Knowledge (XXG)

Hydrogel

Source 📝

834:
the aromatic interactions. Altering the pH can also have similar effects, an example involved the use of the naphthalene (Nap) modified dipeptides Nap-Gly-Ala, and Nap- Ala-Gly, where a drop in pH induced gelation of the former, but led to crystallisation of the latter. A controlled pH decrease method using glucono-ÎŽ-lactone (GdL), where the GdL is hydrolysed to gluconic acid in water is a recent strategy that has been developed as a way to form homogeneous and reproducible hydrogels. The hydrolysis is slow, which allows for a uniform pH change, and thus resulting in reproducible homogenous gels. In addition to this, the desired pH can be achieved by altering the amount of GdL added. The use of GdL has been used various times for the hydrogelation of Fmoc and Nap-dipeptides. In another direction, Morris et al reported the use of GdL as a 'molecular trigger' to predict and control the order of gelation. Chirality also plays an essential role in gel formation, and even changing the chirality of a single amino acid from its natural L-amino acid to its unnatural D-amino acid can significantly impact the gelation properties, with the natural forms not forming gels. Furthermore, aromatic interactions play a key role in hydrogel formation as a result of π- π stacking driving gelation, shown by many studies.
1597:
including composition, crosslink density, polymer chain structure, and hydration level. The toughness of a hydrogel is highly dependent on what polymer(s) and crosslinker(s) make up its matrix as certain polymers possess higher toughness and certain crosslinking covalent bonds are inherently stronger. Additionally, higher crosslinking density generally leads to increased toughness by restricting polymer chain mobility and enhancing resistance to deformation. The structure of the polymer chains is also a factor in that, longer chain lengths and higher molecular weight leads to a greater number of entanglements and higher toughness. A good balance (equilibrium) in the hydration of a hydrogel leads is important because too low hydration causes poor flexibility and toughness within the hydrogel, but too high of water content can cause excessive swelling, weakening the mechanical properties of the hydrogel.
886: 1657:(LCST). UCST polymers increase in their water-solubility at higher temperatures, which lead to UCST hydrogels transitioning from a gel (solid) to a solution (liquid) as the temperature is increased (similar to the melting point behavior of pure materials). This phenomenon also causes UCST hydrogels to expand (increase their swell ratio) as temperature increases while they are below their UCST. However, polymers with LCSTs display an inverse (or negative) temperature-dependence, where their water-solubility decreases at higher temperatures. LCST hydrogels transition from a liquid solution to a solid gel as the temperature is increased, and they also shrink (decrease their swell ratio) as the temperature increases while they are above their LCST. 1576:
compression. This causes a decrease in water pressure, which adds additional stress upon compression. Similar to viscoelasticity, this behavior is time dependent, thus poroelasticity is dependent on compression rate: a hydrogel shows softness upon slow compression, but fast compression makes the hydrogel stiffer. This phenomenon is due to the friction between the water and the porous matrix is proportional to the flow of water, which in turn is dependent on compression rate. Thus, a common way to measure poroelasticity is to do compression tests at varying compression rates. Pore size is an important factor in influencing poroelasticity. The
564: 1601: 898: 738: 1628:, as the hydrogel may need to withstand mechanical forces within the body, but also maintain mechanical performance and stability over time. Most typical hydrogels, both natural and synthetic, have a positive correlation between toughness and hysteresis, meaning that the higher the toughness, the longer the hydrogel takes to recover its original shape and vice versa. This is largely due to sacrificial bonds being the source of toughness within many of these hydrogels. Sacrificial bonds are non-covalent interactions such as 1640:, that can break and reform under mechanical stress. The reforming of these bonds takes time, especially when there are more of them, which leads to an increase in hysteresis. However, there is currently research focused on the development of highly entangled hydrogels, which instead rely on the long chain length of the polymers and their entanglement to limit the deformation of the hydrogel, thereby increasing the toughness without increasing hysteresis as there is no need for the reformation of the bonds. 1613:
stored as it deforms in mechanical extension or compression. When the mechanical stress is removed, the hydrogel begins to recover its original shape, but there may be a delay in the recovery process due to factors like viscoelasticity, internal friction, etc. This leads to a difference between the stress-strain curve during loading and unloading. Hysteresis within a hydrogel is influenced by several factors including composition, crosslink density, polymer chain structure, and
592: 2096: 1743:
morphologies and anisotropic mechanical properties. Directional freezing of the hydrogels helps to align and coalesce the polymer chains, creating anisotropic array honeycomb tube-like structures while salting out the hydrogel yielded out a nano-fibril network on the surface of these honeycomb tube-like structures. While maintaining a water content of over 70%, these hydrogels' toughness values are well above those of water-free polymers such as
1719:. One unique processing technique is through the formation of multi-layered hydrogels to create a spatially-varying matrix composition and by extension, mechanical properties. This can be done by polymerizing the hydrogel matrixes in a layer by layer fashion via UV polymerization. This technique can be useful in creating hydrogels that mimic articular cartilage, enabling a material with three separate zones of distinct mechanical properties. 29: 1777: 1809: 556: 1493:
mathematical model for linear viscoelastic response. In this model, viscoelasticity is modeled analogous to an electrical circuit with a Hookean spring, that represents the Young's modulus, and a Newtonian dashpot that represents the viscosity. A material that exhibit properties described in this model is a
1681:
The mechanical properties of hydrogels can be fine-tuned in many ways beginning with attention to their hydrophobic properties. Another method of modifying the strength or elasticity of hydrogels is to graft or surface coat them onto a stronger/stiffer support, or by making superporous hydrogel (SPH)
1596:
of a hydrogel refers to the ability of the hydrogel to withstand deformation or mechanical stress without fracturing or breaking apart. A hydrogel with high toughness can maintain its structural integrity and functionality under higher stress. Several factors contribute to the toughness of a hydrogel
1660:
Applications can dictate for diverse thermal responses. For example, in the biomedical field, LCST hydrogels are being investigated as drug delivery systems due to being injectable (liquid) at room temp and then solidifying into a rigid gel upon exposure to the higher temperatures of the human body.
833:
residues. The order of amino acids within the sequence is crucial for gelation, as has been shown many times. In one example, a short peptide sequence Fmoc-Phe-Gly readily formed a hydrogel, whereas Fmoc-Gly-Phe failed to do so as a result of the two adjacent aromatic moieties being moved, hindering
587:
three dimensional network of natural or synthetic polymers and a fluid, having absorbed a large amount of water or biological fluids. These properties underpin several applications, especially in the biomedical area. Many hydrogels are synthetic, but some are derived from nature. The term 'hydrogel'
1612:
of a hydrogel refers to the phenomenon where there is a delay in the deformation and recovery of a hydrogel when it is subjected to mechanical stress and relieved of that stress. This occurs because the polymer chains within a hydrogel rearrange, and the water molecules are displaced, and energy is
1583:
Poroelasticity is described by several coupled equations, thus there are few mechanical tests that relate directly to the poroelastic behavior of the material, thus more complicated tests such as indentation testing, numerical or computational models are utilized. Numerical or computational methods
925:
can vary from 10 Pa to 3 MPa, a range of about five orders of magnitude. A similar effect can be seen by altering the crosslinking concentration. This much variability of the mechanical stiffness is why hydrogels are so appealing for biomedical applications, where it is vital for implants to match
1488:
For hydrogels, their elasticity comes from the solid polymer matrix while the viscosity originates from the polymer network mobility and the water and other components that make up the aqueous phase. Viscoelastic properties of a hydrogel is highly dependent on the nature of the applied mechanical
1575:
is a characteristic of materials related to the migration of solvent through a porous material and the concurrent deformation that occurs. Poroelasticity in hydrated materials such as hydrogels occurs due to friction between the polymer and water as the water moves through the porous matrix upon
638:, and chain entanglements (among others). A hydrogel generated through the use of physical crosslinks is sometimes called a 'reversible' hydrogel. Chemical crosslinks consist of covalent bonds between polymer strands. Hydrogels generated in this manner are sometimes called 'permanent' hydrogels. 773:
irradiation, the photoinitiators will cleave and form free radicals, which will begin a polymerization reaction that forms crosslinks between polymer strands. This reaction will cease if the light source is removed, allowing the amount of crosslinks formed in the hydrogel to be controlled. The
1512:
is often performed. Typically, in these measurements the one side of the hydrogel is subjected to a sinusoidal load in shear mode while the applied stress is measured with a stress transducer and the change in sample length is measured with a strain transducer. One notation used to model the
753:
precursors. The precursors self-assemble into fibers, tapes, tubes, or ribbons that entangle to form non-covalent cross-links. The second mechanism involves non-covalent interactions of cross-linked domains that are separated by water-soluble linkers, and this is usually observed in longer
1742:
is another method in which a directional temperature gradient is applied to the hydrogel is another way to form materials with anisotropic mechanical properties. Utilizing both the freeze-casting and salting-out processing techniques on poly(vinyl alcohol) hydrogels to induce hierarchical
1492:
Physical models for viscoelasticity attempt to capture the elastic and viscous material properties of a material. In an elastic material, the stress is proportional to the strain while in a viscous material, the stress is proportional to the strain rate. The Maxwell model is one developed
926:
the mechanical properties of the surrounding tissues. Characterizing the mechanical properties of hydrogels can be difficult especially due to the differences in mechanical behavior that hydrogels have in comparison to other traditional engineering materials. In addition to its rubber
885: 621:
being cross-linked via disulfide bonds, are non-toxic and are used in numerous medicinal products. Physical hydrogels usually have high biocompatibility, are not toxic, and are also easily reversible by simply changing an external stimulus such as pH, ion concentration
2016:
swelling forces resulting from the exchange of counterions within the gel matrix. Particularly significant is its application in assessing the binding of peptide drugs to biopolymers within the body, as the swelling response of the gel can provide insights into these
2073:, and poly (lactic-co-glycolic acid) have been implemented extensively for drug delivery to organs such as eye, nose, kidneys, lungs, intestines, skin and brain. Future work is focused on reducing toxicity, improving biocompatibility, expanding assembly techniques 1698:
While a hydrogel's mechanical properties can be tuned and modified through crosslink concentration and additives, these properties can also be enhanced or optimized for various applications through specific processing techniques. These techniques include
778:
a popular choice for fine-tuning hydrogels. This technique has seen considerable use in cell and tissue engineering applications due to the ability to inject or mold a precursor solution loaded with cells into a wound site, then solidify it in situ.
