1438: 1413: 1380: 1356: 1290: 1265: 1181: 1156: 965: 930: 731: 696:
and tandem repeats. When analyzing substitution rates between the three strains in 888
689: 623: 70: 1716: 1516: 1240: 1205: 1087: 1070: 747: 735: 719: 170: 106: 94: 1069:
Futse, James E.; Brayton, Kelly A.; Knowles, Donald P.; Palmer, Guy H. (July 2005).
672:
have led to the emergence of new strains that can infect a larger variety of hosts.
1595: 212: 208: 174: 955: 1575: 739:
the chance the organism can avoid being recognized by the host's immune system.
697: 693: 1131: 1114: 808:
in Oklahoma, Arkansas and Tennessee though it is observed less frequently than
1266:"Emergence of New Pathogenic Ehrlichia Species, Wisconsin and Minnesota, 2009" 1047: 855: 688:
their genomes,e many active genomic modifications have occurred, such as high
685: 673: 432: 379:
The following species have been published, but are not valid according to the
232: 217: 1566: 1404: 1008: 834:, but instead it was revealed as a new species, similar in genetic makeup to 1616: 1030:
Darby, Alistair C.; Cho, Nam-Huyk; Fuxelius, Hans-Henrik; Westberg, Joakim;
722:Ξ±-proteobacterium. This species is responsible for the globally distributed 681: 646: 635: 192: 1472: 1422: 1365: 1347: 1299: 1230: 1190: 1140: 1096: 1055: 1016: 974: 1454: 1396: 1281: 1249: 1673: 1560: 791:
bacterial infection in the Eastern and Southeastern United States, while
755: 612: 595: 178: 58: 1529:
Clinical experiences about ehrlichia and coinfections at dogs in Romania
1172: 767:
Despite there being multiple strains of ehrlichiosis, only two species,
1634: 899: 651: 627: 1439:"Emergence of a New Ehrlichia Species, Wisconsin and Minnesota, 2009" 1206:"Accelerated evolution and Muller's rachet in endosymbiotic bacteria" 1537: 1115:"Molecular interactions between bacterial symbionts and their hosts" 275:(Donatien and Lestoquard 1935) Moshkovski 1945 (Approved Lists 1980) 1621: 590:
genome contains many different variants of genes that encode outer
265:
The following species have been effectively and validly published:
166: 611:
of its host. With a higher range of outer membrane proteins, the
618:
The most pronounced evidence of evolution in the genome size of
1541: 1608: 1511: 842:
ticks are hypothesized to be the transmitting vector of the
654:
with extreme genomes that emerged by chance after repeated
181:, because the main reservoirs for the disease are animals. 931:"Exit Mechanisms of the Intracellular Bacterium Ehrlichia" 1534:
Newly discovered species of Ehrlichia found in deer ticks
1507: 191:
and are transported between cells through the host cell
908:
List of Prokaryotic names with Standing in Nomenclature
775:, are currently known to cause the disease in humans. 718:
is a small, obligate-intracellular, tick-transmitted,
1385:
The American Journal of Tropical Medicine and Hygiene