754:
multi-domain structures. Tuning of the supramolecular interactions to produce a self-supporting network that does not precipitate, and is also able to immobilize water which is vital for to gel formation. Most oligopeptide hydrogels have a
1913:
Environmentally sensitive hydrogels (also known as 'smart gels' or 'intelligent gels'). These hydrogels have the ability to sense changes of pH, temperature, or the concentration of metabolite and release their load as result of such a
799:
hydrogels are formed by temperature change. A water solution of gelatin forms an hydrogel at temperatures below 37–35 Â°C, as Van der Waals interactions between collagen fibers become stronger than thermal molecular vibrations.
1501:. In order to describe the time-dependent creep and stress-relaxation behavior of hydrogel, a variety of physical lumped parameter models can be used. These modeling methods vary greatly and are extremely complex, so the empirical 1352: 897: 1424: 4826:
Nguyen LH, Kudva AK, Saxena NS, Roy K (October 2011). "Engineering articular cartilage with spatially-varying matrix composition and mechanical properties from a single stem cell population using a multi-layered hydrogel".
786:
hydrogels are usually produced by the freeze-thawed technique. In this, the solution is frozen for a few hours, then thawed at room temperature, and the cycle is repeated until a strong and stable hydrogel is formed.
816:
qualities, giving rise to their wide use of applications, particularly in biomedicine; as such, their physical properties can be fine-tuned in order to maximise their use. Methods to do this are: modulation of the
2076:
Hydrogels have been considered as vehicles for drug delivery. They can also be made to mimic animal mucosal tissues to be used for testing mucoadhesive properties. They have been examined for use as reservoirs in
865: 1478: 846:", hydrogels can encapsulate chemical systems which upon stimulation by external factors such as a change of pH may cause specific compounds such as glucose to be liberated to the environment, in most cases by a 769:, compounds that cleave from the absorption of photons, are added to the precursor solution which will become the hydrogel. When the precursor solution is exposed to a concentrated source of light, usually 5848:
Pupkaite J, Rosenquist J, Hilborn J, Samanta A (September 2019). "Injectable Shape-Holding Collagen Hydrogel for Cell Encapsulation and Delivery Cross-linked Using Thiol-Michael Addition Click Reaction".
1050: 1648:
The most commonly seen environmental sensitivity in hydrogels is a response to temperature. Many polymers/hydrogels exhibit a temperature dependent phase transition, which can be classified as either an
617:. Chemical hydrogels can result in strong reversible or irreversible gels due to the covalent bonding. Chemical hydrogels that contain reversible covalent cross-linking bonds, such as hydrogels of 762:
peptides have also been reported. The typical mechanism of gelation involves the oligopeptide precursors self-assemble into fibers that become elongated, and entangle to form cross-linked gels.
3825:
Ma M, Kuang Y, Gao Y, et al. (March 2010). "Aromatic-aromatic interactions induce the self-assembly of pentapeptidic derivatives in water to form nanofibers and supramolecular hydrogels".
1726:. Due to this phenomenon, through the addition of salt solution, the polymer chains of a hydrogel aggregate and crystallize, which increases the toughness of the hydrogel. This method, called " 869: 1216: 866: 2027:
Thermodynamic electricity generation: When combined with ions allows for heat dissipation for electronic devices and batteries and converting the heat exchange to an electrical charge.
1559: 1151: 1117: 5944:
Mellati A, Dai S, Bi J, et al. (2014). "A biodegradable thermosensitive hydrogel with tuneable properties for mimicking three-dimensional microenvironments of stem cells".
5285:
Youhong Guo; C. M. Dundas; X. Zhou; K. P. Johnston; Guihua Yu (2021). "Molecular Engineering of Hydrogels for Rapid Water Disinfection and Sustainable Solar Vapor Generation".
1812:
An adhesive bandage with a hydrogel pad, used for blisters and burns. The central gel is clear, the adhesive waterproof plastic film is clear, the backing is white and blue.
976:
In the unswollen state, hydrogels can be modelled as highly crosslinked chemical gels, in which the system can be described as one continuous polymer network. In this case:
2053:
Implanted or injected hydrogels have the potential to support tissue regeneration by mechanical tissue support, localized drug or cell delivery, local cell recruitement or
868: 1272: 1245: 6443:
Gao J, Liu R, Wu J, et al. (May 2012). "The use of chitosan based hydrogel for enhancing the therapeutic benefits of adipose-derived MSCs for acute kidney injury".
3516:
Orbach R, Adler-Abramovich L, Zigerson S, et al. (September 2009). "Self-assembled Fmoc-peptides as a platform for the formation of nanostructures and hydrogels".
3860:
Kwon GH, Jeong GS, Park JY, et al. (September 2011). "A low-energy-consumption electroactive valveless hydrogel micropump for long-term biomedical applications".
3022: 3426:
Fichman G, Gazit E (April 2014). "Self-assembly of short peptides to form hydrogels: design of building blocks, physical properties and technological applications".
3026: 2606:
Leichner, C; Jelkmann, M; Bernkop-SchnĂŒrch, A (2019). "Thiolated polymers: Bioinspired polymers utilizing one of the most important bridging structures in nature".
2020:
Window coating/replacement: Hydrogels are under consideration for reducing infrared light absorption by 75%. Another approach reduced interior temperature using a
583:
solids and at least 10% by weight or volume of interstitial fluid composed completely or mainly by water. In hydrogels the porous permeable solid is a water
2989:
Gdansk University of Technology, Chemical Faculty, Polymer Technology Department, 80-233 Gdansk, ul Narutowicza 11/12; Gibas, Iwona; Janik, Helena (2010-12-15).
879:
based on a hydrogel bar (4×0.3×0.05 mm size) actuated by applied voltage. This pump can be continuously operated with a 1.5 V battery for at least 6 months.
3964: 645:, which can be divided broadly into two categories according to their origin: natural or synthetic polymers. Natural polymers for hydrogel preparation include 1279: 913:
Hydrogels have been investigated for diverse applications. By modifying the polymer concentration of a hydrogel (or conversely, the water concentration), the
938:. These properties are extremely important to consider while performing mechanical experiments. Some common mechanical testing experiments for hydrogels are 1788:
hydrogels. They have replaced hard contact lenses. One of their most attractive properties is oxygen permeability, which is required since the cornea lacks
609:
The crosslinks which bond the polymers of a hydrogel fall under two general categories: physical hydrogels and chemical hydrogels. Chemical hydrogels have
5234:
Youhong Guo; H. Lu; F. Zhao; X. Zhou; W. Shi; Guihua Yu (2020). "Biomass-Derived Hybrid Hydrogel Evaporators for Cost-Effective Solar Water Purification".
1358: 3735:
Marchesan S, Waddington L, Easton CD, et al. (November 2012). "Unzipping the role of chirality in nanoscale self-assembly of tripeptide hydrogels".