1550: 369:(Misao and Kobayashi 1956) Ristic and Huxsoll 1984 1325: 1323: 211:. The first ehrlichial disease was recognized in 1527:Forum discution and clinical presentation (RO) 1510:, a Bioinformatics Resource Center funded by 430:The following species have been published as 8: 1485:: CS1 maint: multiple names: authors list ( 1312:: CS1 maint: multiple names: authors list ( 868:(now called human granulocytic anaplasmosis) 692:rates, truncated genes, and the presence of 1538: 799:tick in the Upper Midwest; 1,518 cases of 29: 20: 1519:at the U.S. National Library of Medicine 1462: 1412: 1355: 1289: 1239: 1229: 1180: 1130: 1086: 964: 954: 929:Thomas, S; Popov, VL; Walker, DH (2010). 742:Also, reductive evolution is present in 883: 680:, is a prevalent tick-borne disease of 1478: 1305: 893: 891: 889: 887: 668:The evolutionary changes in the outer 207:is named after German microbiologist 151:Moshkovski 1947 (Approved Lists 1980) 7: 1108: 1106: 990: 988: 986: 984: 239:was discovered inside the deer tick 1506:genomes and related information at 1443:The New England Journal of Medicine 1270:The New England Journal of Medicine 14: 814:During 2008–2012, 4,613 cases of 1088:10.1111/j.1365-2958.2005.04670.x 866:Human granulocytic ehrlichiosis 644:and its closely related genus 1: 724:canine monocytic ehrlichiosis 1336:Emerging Infectious Diseases 1113:Dale, C.; Moran, N. (2006). 956:10.1371/journal.pone.0015775 872:Human monocytic ehrlichiosis 1744: 1210:Proc. Natl. Acad. Sci. USA 1132:10.1016/j.cell.2006.07.014 750:in small populations, low 486:Ehrlichia ornithorhynchi" 1048:10.1016/j.tig.2007.08.002 634:and may sometimes affect 225:, and is currently named 221:. It was initially named 144: 137: 48:Scientific classification 46: 37: 28: 23: 1521:Medical Subject Headings 1009:10.1016/j.pt.2007.07.007 846:strain in these states. 528:Ehrlichia senegalensis" 472:Ehrlichia occidentalis" 1161:Journal of Bacteriology 607:depends greatly on the 542:Ehrlichia shimanensis" 458:Ehrlichia khabarensis" 189:intracellular pathogens 187:species are obligately 1348:10.3201/eid2205.152009 1231:10.1073/pnas.93.7.2873 1075:Molecular Microbiology 997:Trends in Parasitology 444:Ehrlichia corsicanum" 417:French and Harvey 1983 223:Rickettsia ruminantium 177:, which is considered 1455:10.1056/NEJMoa1010493 1397:10.4269/ajtmh.15-0540 1282:10.1056/NEJMoa1010493 1204:Moran, N. A. (1996). 898:EuzΓ©by JP, Parte AC. 861:Ehrlichiosis (canine) 355:(Cowdry 1925) Dumler 351:Ehrlichia ruminantium 281:Ehrlichia chaffeensis 228:Ehrlichia ruminantium 780:Amblyomma americanum 381:Bacteriological Code 309:Ehrlichia minasensis 1222:1996PNAS...93.2873M 1173:10.1128/JB.01837-05 1032:Andersson, Siv G.E. 947:2010PLoSO...515775T 622:is the presence of 570:Ehrlichia walkeri" 556:Ehrlichia urmitei" 514:Ehrlichia rustica" 375:Provisional species 83:Alphaproteobacteria 1036:Trends in Genetics 793:A. phagocytophilum 703:selection pressure 389:Ehrlichia japonica 365:Ehrlichia sennetsu 337:Ehrlichia risticii 250:Wisconsin HM543746 1710: 1709: 1695:Open Tree of Life 1544:Taxon identifiers 1167:(11): 4015–4023. 840:Ixodes scapularis 797:Ixodes scapularis 795:is spread by the 670:membrane proteins 632:genetic variation 592:membrane proteins 577: 563: 549: 535: 521: 507: 500:Ehrlichia ovata" 493: 479: 465: 451: 418: 408: 398: 370: 360: 346: 332: 318: 304: 295:Ehrlichia ewingii 290: 276: 242:Ixodes scapularis 158: 157: 152: 40:Ehrlichia ewingii 16:Genus of bacteria 1735: 1703: 1702: 1690: 1689: 1677: 1676: 1664: 1663: 1651: 1650: 1638: 1637: 1625: 1624: 1612: 1611: 1599: 1598: 1586: 1585: 1584: 1571: 1570: 1569: 1539: 1491: 1490: 1484: 1476: 1466: 1433: 1427: 1426: 1416: 1376: 1370: 1369: 1359: 1327: 1318: 1317: 1311: 1303: 1293: 1260: 1254: 1253: 1243: 1233: 1216:(7): 2873–2878. 1201: 1195: 1194: 1184: 1151: 1145: 1144: 1134: 1110: 1101: 1100: 1090: 1066: 1060: 1059: 1027: 1021: 1020: 992: 979: 978: 968: 958: 926: 920: 919: 917: 915: 895: 754:rates, and high 572:corrig. Brouqui 571: 557: 543: 529: 515: 501: 487: 473: 459: 445: 416: 413:Ehrlichia platys 406: 392: 368: 354: 340: 326: 312: 298: 284: 274: 261:Accepted species 150: 33: 21: 1743: 1742: 1738: 1737: 1736: 1734: 1733: 1732: 1728:Bacteria genera 1713: 1712: 1711: 1706: 1698: 1693: 1685: 1680: 1672: 1667: 1659: 1654: 1646: 1641: 1633: 1628: 1620: 1615: 1607: 1602: 1594: 1589: 1580: 1579: 1574: 1565: 1564: 1559: 1546: 1500: 1495: 1494: 1477: 1435: 1434: 1430: 1378: 1377: 1373: 1329: 1328: 1321: 1304: 1262: 1261: 1257: 1203: 1202: 1198: 1153: 1152: 1148: 1112: 1111: 1104: 1068: 1067: 1063: 1042:(10): 511–520. 1029: 1028: 1024: 994: 993: 982: 928: 927: 923: 913: 911: 897: 896: 885: 880: 852: 810:E. chaffeensis. 765: 713: 666: 609:immune response 601:gene conversion 584: 428: 407:Moshkovski 1945 403:Ehrlichia ovina 377: 323:Ehrlichia muris 271:Ehrlichia canis 263: 258: 201: 133: 123: 109: 97: 85: 73: 61: 17: 12: 11: 5: 1741: 1739: 1731: 1730: 1725: 1715: 1714: 1708: 1707: 1705: 1704: 1691: 1678: 1674:ehrlichia.html 1665: 1652: 1639: 1626: 1613: 1600: 1587: 1572: 1556: 1554: 1548: 1547: 1542: 1536: 1535: 1530: 1524: 1514: 1499: 1498:External links 1496: 1493: 1492: 1449:(5): 422–429. 1428: 1371: 1342:(5): 862–865. 1319: 1276:(5): 422–429. 1255: 1196: 1146: 1125:(3): 453–465. 1102: 1081:(1): 212–221. 1061: 1022: 1003:(9): 414–419. 980: 941:(12): e15775. 921: 882: 881: 879: 876: 875: 874: 869: 863: 858: 851: 848: 828:E. chaffeensis 816:E. chaffeensis 801:E. chaffeensis 785:E. chaffeensis 769:E. chaffeensis 764: 761: 732:derived traits 712: 707: 678:E. ruminantium 665: 663:E. ruminantium 660: 624:tandem repeats 583: 580: 579: 578: 564: 550: 536: 522: 508: 494: 480: 466: 452: 427: 421: 420: 419: 409: 399: 376: 373: 372: 371: 361: 347: 333: 319: 305: 291: 277: 262: 259: 257: 254: 200: 197: 156: 155: 154: 153: 142: 141: 135: 134: 131: 129: 125: 124: 117: 115: 111: 110: 105: 103: 99: 98: 93: 91: 87: 86: 81: 79: 75: 74: 71:Pseudomonadota 69: 67: 63: 62: 57: 55: 51: 50: 44: 43: 35: 34: 26: 25: 15: 13: 10: 9: 6: 4: 3: 2: 1740: 1729: 1726: 1724: 1723:Rickettsiales 1721: 1720: 1718: 1701: 1696: 1692: 1688: 1683: 1679: 1675: 1670: 1666: 1662: 1657: 1653: 1649: 1644: 1640: 1636: 1631: 1627: 1623: 1618: 1614: 1610: 1605: 1601: 1597: 1592: 1588: 1583: 1577: 1573: 1568: 1562: 1558: 1557: 1555: 1553: 1549: 1545: 1540: 1533: 1531: 1528: 1525: 1522: 1518: 1515: 1513: 1509: 1505: 1502: 1501: 1497: 1488: 1482: 1474: 1470: 1465: 1460: 1456: 1452: 1448: 1444: 1440: 1432: 1429: 1424: 1420: 1415: 1410: 1406: 1402: 1398: 1394: 1390: 1386: 1382: 1375: 1372: 1367: 1363: 1358: 1353: 1349: 1345: 1341: 1337: 1333: 1326: 1324: 1320: 1315: 1309: 1301: 1297: 1292: 1287: 1283: 1279: 1275: 1271: 1267: 1259: 1256: 1251: 1247: 1242: 1237: 1232: 1227: 1223: 1219: 1215: 1211: 1207: 1200: 1197: 1192: 1188: 1183: 1178: 1174: 1170: 1166: 1162: 1158: 1150: 1147: 1142: 1138: 1133: 1128: 1124: 1120: 1116: 