542: 563: 137: 6562:
Liu X, Ma L, Mao Z, Gao C (2011), Jayakumar R, Prabaharan M, Muzzarelli RA (eds.), "Chitosan-Based Biomaterials for Tissue Repair and Regeneration",
6408:
Ozcelik B, Brown KD, Blencowe A, et al. (May 2013). "Ultrathin chitosan-poly(ethylene glycol) hydrogel films for corneal tissue engineering".
1974:
scaffolds. When used as scaffolds, hydrogels may contain human cells to repair tissue. They mimic 3D microenvironment of cells. Materials include
6519:
Ramdas M, Dileep KJ, Anitha Y, et al. (April 1999). "Alginate encapsulated bioadhesive chitosan microspheres for intestinal drug delivery".
2065:. Polymeric drug delivery systems have overcome challenges due to their biodegradability, biocompatibility, and anti-toxicity. Materials such as 1908: 1801: 6579: 5667: 4554: 3974: 3053: 2487: 2327: 2254: 6316:
Tang Y, Heaysman CL, Willis S, Lewis AL (September 2011). "Physical hydrogels with self-assembled nanostructures as drug delivery systems".
1846:
Water sustainability: Hydrogels have emerged as promising materials platforms for solar-powered water purification, water disinfection, and
1431: 891:
A short-peptide-based hydrogel matrix, capable of holding about one hundred times its own weight in water. Developed as a medical dressing.
3265:
Adelnia, Hossein; Ensandoost, Reza; Shebbrin Moonshi, Shehzahdi; Gavgani, Jaber Nasrollah; Vasafi, Emad Izadi; Ta, Hang Thu (2022-02-05).
867: 3601:
Chen L, Morris K, Laybourn A, et al. (April 2010). "Self-assembly mechanism for a naphthalene-dipeptide leading to hydrogelation".
1654: 1650: 80: 75: 6785:
Warren DS, Sutherland SP, Kao JY, et al. (2017). "The Preparation and Simple Analysis of a Clay Nanoparticle Composite Hydrogel".
1734:
salt solution. Some of these processing techniques can be used synergistically with each other to yield optimal mechanical properties.
1690:, have been shown to significantly modify the stiffness and gelation temperature of certain hydrogels used in biomedical applications. 2363: 717:
is usually much lower than synthetic hydrogels. There are also synthetic hydrogels that can be used for medical applications, such as
2760:
Yan, Yonggan; Xu, Shulei; Liu, Huanxi; Cui, Xin; Shao, Jinlong; Yao, Peng; Huang, Jun; Qiu, Xiaoyong; Huang, Chuanzhen (2020-05-20).
2466:
Nikolić, LjubiĆĄa B.; Zdravković, Aleksandar S.; Nikolić, Vesna D.; Ilić-Stojanović, SneĆŸana S. (2018), Mondal, Md. Ibrahim H. (ed.),
1489:
motion. Thus, the time dependence of these applied forces is extremely important for evaluating the viscoelasticity of the material.
850:
to the liquid state. Chemomechanical polymers are mostly also hydrogels, which upon stimulation change their volume and can serve as
842:
Hydrogels also possess a degree of flexibility very similar to natural tissue due to their significant water content. As responsive "
795:, is dissolved into an aqueous sodium alginate solution, that causes the calcium ions to create ionic bonds between alginate chains. 85: 4984: 4042:
Anseth KS, Bowman CN, Brannon-Peppas L (September 1996). "Mechanical properties of hydrogels and their experimental determination".
2293: 2188:"Harnessing the power of biological macromolecules in hydrogels for controlled drug release in the central nervous system: A review" 307: 122: 4724:
Rose S, Prevoteau A, ElziĂšre P, et al. (January 2014). "Nanoparticle solutions as adhesives for gels and biological tissues".
2000:
The swelling behavior exhibited by charged hydrogels can be used as a valuable tool for investigating interactions between charged
981: 5987:
Malmsten M, Bysell H, Hansson P (2010-12-01). "Biomacromolecules in microgels — Opportunities and challenges for drug delivery".
1947:: Hydrogels that are responsive to specific molecules, such as glucose or antigens, can be used as biosensors, as well as in DDS. 169: 2990: 5132:"Superaerophobic Polyethyleneimine Hydrogels for Improving Electrochemical Hydrogen Production by Promoting Bubble Detachment" 6024:"Ion-Exchange Controls the Kinetics of Deswelling of Polyelectrolyte Microgels in Solutions of Oppositely Charged Surfactant" 535: 6263: 4908:
Hua M, Wu S, Ma Y, et al. (February 2021). "Strong tough hydrogels via the synergy of freeze-casting and salting out".
1580:
has been used to predict pore size by relating the pressure drop to the difference in stress between two compression rates.
3463:"Nanostructured Hydrogels for Three-Dimensional Cell Culture Through Self-Assembly of Fluorenylmethoxycarbonyl–Dipeptides" 292: 782:
Physically crosslinked hydrogels can be prepared by different methods depending on the nature of the crosslink involved.
6832: 1600: 745:
There are two suggested mechanisms behind physical hydrogel formation, the first one being the gelation of nanofibrous
90: 4667:"Injectable Hydrogels Based on Pluronic/Water Systems Filled with Alginate Microparticles for Biomedical Applications" 1847: 1666: 1620:
The toughness and hysteresis of a hydrogel are especially important in the context of biomedical applications such as
1509: 954: 689:
thereof. Whereas natural hydrogels are usually non-toxic, and often provide other advantages for medical use, such as
322: 117: 112: 6201: 1577: 1165: 5595:
Discher DE, Janmey P, Wang YL (November 2005). "Tissue cells feel and respond to the stiffness of their substrate".
4407:"Tough double network hydrogels with rapid self-reinforcement and low hysteresis based on highly entangled networks" 3048:. Monographs in supramolecular chemistry. Vol. 11. Cambridge, UK: Royal Society of Chemistry. pp. 93–124. 2186:
Ghosh, Shampa; Ghosh, Soumya; Sharma, Hitaishi; Bhaskar, Rakesh; Han, Sung Soo; Sinha, Jitendra Kumar (2024-01-01).
765:
One notable method of initiating a polymerization reaction involves the use of light as a stimulus. In this method,
737: 5065:
Jeon, Dasom; Park, Jinwoo; Shin, Changhwan; Kim, Hyunwoo; Jang, Ji-Wook; Lee, Dong Woog; Ryu, Jungki (2020-04-10).
1954:. Hydrogels with reversible chemistry are required to allow for fluidization during injection/printing followed by 317: 146: 6128:
Wanselius, Marcus; Searle, Sean; Rodler, Agnes; Tenje, Maria; Abrahmsén-Alami, Susanna; Hansson, Per (June 2022).
5657: 1997:
systems. Ionic strength, pH and temperature can be used as a triggering factor to control the release of the drug.
1950:
Cell carrier: Injectable hydrogels can be used to carry drugs or cells for applications in tissue regeneration or
1498: 70: 4618:"Effect of crosslinker length on the elastic and compression modulus of poly(acrylamide) nanocomposite hydrogels" 1987: 1497:. Another physical model used is called the Kelvin-Voigt Model and a material that follow this model is called a 528: 6842: 3228: 285: 6176: 5000:
Schmid, Julian; Armstrong, Tobias; Dickhardt, Fabian J.; Iqbal, SK Rameez; Schutzius, Thomas M. (2023-12-22).
2856:"Hydrogels based on pH-responsive reversible carbon–nitrogen double-bond linkages for biomedical applications" 1661:
There are many other stimuli that hydrogels can be responsive to, including: pH, glucose, electrical signals,
903:
Photo of the same short-peptide-based hydrogel, held in forceps to demonstrate its stiffness and transparency.
1934:
Air bubble-repellent (superaerophobicity). Can improve the performance and stability of electrodes for water
6637:"Three-dimensional porous biodegradable polymeric scaffolds fabricated with biodegradable hydrogel porogens" 934:, hydrogels have an additional time dependent deformation mechanism which is dependent on fluid flow called 387: 382: 156: 4535:
Hadjichristidis, Nikos; Gnanou, Yves; Matyjaszewski, Krzysztof; Muthukumar, Murugappan, eds. (2022-03-07).
5612: 1882: 706: 268: 1122: 1088: 6289:"Electro-active polymer hydrogels exhibit emergent memory when embodied in a simulated game environment" 6069:
Wanselius, Marcus; Rodler, Agnes; Searle, Sean S.; Abrahmsén-Alami, Susanna; Hansson, Per (2022-09-15).
5189:"Nanofibrillar hydrogels outperform Pt/C for hydrogen evolution reactions under high-current conditions" 3553:"The delicate balance between gelation and crystallisation: structural and computational investigations" 3016: 2078: 1955: 826: 791:
hydrogels are formed by ionic interactions between alginate and double-charged cations. A salt, usually
714: 482: 302: 297: 6735:
Cook MT, Khutoryanskiy VV (November 2015). "Mucoadhesion and mucosa-mimetic materials--A mini-review".
6288: 3266: 2761: 2187: 6847: 6794: 6236: 5953: 5604: 5551: 5540:"Superaerophobic hydrogels for enhanced electrochemical and photoelectrochemical hydrogen production" 5441: 5349: 5294: 5243: 5143: 5078: 5067:"Superaerophobic hydrogels for enhanced electrochemical and photoelectrochemical hydrogen production" 5013: 4917: 4733: 4678: 4629: 4483: 4418: 4311:"Influence of the Degree of Swelling on the Stiffness and Toughness of Microgel-Reinforced Hydrogels" 4257: 4202: 3921: 3744: 3699: 3652: 3564: 3474: 3390: 3278: 3237: 3131: 2661: 2133: 2058: 2030: 1902: 1744: 1735: 1564:
in which G' is the real (elastic or storage) modulus, G" is the imaginary (viscous or loss) modulus.
943: 927: 726: 151: 45: 5188: 3641:"Relationship between molecular structure, gelation behaviour and gel properties of Fmoc-dipeptides" 2855: 1722:
Another emerging technique to optimize hydrogel mechanical properties is by taking advantage of the
847: 5617: 5338:"Scalable super hygroscopic polymer films for sustainable moisture harvesting in arid environments" 4777:"Exploring the Role of Nanoparticles in Enhancing Mechanical Properties of Hydrogel Nanocomposites" 1804:
Human mesenchymal stem cell interacting with 3D hydrogel - imaged with label-free live cell imaging
775: 718: 678: 674: 492: 60: 4862:
Hua M, Wu D, Wu S, et al. (March 2021). "4D Printable Tough and Thermoresponsive Hydrogels".
1682:
composites, in which a cross-linkable matrix swelling additive is added. Other additives, such as
6544: 6480:"Sealing effect of rapidly curable gelatin-poly (L-glutamic acid) hydrogel glue on lung air leak" 6341: 5874: 5744:"Injectable hydrogels delivering therapeutic agents for disease treatment and tissue engineering" 5638: 5318: 5267: 5216: 5169: 4949: 4887: 4757: 4536: 4127: 3945: 3498: 3312: 2971: 2789: 2627: 2539: 2448: 2355: 2215: 2157: 1971: 1894: 1637: 1621: 1250: 1223: 774:
properties of a hydrogel are highly dependent on the type and quantity of its crosslinks, making
710: 635: 455: 438: 397: 221: 5700:"Holographic sensors: three-dimensional analyte-sensitive nanostructures and their applications" 4472:"Hydrogels of arrested phase separation simultaneously achieve high strength and low hysteresis" 2100: 914: 6071:"Responsive Hyaluronic Acid–Ethylacrylamide Microgels Fabricated Using Microfluidics Technique" 3788:"Exploiting CH-π interactions in supramolecular hydrogels of aromatic carbohydrate amphiphiles" 1519: 6810: 6762: 6717: 6666: 6617: 6575: 6536: 6501: 6460: 6425: 6390: 6333: 6157: 6149: 6110: 6092: 6051: 6043: 6004: 5969: 5926: 5866: 5827: 5775: 5721: 5695: 5663: 5630: 5577: 5520: 5469: 5410: 5375: 5310: 5259: 5208: 5161: 5112: 5094: 5047: 5029: 4980: 4941: 4933: 4879: 4844: 4808: 4749: 4706: 4647: 4598: 4550: 4517: 4499: 4452: 4434: 4387: 4379: 4340: 4332: 4291: 4273: 4226: 4218: 4166: 4110:
Isobe N, Kimura S, Wada M, Deguchi S (November 2018). "Poroelasticity of cellulose hydrogel".
4059: 4021: 3970: 3937: 3877: 3842: 3807: 3768: 3717: 3668: 3618: 3580: 3533: 3490: 3443: 3408: 3359: 3351: 3304: 3201: 3157: 3100: 3049: 2963: 2924: 2875: 2836: 2828: 2781: 2742: 2734: 2695: 2677: 2619: 2588: 2531: 2483: 2413: 2359: 2323: 2289: 2250: 2207: 2149: 1723: 1502: 961: 939: 830: 783: 670: 614: 448: 412: 231: 226: 5895:
Bertsch, Pascal; Diba, Mani; Mooney, David J.; Leeuwenburgh, Sander C. G. (25 January 2023).
4190: 3462: 3331: 6802: 6752: 6744: 6707: 6697: 6656: 6648: 6607: 6567: 6528: 6491: 6452: 6417: 6380: 6372: 6325: 6296: 6209: 6141: 6100: 6082: 6035: 5996: 5961: 5916: 5908: 5858: 5817: 5809: 5765: 5755: 5711: 5622: 5567: 5559: 5510: 5500: 5459: 5449: 5402: 5365: 5357: 5302: 5251: 5200: 5151: 5102: 5086: 5037: 5021: 4972: 4925: 4871: 4836: 4798: 4788: 4741: 4696: 4686: 4637: 4590: 4542: 4538:
Macromolecular Engineering: From Precise Synthesis to Macroscopic Materials and Applications
4507: 4491: 4442: 4426: 4371: 4322: 4281: 4265: 4210: 4158: 4119: 4051: 4011: 4003: 3929: 3869: 3834: 3799: 3760: 3752: 3707: 3660: 3610: 3572: 3525: 3482: 3435: 3398: 3343: 3294: 3286: 3245: 3191: 3147: 3139: 3090: 3082: 3002: 2955: 2914: 2906: 2867: 2820: 2773: 2726: 2685: 2669: 2611: 2578: 2570: 2521: 2475: 2440: 2403: 2395: 2351: 2315: 2281: 2242: 2199: 2141: 2054: 1886: 1752: 1494: 813: 809: 792: 722: 690: 682: 402: 372: 312: 127: 6566:, Advances in Polymer Science, vol. 244, Springer Berlin Heidelberg, pp. 81–127, 4470:
Zhang, Guogao; Steck, Jason; Kim, Junsoo; Ahn, Christine Heera; Suo, Zhigang (2023-06-30).
1780:
Molecular structure of silicone hydrogel used in flexible, oxygen-permeable contact lenses.
4145:
Kuang, Xiao; Arıcan, Mehmet Onur; Zhou, Tao; Zhao, Xuanhe; Zhang, Yu Shrike (2023-02-24).
2944:"Polymer-based hydrogel scaffolds for skin tissue engineering applications: a mini-review" 2809:"Some studies of crosslinking chitosan-glutaraldehyde interaction in a homogeneous system" 2104: 2095: 2038: 1979: 1862: 1700: 1119: is the (number) average molecular weight between two adjacent cross-linking points. 965: 931: 922: 646: 475: 417: 367: 194: 4642: 4617: 4358:
Bai, Ruobing; Yang, Jiawei; Morelle, Xavier P.; Yang, Canhui; Suo, Zhigang (2018-03-20).
4078: 6798: 5957: 5608: 5555: 5445: 5353: 5298: 5247: 5147: 5082: 5042: 5017: 5001: 4921: 4737: 4682: 4633: 4512: 4487: 4471: 4447: 4422: 4406: 4359: 4261: 4206: 3925: 3748: 3703: 3656: 3568: 3478: 3394: 3282: 3241: 3135: 2665: 2234: 2137: 2121: 1347:{\displaystyle \sigma _{t}=G_{\textrm {swollen}}\left(\lambda ^{2}-\lambda ^{-1}\right)} 6661: 6636: 6456: 6385: 6360: 6105: 6070: 5921: 5896: 5822: 5797: 5770: 5743: 5572: 5539: 5515: 5488: 5464: 5429: 5370: 5337: 5107: 5066: 4840: 4803: 4776: 4701: 4666: 4286: 4245: 4016: 3991: 3152: 3119: 3095: 3070: 2919: 2894: 2690: 2649: 2583: 2558: 2408: 2383: 2246: 1962: 1951: 1917: 1836: 1823: 1739: 1731: 1716: 1572: 935: 843: 766: 694: 509: 362: 105: 28: 6496: 6479: 4594: 4146: 3046:
Polymeric and self assembled hydrogels: from fundamental understanding to applications
2824: 2730: 2041:
Shock Absorbing Materials - protein-based hydrogels that can absorb supersonic impacts
1800: 6837: 6826: 5878: 5322: 5271: 5220: 5173: 4953: 4891: 4761: 4131: 4055: 3949: 3502: 3316: 2975: 2943: 2793: 2631: 2543: 2452: 2219: 2082: 2062: 1994: 1868: 1712: 1687: 1633: 1629: 1625: 1059: 918: 631: 610: 407: 216: 211: 189: 6548: 6345: 5187:
Park, Jinwoo; Jeon, Dasom; Kang, Yunseok; Ryu, Jungki; Lee, Dong Woog (2023-01-24).