1109: 1107: 1103: 1098: 1094: 1089: 1084: 1080: 1076: 1072: 1065: 1062: 1057: 1053: 1049: 1045: 1041: 1037: 1033: 1026: 1023: 1018: 1014: 1010: 1006: 1002: 998: 991: 989: 987: 985: 981: 976: 972: 967: 962: 957: 952: 948: 944: 940: 936: 932: 925: 922: 909: 905: 903: 894: 892: 890: 888: 884: 877: 873: 870: 867: 864: 862: 859: 857: 854: 853: 849: 847: 845: 841: 837: 833: 829: 824: 822: 817: 812: 811: 807: 802: 798: 794: 790: 786: 783:ticks spread 782: 781: 776: 774: 770: 762: 760: 757: 753: 752:recombination 749: 748:genetic drift 745: 740: 737: 736:glycoproteins 733: 729: 725: 721: 720:Gram-negative 717: 711: 708: 706: 704: 699: 695: 691: 687: 683: 679: 675: 671: 664: 661: 659: 657: 653: 649: 648: 643: 639: 637: 633: 630:, which adds 629: 625: 621: 616: 614: 610: 606: 602: 597: 593: 589: 581: 575: 569: 565: 561: 555: 551: 547: 541: 537: 533: 527: 523: 519: 513: 509: 505: 499: 495: 491: 485: 481: 477: 471: 467: 463: 457: 453: 449: 443: 439: 438: 437: 435: 434: 425: 422: 414: 410: 404: 400: 396: 390: 386: 385: 384: 382: 374: 367: 366: 362: 358: 353: 352: 348: 344: 339: 338: 334: 330: 325: 324: 320: 316: 313:Cabezas-Cruz 311: 310: 306: 302: 297: 296: 292: 288: 283: 282: 278: 273: 272: 268: 267: 266: 260: 255: 253: 251: 249: 244: 243: 238: 234: 230: 229: 224: 220: 219: 214: 210: 206: 198: 196: 194: 190: 186: 182: 180: 176: 172: 171:Rickettsiales 168: 164: 163: 149: 146: 145: 143: 140: 136: 130: 127: 126: 122: 121: 116: 113: 112: 108: 107:Ehrlichiaceae 104: 101: 100: 96: 95:Rickettsiales 92: 89: 88: 84: 80: 77: 76: 72: 68: 65: 64: 60: 56: 53: 52: 49: 45: 42: 41: 36: 32: 27: 22: 19: 1551: 1481:cite journal 1446: 1442: 1431: 1391:(1): 52–60. 1388: 1384: 1374: 1339: 1335: 1308:cite journal 1273: 1269: 1258: 1213: 1209: 1199: 1164: 1160: 1149: 1122: 1118: 1078: 1074: 1064: 1039: 1035: 1025: 1000: 996: 938: 934: 924: 912:. Retrieved 901: 843: 839: 835: 831: 827: 825: 820: 815: 813: 809: 805: 800: 796: 792: 788: 784: 778: 777: 772: 768: 766: 763:Epidemiology 743: 741: 727: 715: 714: 709: 690:substitution 677: 676:, caused by 667: 662: 645: 641: 640: 619: 617: 604: 587: 585: 573: 567: 559: 553: 545: 539: 531: 525: 517: 511: 503: 497: 489: 483: 475: 469: 461: 455: 447: 441: 431: 429: 423: 412: 402: 394: 388: 378: 363: 356: 349: 342: 335: 328: 321: 314: 307: 300: 293: 286: 279: 269: 264: 247: 240: 236: 226: 222: 216: 213:South Africa 209:Paul Ehrlich 204: 202: 184: 183: 175:ehrlichiosis 161: 160: 159: 147: 119: 118: 38: 18: 1576:Wikispecies 698:orthologous 694:pseudogenes 1717:Categories 878:References 856:Heartwater 832:E. ewingii 821:E. ewingii 806:E. ewingii 789:E. ewingii 773:E. ewingii 686:sequencing 674:Heartwater 656:bottleneck 568:Candidatus 554:Candidatus 540:Candidatus 526:Candidatus 512:Candidatus 498:Candidatus 484:Candidatus 470:Candidatus 456:Candidatus 442:Candidatus 433:candidatus 424:Candidatus 233:antibiotic 218:Rickettsia 203:The genus 24:Ehrlichia 1582:Ehrlichia 1552:Ehrlichia 1517:Ehrlichia 1504:Ehrlichia 1405:1476-1645 902:Ehrlichia 682:livestock 647:Anaplasma 642:Ehrlichia 636:phenotype 620:Erhlichia 605:Ehrlichia 588:Ehrlichia 582:Evolution 558:Ehounoud 544:Kawahara 516:Ehounoud 446:Cicculli 436:species: 299:Anderson 285:Anderson 248:Ehrlichia 237:Ehrlichia 205:Ehrlichia 