4581:
Qiu Y, Park K (December 2001). "Environment-sensitive hydrogels for drug delivery".
3290: 3250: 3223: 3086: 2510:"Thiolated polymeric hydrogels for biomedical application: Cross-linking mechanisms" 2431:
Bemmelen JM (1907). "Der Hydrogel und das kristallinische Hydrat des Kupferoxydes".
2235:"Magnetically responsive polymeric gels and elastomeric system(s) for drug delivery" 2233:
Shrivastava, Priya; Vishwakarma, Nikhar; Gautam, Laxmikant; Vyas, Suresh P. (2023),
1419:{\displaystyle \sigma _{e}=G_{\textrm {swollen}}\left(\lambda -\lambda ^{-2}\right)} 6686:"Novel glycopolymer hydrogels as mucosa-mimetic materials to reduce animal testing" 6129: 5642: 5130:
Bae, Misol; Kang, Yunseok; Lee, Dong Woog; Jeon, Dasom; Ryu, Jungki (August 2022).
3933: 3224:"Biomedical applications of hydrogels: A review of patents and commercial products" 2777: 2479: 2203: 2161: 1935: 1828: 1683: 1662: 947: 788: 750: 741:
Simplified scheme to show the self-assembly process involved in hydrogel formation.
623: 499: 443: 392: 377: 201: 184: 6748: 6145: 5406: 5393:
Brudno Y, Mooney DJ (December 2015). "On-demand drug delivery from local depots".
4546: 2559:"Thiolated Chitosans: A Multi-talented Class of Polymers for Various Applications" 2526: 2509: 6421: 6376: 6329: 4375: 3439: 2895:"Designing degradable hydrogels for orthogonal control of cell microenvironments" 2508:
Summonte, S; Racaniello, GF; Lopedota, A; Denora, N; Bernkop-SchnĂŒrch, A (2021).
2467: 1505:
description is commonly used to describe the viscoelastic behavior in hydrogels.
6806: 6287:
Strong, Vincent; Holderbaum, William; Hayashi, Yoshikatsu (September 18, 2024).
6000: 5912: 5430:"Bioinspired mechanically active adhesive dressings to accelerate wound closure" 4309:
Kessler, Michael; Yuan, Tianyu; Kolinski, John M.; Amstad, Esther (2023-02-21).
4123: 2021: 1789: 1760: 1727: 1708: 1704: 1614: 1584:
attempt to simulate the three dimensional permeability of the hydrogel network.
770: 759: 514: 460: 248: 236: 6532: 6301: 5862: 5361: 4929: 4430: 4162: 3120:"Rational design and application of responsive alpha-helical peptide hydrogels" 2673: 2615: 2574: 2399: 1820:
Coatings for gas evolution reaction electrodes for efficient bubble detachment
1776: 630:); they are also used for medical applications. Physical crosslinks consist of 6652: 6214: 5760: 3180:"Recent advances in photo-crosslinkable hydrogels for biomedical applications" 2959: 1983: 1944: 1890: 1609: 818: 755: 702: 698: 584: 580: 357: 337: 179: 6814: 6621: 6612: 6595: 6361:"Defining and designing polymers and hydrogels for neural tissue engineering" 6153: 6130:"Microfluidics platform for studies of peptide – polyelectrolyte interaction" 6096: 6047: 6023: 6008: 5973: 5212: 5165: 5098: 5033: 4651: 4503: 4438: 4383: 4336: 4277: 4222: 4170: 4147:"Functional Tough Hydrogels: Design, Processing, and Biomedical Applications" 3941: 3912:
Oyen ML (January 2014). "Mechanical characterisation of hydrogel materials".
3811: 3672: 3584: 3494: 3412: 3355: 3308: 3041: 2967: 2879: 2832: 2785: 2738: 2681: 2650:"The design of reversible hydrogels to capture extracellular matrix dynamics" 2309: 2275: 2211: 2153: 1968:
Provide absorption, desloughing and debriding of necrotic and fibrotic tissue
5813: 5626: 3992:"Strain rate viscoelastic analysis of soft and highly hydrated biomaterials" 3007: 2808: 2714: 2319: 2285: 2070: 1876: 1840: 1808: 1593: 950: 876: 851: 686: 332: 263: 253: 206: 50: 6766: 6721: 6670: 6540: 6505: 6464: 6429: 6394: 6337: 6161: 6114: 6055: 5930: 5870: 5831: 5779: 5725: 5634: 5581: 5563: 5524: 5473: 5454: 5414: 5379: 5314: 5306: 5263: 5255: 5156: 5131: 5116: 5090: 5051: 5025: 4945: 4883: 4875: 4848: 4812: 4753: 4710: 4602: 4521: 4495: 4456: 4391: 4344: 4327: 4310: 4295: 4269: 4230: 4214: 4025: 3881: 3846: 3772: 3721: 3622: 3537: 3486: 3447: 3363: 3347: 3205: 3161: 3104: 2928: 2840: 2746: 2699: 2623: 2592: 2535: 2417: 591: 4063: 3196: 3179: 3071:"Functionalized α-Helical Peptide Hydrogels for Neural Tissue Engineering" 5673: 5505: 5002:"Imparting scalephobicity with rational microtexturing of soft materials" 3764: 2066: 1922: 1898: 1832: 1785: 1508:
In order to measure the time-dependent viscoelastic behavior of polymers
658: 650: 576: 487: 465: 327: 6571: 6087: 4793: 4745: 4007: 3403: 3378: 3299: 6702: 6685: 6596:"Hydrogels with self-assembling ordered structures and their functions" 5965: 5204: 4976: 4691: 3873: 3803: 3787: 3756: 3712: 3687: 3576: 3552: 2910: 2871: 2444: 2013: 2009: 2005: 2001: 1975: 1941:
Culturing cells: Hydrogel-coated wells have been used for cell culture.
1854: 1670: 796: 746: 662: 654: 642: 627: 618: 65: 55: 6757: 6712: 6039: 5716: 5699: 4937: 4189:
Nian, Guodong; Kim, Junsoo; Bao, Xianyang; Suo, Zhigang (2022-09-20).
3838: 3614: 3529: 3664: 3640: 3377:
Jaipan, Panupong; Nguyen, Alexander; Narayan, Roger J. (2017-09-01).
3330:
Augst, Alexander D.; Kong, Hyun Joon; Mooney, David J. (2006-08-07).
3267:"Freeze/thawed polyvinyl alcohol hydrogels: Present, past and future" 3143: 2384:"Hydrogel: Preparation, characterization, and applications: A review" 2145: 1756: 1748: 1473:{\displaystyle \lambda =l_{\textrm {current}}/l_{\textrm {original}}} 1220:
In a simple uniaxial extension or compression test, the true stress,
855: 666: 504: 4246:"Concurrent stiffening and softening in hydrogels under dehydration" 1879:
are excellent for helping to create or maintain a moist environment.
555: 6264:"New protein-based armor material can withstand supersonic impacts" 4405:
Zhu, Ruixin; Zhu, Dandan; Zheng, Zhen; Wang, Xinling (2024-02-13).
4244:
Xu, Shuai; Zhou, Zidi; Liu, Zishun; Sharma, Pradeep (2023-01-06).
1872: 1858: 1807: 1799: 1775: 1599: 736: 590: 562: 554: 2991:"Review: Synthetic Polymer Hydrogels for Biomedical Applications" 1730:", has been applied to poly(vinyl alcohol) hydrogels by adding a 5798:"Injectable hydrogels for cartilage and bone tissue engineering" 2766:
Colloids and Surfaces A: Physicochemical and Engineering Aspects
2468:"Synthetic Hydrogels and Their Impact on Health and Environment" 1928: 1160:
For the swollen state, a perfect gel network can be modeled as:
470: 258: 132: 6237:"A new way to cool down electronic devices, recover waste heat" 5336:
Youhong Guo; W. Guan; C. Lei; H. Lu; W. Shi; Guihua Yu (2022).
2942:
Jeong, Kwang-Hun; Park, Duckshin; Lee, Young-Chul (July 2017).
2035:
Controlled release of agrochemicals (pesticides and fertilizer)
2713:
Jeong, Byeongmoon; Kim, Sung Wan; Bae, You Han (2002-01-17).
1045:{\displaystyle G=N_{p}kT={\rho RT \over {\overline {M}}_{c}}} 567:
Peptide hydrogel formation shown by the inverted vial method.
4775:
Zaragoza J, Fukuoka S, Kraus M, et al. (October 2018).
3118:
Banwell EF, Abelardo ES, Adams DJ, et al. (July 2009).
27: 5897:"Self-Healing Injectable Hydrogels for Tissue Regeneration" 822: 2474:, Cham: Springer International Publishing, pp. 1–29, 960:
Hydrogels have two main regimes of mechanical properties:
5428:
Blacklow SO, Li J, Freedman BR, et al. (July 2019).
4665:
Cidade MT, Ramos DJ, Santos J, et al. (April 2019).
3461:
Jayawarna V, Ali M, Jowitt TA, et al. (2006-03-03).
1513:
sinusoidal response to the periodic stress or strain is:
6177:"Hydrogel glass windows let in more light and less heat" 3688:"Chemically programmed self-sorting of gelator networks" 3069:
Mehrban N, Zhu B, Tamagnini F, et al. (June 2015).
4967:
Lai YC, Wilson AC, Zantos SG (2000). "Contact Lenses".
4191:"Making Highly Elastic and Tough Hydrogels from Doughs" 3686:
Morris KL, Chen L, Raeburn J, et al. (June 2013).
1961:
Investigate cell biomechanical functions combined with
5698:, da Cruz Vasconcellos F, et al. (October 2014). 2854:
Zhang, Zhen; He, Chaoliang; Chen, Xuesi (2018-09-27).
2648:
Rosales, Adrianne M.; Anseth, Kristi S. (2016-02-02).
1784:
The dominant material for contact lenses are acrylate-
4112:
Journal of the Taiwan Institute of Chemical Engineers
3966:
Stem Cells and Biomaterials for Regenerative Medicine
3786:
Birchall LS, Roy S, Jayawarna V, et al. (2011).
3379:"Gelatin-based hydrogels for biomedical applications" 2557:
Federer, C; Kurpiers, M; Bernkop-SchnĂŒrch, A (2021).
1522: 1434: 1361: 1282: 1253: 1226: 1168: 1125: 1091: 984: 6684:
Cook MT, Smith SL, Khutoryanskiy VV (October 2015).
5489:"Smart hydrogels for advanced drug delivery systems" 3178:
Choi JR, Yong KW, Choi JY, Cowie AC (January 2019).
1755:. The values also surpass the toughness of natural 559:
Gelatin, here in sheets for cooking, is a hydrogel.
5989:Current Opinion in Colloid & Interface Science 5796:Liu M, Zeng X, Ma C, et al. (December 2017). 5538:Jeon D, Park J, Shin C, et al. (April 2020). 3639:Adams DJ, Mullen LM, Berta M, et al. (2010). 2893:Kharkar PM, Kiick KL, Kloxin AM (September 2013). 2813:International Journal of Biological Macromolecules 2192:International Journal of Biological Macromolecules 1553: 1472: 1418: 1346: 1266: 1239: 1210: 1145: 1111: 1044: 3990:Tirella A, Mattei G, Ahluwalia A (October 2014). 2762:"A multi-functional reversible hydrogel adhesive" 2433:Zeitschrift fĂŒr Chemie und Industrie der Kolloide 2004:and various species, including multivalent ions, 1077:is the number of polymer chains per unit volume, 3996:Journal of Biomedical Materials Research. Part A 3551:Adams DJ, Morris K, Chen L, et al. (2010). 2239:Smart Polymeric Nano-Constructs in Drug Delivery 1157:, which is relatively easy to test and measure. 6359:Aurand ER, Lampe KJ, Bjugstad KB (March 2012). 4969:Kirk-Othmer Encyclopedia of Chemical Technology 2348:Kirk-Othmer Encyclopedia of Chemical Technology 2103: by Jessica Hutchinson available under the 2044:Computational tasks, including emergent memory. 1889:medical electrodes using hydrogels composed of 1211:{\displaystyle G_{\textrm {swollen}}=GQ^{-1/3}} 5890: 5888: 2807:Monteiro, O. A.; Airoldi, C. (November 1999). 2715:"Thermosensitive sol-gel reversible hydrogels" 2057:, or encapsulation of nanoparticles for local 4616:Zaragoza J, Chang A, Asuri P (January 2017). 4360:"Fatigue Fracture of Self-Recovery Hydrogels" 808:Peptides based hydrogels possess exceptional 536: 8: 3021:: CS1 maint: multiple names: authors list ( 2356:10.1002/0471238961.0825041807211620.a01.pub2 6635:Kim J, Yaszemski MJ, Lu L (December 2009). 6022:Nilsson, Peter; Hansson, Per (2005-12-01). 5493:International Journal of Molecular Sciences 3963:Los MJ, Hudecki A, Wiechec E (2018-11-07). 3217: 3215: 3173: 3171: 3075:ACS Biomaterials Science & Engineering 3025:) CS1 maint: numeric names: authors list ( 2311:Polymer Science: A Comprehensive Reference 2012:. This response arises due to fluctuating 641:Hydrogels are prepared using a variety of 543: 529: 18: 6756: 6711: 6701: 6660: 6611: 6495: 6478:Otani Y, Tabata Y, Ikada Y (April 1999). 6384: 6300: 6213: 6104: 6086: 5920: 5821: 5769: 5759: 5715: 5662:. Cambridge: Royal Society of Chemistry. 5616: 5571: 5514: 5504: 5463: 5453: 5369: 5155: 5106: 5041: 4903: 4901: 4802: 4792: 4700: 4690: 4641: 4511: 4446: 4326: 4285: 4015: 3711: 3402: 3298: 3249: 3195: 3151: 3094: 3006: 2918: 2689: 2582: 2525: 2407: 2081:; particularly ionic drugs, delivered by 1521: 1463: 1462: 1453: 1446: 1445: 1433: 1402: 1380: 1379: 1366: 1360: 1330: 1317: 1301: 1300: 1287: 1281: 1258: 1252: 1231: 1225: 1198: 1191: 1174: 1173: 1167: 1137: 1127: 1124: 1103: 1093: 1090: 1034: 1024: 1010: 995: 983: 138:Nitroxide-mediated radical polymerization 3827:Journal of the American Chemical Society 2472:Cellulose-Based Superabsorbent Hydrogels 1153:can be calculated from the swell ratio, 758:, and assemble to form fibers, although 4105: 4103: 4088:. Massachusetts Institute of Technology 4037: 4035: 2112: 1990:, and other naturally derived polymers. 946:(confined or unconfined), indentation, 860: 21: 6737:International Journal of Pharmaceutics 6134:International Journal of Pharmaceutics 4864:ACS Applied Materials & Interfaces 3634: 3632: 3596: 3594: 3014: 5843: 5841: 5791: 5789: 5737: 5735: 4622:Journal of Physics: Conference Series 4576: 4574: 4572: 4570: 4568: 4566: 4184: 4182: 4180: 3907: 3905: 3903: 3901: 3899: 3897: 3895: 3893: 3891: 2643: 2641: 2346:Cai W, Gupta RB (2012). "Hydrogels". 2122:"Hydrophilic Gels for Biological Use" 2120:Wichterle, O.; LĂ­m, D. (1960-01-01). 575:is a biphasic material, a mixture of 7: 6521:Journal of Biomaterials Applications 5487:Bordbar-Khiabani A, Gasik M (2022). 3332:"Alginate Hydrogels as Biomaterials" 2377: 2375: 2341: 2339: 2181: 2179: 2177: 2175: 2173: 2171: 669:. Common synthetic polymers include 6641:Tissue Engineering. Part C, Methods 6200:Miller, Brittney J. (8 June 2022). 6028:The Journal of Physical Chemistry B 4315:Macromolecular Rapid Communications 2995:Chemistry & Chemical Technology 1958:of the original hydrogel structure. 1655:lower critical solution temperature 1651:upper critical solution temperature 1146:{\displaystyle {\overline {M}}_{c}} 1112:{\displaystyle {\overline {M}}_{c}} 6457:10.1016/j.biomaterials.2012.01.061 4841:10.1016/j.biomaterials.2011.06.014 2277:Fundamental Biomaterials: Polymers 2247:10.1016/b978-0-323-91248-8.00012-x 613:, whereas physical hydrogels have 14: 4233:– via Wiley Online Library. 