193:filopodia 185:Ehrlichia 162:Ehrlichia 132:See text. 128:Species: 120:Ehrlichia 1561:Wikidata 1473:21812671 1423:26621561 1366:27089171 1300:21812671 1191:16707693 1141:16901780 1097:15948961 1056:17822801 1017:17652027 975:21187937 935:PLOS ONE 850:See also 844:E. muris 836:E. muris 756:mutation 744:E. canis 728:E. canis 716:E. canis 710:E. canis 613:parasite 596:paralogs 530:Dahmana 341:Holland 179:zoonotic 139:Synonyms 102:Family: 66:Phylum: 59:Bacteria 54:Domain: 1648:1100621 1635:3221416 1567:Q138670 1464:3319926 1414:4710445 1357:4861533 1291:3319926 1250:8610134 1218:Bibcode 1182:1482910 966:3004962 943:Bibcode 914:June 1, 628:alleles 488:Gofton 474:Gofton 426:species 256:Species 199:History 148:Cowdria 114:Genus: 90:Order: 78:Class: 1700:904947 1661:957129 1622:1EHRLG 1523:(MeSH) 1508:PATRIC 1471:  1461:  1421:  1411:  1403:  1364:  1354:  1298:  1288:  1248:  1238:  1189:  1179:  1139:  1095:  1054:  1015:  973:  963:  910:(LPSN) 652:clones 576:. 2003 562:. 2016 548:. 2006 534:. 2020 520:. 2016 506:. 2019 492:. 2018 478:. 2017 464:. 2015 450:. 2020 397:. 2021 359:. 2001 345:. 1985 331:. 1995 317:. 2016 303:. 1992 289:. 1992 1643:IRMNG 1609:97610 1596:632PK 1512:NIAID 1241:39726 574:et al 560:et al 546:et al 532:et al 518:et al 504:et al 502:Lynn 490:et al 476:et al 462:et al 448:et al 395:et al 357:et al 343:et al 329:et al 315:et al 301:et al 287:et al 167:genus 165:is a 1682:NCBI 1669:LPSN 1656:ITIS 1630:GBIF 1617:EPPO 1487:link 1469:PMID 1419:PMID 1401:ISSN 1362:PMID 1314:link 1296:PMID 1246:PMID 1187:PMID 1137:PMID 1119:Cell 1093:PMID 1052:PMID 1013:PMID 971:PMID 916:2021 787:and 771:and 586:The 460:Rar 393:Lin 327:Wen 1687:943 1604:EoL 1591:CoL 1459:PMC 1451:doi 1447:365 1409:PMC 1393:doi 1352:PMC 1344:doi 1286:PMC 1278:doi 1274:365 1236:PMC 1226:doi 1177:PMC 1169:doi 1165:188 1127:doi 1123:126 1083:doi 1044:doi 1005:doi 961:PMC 951:doi 830:or 169:of 1719:: 1697:: 1684:: 1671:: 1658:: 1645:: 1632:: 1619:: 1606:: 1593:: 1578:: 1563:: 1483:}} 1479:{{ 1467:. 1457:. 1445:. 1441:. 1417:. 1407:. 1399:. 1389:94 1387:. 1383:. 1360:. 1350:. 1340:22 1338:. 1334:. 1322:^ 1310:}} 1306:{{ 1294:. 1284:. 1272:. 1268:. 1244:. 1234:. 1224:. 1214:93 1212:. 1208:. 1185:. 1175:. 1163:. 1159:. 1135:. 1121:. 1117:. 1105:^ 1091:. 1079:57 1077:. 1073:. 1050:. 1040:23 1038:. 1011:. 1001:23 999:. 983:^ 969:. 959:. 949:. 937:. 933:. 906:. 886:^ 838:. 726:. 638:. 415:" 405:" 391:" 383:: 252:. 1489:) 1475:. 1453:: 1425:. 1395:: 1368:. 1346:: 1316:) 1302:. 1280:: 1252:. 1228:: 1220:: 1193:. 1171:: 1143:. 1129:: 1099:. 1085:: 1058:. 1046:: 1019:. 1007:: 977:. 953:: 945:: 939:5 918:. 904:" 900:" 566:" 552:" 538:" 524:" 510:" 496:" 482:" 468:" 454:" 440:" 411:" 401:" 387:"

Index


Ehrlichia ewingii
Scientific classification
Bacteria
Pseudomonadota
Alphaproteobacteria
Rickettsiales
Ehrlichiaceae
Synonyms
genus
Rickettsiales
ehrlichiosis
zoonotic
intracellular pathogens
filopodia
Paul Ehrlich
South Africa
Rickettsia
Ehrlichia ruminantium
antibiotic
Ixodes scapularis
Ehrlichia Wisconsin HM543746
Ehrlichia canis
Ehrlichia chaffeensis
Ehrlichia ewingii
Ehrlichia minasensis
Ehrlichia muris
Ehrlichia risticii
Ehrlichia ruminantium
Ehrlichia sennetsu

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