4086:Modules in Mechanics of Materials 3222:CalĂł E, Khutoryanskiy VV (2015). 749:assemblies, usually observed for 123:Controlled radical polymerization 5193:Journal of Materials Chemistry A 3042:"Peptide and Protein Hydrogels." 2099: This article incorporates 2094: 1817:Scalephobicity and antifouling 896: 884: 863: 6318:Expert Opinion on Drug Delivery 6202:"How smart windows save energy" 4079:""Engineering viscoelasticity"" 3914:International Materials Reviews 3291:10.1016/j.eurpolymj.2021.110974 3251:10.1016/j.eurpolymj.2014.11.024 3087:10.1021/acsbiomaterials.5b00051 3040:Dooling LJ, Tirrell DA (2013). 2022:temperature-responsive hydrogel 1085:is the ideal gas constant, and 829:, and increasing the number of 595:IUPAC definition for a hydrogel 6484:The Annals of Thoracic Surgery 6175:Irving, Michael (2022-08-31). 4971:. John Wiley & Sons, Inc. 4643:10.1088/1742-6596/790/1/012037 4583:Advanced Drug Delivery Reviews 4151:Accounts of Materials Research 3934:10.1179/1743280413Y.0000000022 2778:10.1016/j.colsurfa.2020.124622 2719:Advanced Drug Delivery Reviews 2608:Advanced Drug Delivery Reviews 2480:10.1007/978-3-319-76573-0_61-1 2241:, Elsevier, pp. 129–150, 2204:10.1016/j.ijbiomac.2023.127708 1: 6787:Journal of Chemical Education 6749:10.1016/j.ijpharm.2015.09.064 6497:10.1016/S0003-4975(99)00153-8 6293:Cell Reports Physical Science 6146:10.1016/j.ijpharm.2022.121785 5407:10.1016/j.jconrel.2015.09.011 5395:Journal of Controlled Release 4595:10.1016/S0169-409X(01)00203-4 4547:10.1002/9783527815562.mme0043 2860:Materials Chemistry Frontiers 2825:10.1016/s0141-8130(99)00068-9 2731:10.1016/s0169-409x(01)00242-3 2527:10.1016/j.jconrel.2020.12.037 2514:Journal of Controlled Release 1909:Encapsulation of quantum dots 86:Flory–Huggins solution theory 6594:Wu ZL, Gong JP (June 2011). 6564:Chitosan for Biomaterials II 6422:10.1016/j.actbio.2013.01.020 6377:10.1016/j.neures.2011.12.005 6330:10.1517/17425247.2011.588205 4376:10.1021/acsmacrolett.8b00045 4056:10.1016/0142-9612(96)87644-7 3440:10.1016/j.actbio.2013.08.013 2388:Journal of Advanced Research 1132: 1098: 1029: 611:covalent cross-linking bonds 6807:10.1021/acs.jchemed.6b00389 6262:Lavars, Nick (2022-12-15). 6001:10.1016/j.cocis.2010.05.016 5913:10.1021/acs.chemrev.2c00179 4124:10.1016/j.jtice.2018.02.017 2948:Journal of Polymer Research 1848:Atmospheric water generator 1510:dynamic mechanical analysis 1267:{\displaystyle \sigma _{e}} 1240:{\displaystyle \sigma _{t}} 1066:is the Boltzmann constant, 955:dynamic mechanical analysis 152:Condensation polymerization 118:Free-radical polymerization 113:Chain-growth polymerization 16:Soft water-rich polymer gel 6864: 6533:10.1177/088532829901300402 6302:10.1016/j.xcrp.2024.102151 5863:10.1021/acs.biomac.9b00769 5656:Schneider HJ, ed. (2015). 5362:10.1038/s41467-022-30505-2 4930:10.1038/s41586-021-03212-z 4431:10.1038/s41467-024-45485-8 4163:10.1021/accountsmr.2c00026 2674:10.1038/natrevmats.2015.12 2616:10.1016/j.addr.2019.04.007 2575:10.1021/acs.biomac.0c00663 2400:10.1016/j.jare.2013.07.006 1247:, and engineering stress, 727:polyvinylpyrrolidone (PVP) 147:Step-growth polymerization 6653:10.1089/ten.TEC.2008.0642 6215:10.1146/knowable-060822-3 5761:10.1186/s40824-018-0138-6 5659:Chemoresponsive Materials 5136:Advanced Energy Materials 3336:Macromolecular Bioscience 2960:10.1007/s10965-017-1278-4 1988:elastin-like polypeptides 1867:Dressings for healing of 1554:{\displaystyle G=G'+iG''} 719:polyethylene glycol (PEG) 6613:10.1038/asiamat.2010.200 5742:Lee JH (December 2018). 3271:European Polymer Journal 3229:European Polymer Journal 2899:Chemical Society Reviews 2654:Nature Reviews Materials 1638:hydrophobic interactions 1604:Model of Hysteresis Loop 1588:Toughness and Hysteresis 1274:, can be calculated as: 804:Peptides based hydrogels 709:of nearby tissue, their 636:hydrophobic interactions 6690:Chemical Communications 5814:10.1038/boneres.2017.14 5627:10.1126/science.1116995 3008:10.23939/chcht04.04.297 2382:Ahmed EM (March 2015). 2320:10.1016/c2009-1-28406-1 2286:10.1016/c2016-0-03544-1 157:Addition polymerization 91:Coil–globule transition 5564:10.1126/sciadv.aaz3944 5455:10.1126/sciadv.aaw3963 5307:10.1002/adma.202102994 5256:10.1002/adma.201907061 5157:10.1002/aenm.202201452 5091:10.1126/sciadv.aaz3944 5026:10.1126/sciadv.adj0324 4876:10.1021/acsami.0c17532 4496:10.1126/sciadv.adh7742 4328:10.1002/marc.202200864 4270:10.1126/sciadv.ade3240 4215:10.1002/adma.202206577 3487:10.1002/adma.200501522 3348:10.1002/mabi.200600069 1931:moisture in arid areas 1871:or other hard-to-heal 1813: 1805: 1781: 1644:Environmental response 1605: 1578:Kozeny–Carman equation 1555: 1480: is the stretch. 1474: 1420: 1348: 1268: 1241: 1212: 1147: 1113: 1046: 742: 596: 568: 560: 269:Self-healing hydrogels 32: 6365:Neuroscience Research 5748:Biomaterials Research 5342:Nature Communications 4541:(1 ed.). Wiley. 4411:Nature Communications 3692:Nature Communications 3197:10.2144/btn-2018-0083 2079:topical drug delivery 1927:Granules for holding 1811: 1803: 1779: 1694:Processing techniques 1603: 1556: 1499:Kelvin–Voigt material 1475: 1421: 1349: 1269: 1242: 1213: 1148: 1114: 1047: 909:Mechanical properties 740: 594: 566: 558: 483:Cookware and bakeware 435:Industrial production 303:X-ray crystallography 31: 5952:(109): 63951–63961. 5506:10.3390/ijms23073665 2610:. 151–152: 191–221. 2059:photothermal therapy 2031:Water gel explosives 1903:polyvinylpyrrolidone 1745:polydimethylsiloxane 1736:Directional freezing 1520: 1432: 1359: 1280: 1251: 1224: 1166: 1123: 1089: 982: 588:was coined in 1894. 6833:Colloidal chemistry 6799:2017JChEd..94.1772W 6696:(77): 14447–14450. 6572:10.1007/12_2011_118 6088:10.3390/gels8090588 6034:(50): 23843–23856. 5958:2014RSCAd...463951M 5710:(20): 10654–10696. 5609:2005Sci...310.1139D 5603:(5751): 1139–1143. 5556:2020SciA....6.3944J 5446:2019SciA....5.3963B 5354:2022NatCo..13.2761G 5299:2021AdM....3302994G 5248:2020AdM....3207061G 5148:2022AdEnM..1201452B 5083:2020SciA....6.3944J 5018:2023SciA....9J.324S 4922:2021Natur.590..594H 4870:(11): 12689–12697. 4794:10.3390/nano8110882 4746:10.1038/nature12806 4738:2014Natur.505..382R 4683:2019Mate...12.1083C 4634:2017JPhCS.790a2037Z 4488:2023SciA....9H7742Z 4423:2024NatCo..15.1344Z 4262:2023SciA....9E3240X 4207:2022AdM....3406577N 4008:10.1002/jbm.a.34914 3926:2014IMRv...59...44O 3749:2012Nanos...4.6752M 3704:2013NatCo...4.1480M 3657:2010SMat....6.1971A 3569:2010SMat....6.4144A 3479:2006AdM....18..611J 3404:10.1557/mrc.2017.92 3395:2017MRSCo...7..416J 3283:2022EurPJ.16410974A 3242:2015EurPJ..65..252C 3136:2009NatMa...8..596B 2666:2016NatRM...115012R 2138:1960Natur.185..117W 1772:Soft contact lenses 776:photopolymerization 705:effect and improve 679:sodium polyacrylate 675:polyethylene glycol 643:polymeric materials 456:Protective Coatings 71:Mark–Houwink theory 6703:10.1039/C5CC02428E 6600:NPG Asia Materials 6410:Acta Biomaterialia 5966:10.1039/C4RA12215A 5287:Advanced Materials 5236:Advanced Materials 5205:10.1039/D2TA08775H 4977:10.1002/0471238961 4692:10.3390/ma12071083 4195:Advanced Materials 3969:. Academic Press. 3874:10.1039/C1LC20288J 3804:10.1039/c0sc00621a 3757:10.1039/c2nr32006a 3713:10.1038/ncomms2499 3577:10.1039/c0sm00409j 3467:Advanced Materials 3428:Acta Biomaterialia 3383:MRS Communications 2911:10.1039/C3CS60040H 2872:10.1039/C8QM00317C 2445:10.1007/BF01830147 2314:. Elsevier. 2012. 1993:Sustained-release 1972:Tissue engineering 1895:polyethylene oxide 1857:where they absorb 1814: 1806: 1782: 1634:ionic interactions 1622:tissue engineering 1606: 1551: 1470: 1416: 1344: 1264: 1237: 1208: 1143: 1109: 1042: 848:gel–sol transition 743: 626:) or temperature ( 615:non-covalent bonds 597: 569: 561: 33: 6793:(11): 1772–1779. 6581:978-3-642-24061-4 6451:(14): 3673–3681. 6206:Knowable Magazine 6040:10.1021/jp054835d 5851:Biomacromolecules 5717:10.1021/cr500116a 5669:978-1-78262-242-0 4916:(7847): 594–599. 4835:(29): 6946–6952. 4732:(7483): 382–385. 4556:978-3-527-34455-0 4364:ACS Macro Letters 4050:(17): 1647–1657. 4002:(10): 3352–3360. 3976:978-0-12-812278-5 3868:(17): 2910–2915. 3839:10.1021/ja9088764 3743:(21): 6752–6760. 3615:10.1021/la903694a 3530:10.1021/bm900584m 3518:Biomacromolecules 3055:978-1-84973-561-2 2905:(17): 7335–7372. 2866:(10): 1765–1778. 2563:Biomacromolecules 2489:978-3-319-76573-0 2350:. pp. 1–20. 2329:978-0-08-087862-1 2256:978-0-323-91248-8 2132:(4706): 117–118. 1724:Hofmeister series 1466: 1449: 1383: 1304: 1177: 1135: 1101: 1040: 1032: 972:Rubber elasticity 962:rubber elasticity 870: 784:Polyvinyl alcohol 756:ÎČ-sheet structure 683:acrylate polymers 671:polyvinyl alcohol 553: 552: 466:Consumer products 6855: 6818: 6771: 6770: 6760: 6732: 6726: 6725: 6715: 6705: 6681: 6675: 6674: 6664: 6632: 6626: 6625: 6615: 6591: 6585: 6584: 6559: 6553: 6552: 6516: 6510: 6509: 6499: 6475: 6469: 6468: 6440: 6434: 6433: 6416:(5): 6594–6605. 6405: 6399: 6398: 6388: 6356: 6350: 6349: 6324:(9): 1141–1159. 6313: 6307: 6306: 6304: 6284: 6278: 6277: 6275: 6274: 6259: 6253: 6252: 6250: 6248: 6243:. April 22, 2020 6233: 6227: 6226: 6224: 6222: 6217: 6197: 6191: 6190: 6188: 6187: 6172: 6166: 6165: 6125: 6119: 6118: 6108: 6090: 6066: 6060: 6059: 6019: 6013: 6012: 5984: 5978: 5977: 5941: 5935: 5934: 5924: 5901:Chemical Reviews 5892: 5883: 5882: 5857:(9): 3475–3484. 5845: 5836: 5835: 5825: 5793: 5784: 5783: 5773: 5763: 5739: 5730: 5729: 5719: 5704:Chemical Reviews 5691: 5685: 5684: 5682: 5681: 5672:. Archived from 5653: 5647: 5646: 5620: 5592: 5586: 5585: 5575: 5550:(15): eaaz3944. 5544:Science Advances 5535: 5529: 5528: 5518: 5508: 5484: 5478: 5477: 5467: 5457: 5434:Science Advances 5425: 5419: 5418: 5390: 5384: 5383: 5373: 5333: 5327: 5326: 5282: 5276: 5275: 5231: 5225: 5224: 5199:(4): 1658–1665. 5184: 5178: 5177: 5159: 5127: 5121: 5120: 5110: 5077:(15): eaaz3944. 5071:Science Advances 5062: 5056: 5055: 5045: 5012:(51): eadj0324. 5006:Science Advances 4997: 4991: 4990: 4964: 4958: 4957: 4905: 4896: 4895: 4859: 4853: 4852: 4823: 4817: 4816: 4806: 4796: 4772: 4766: 4765: 4721: 4715: 4714: 4704: 4694: 4662: 4656: 4655: 4645: 4613: 4607: 4606: 4578: 4561: 4560: 4532: 4526: 4525: 4515: 4482:(26): eadh7742. 4476:Science Advances 4467: 4461: 4460: 4450: 4402: 4396: 4395: 4355: 4349: 4348: 4330: 4321:(16): e2200864. 4306: 4300: 4299: 4289: 4250:Science Advances 4241: 4235: 4234: 4186: 4175: 4174: 4142: 4136: 4135: 4107: 4098: 4097: 4095: 4093: 4083: 4074: 4068: 4067: 4039: 4030: 4029: 4019: 3987: 3981: 3980: 3960: 3954: 3953: 3909: 3886: 3885: 3857: 3851: 3850: 3833:(8): 2719–2728. 3822: 3816: 3815: 3792:Chemical Science 3783: 3777: 3776: 3732: 3726: 3725: 3715: 3683: 3677: 3676: 3665:10.1039/b921863g 3636: 3627: 3626: 3609:(7): 5232–5242. 3598: 3589: 3588: 3548: 3542: 3541: 3524:(9): 2646–2651. 3513: 3507: 3506: 3458: 3452: 3451: 3434:(4): 1671–1682. 3423: 3417: 3416: 3406: 3374: 3368: 3367: 3327: 3321: 3320: 3302: 3262: 3256: 3255: 3253: 3219: 3210: 3209: 3199: 3175: 3166: 3165: 3155: 3144:10.1038/nmat2479 3124:Nature Materials 3115: 3109: 3108: 3098: 3066: 3060: 3059: 3037: 3031: 3030: 3020: 3012: 3010: 2986: 2980: 2979: 2939: 2933: 2932: 2922: 2890: 2884: 2883: 2851: 2845: 2844: 2819:(2–3): 119–128. 2804: 2798: 2797: 2757: 2751: 2750: 2710: 2704: 2703: 2693: 2645: 2636: 2635: 2603: 2597: 2596: 2586: 2554: 2548: 2547: 2529: 2505: 2499: 2498: 2497: 2496: 2463: 2457: 2456: 2428: 2422: 2421: 2411: 2379: 2370: 2369: 2343: 2334: 2333: 2306: 2300: 2299: 2272: 2266: 2265: 2264: 2263: 2230: 2224: 2223: 2183: 2166: 2165: 2146:10.1038/185117a0 2117: 2098: 2055:immunomodulation 1863:sanitary napkins 1753:synthetic rubber 1701:electro-spinning 1560: 1558: 1557: 1552: 1550: 1536: 1495:Maxwell material 1479: 1477: 1476: 1471: 1469: 1468: 1467: 1464: 1457: 1452: 1451: 1450: 1447: 1425: 1423: 1422: 1417: 1415: 1411: 1410: 1409: 1386: 1385: 1384: 1381: 1371: 1370: 1353: 1351: 1350: 1345: 1343: 1339: 1338: 1337: 1322: 1321: 1307: 1306: 1305: 1302: 1292: 1291: 1273: 1271: 1270: 1265: 1263: 1262: 1246: 1244: 1243: 1238: 1236: 1235: 1217: 1215: 1214: 1209: 1207: 1206: 1202: 1180: 1179: 1178: 1175: 1152: 1150: 1149: 1144: 1142: 1141: 1136: 1128: 1118: 1116: 1115: 1110: 1108: 1107: 1102: 1094: 1081:is the density, 1070:is temperature, 1051: 1049: 1048: 1043: 1041: 1039: 1038: 1033: 1025: 1022: 1011: 1000: 999: 900: 888: 872: 871: 814:biodegradability 810:biocompatibility 793:calcium chloride 695:biodegradability 691:biocompatibility 545: 538: 531: 449:Applied coatings 286:Characterization 19: 6863: 6862: 6858: 6857: 6856: 6854: 6853: 6852: 6843:Water chemistry 6823: 6822: 6821: 6784: 6780: 6778:Further reading 6775: 6774: 6734: 6733: 6729: 6683: 6682: 6678: 6634: 6633: 6629: 6593: 6592: 6588: 6582: 6561: 6560: 6556: 6518: 6517: 6513: 6477: 6476: 6472: 6442: 6441: 6437: 6407: 6406: 6402: 6358: 6357: 6353: 6315: 6314: 6310: 6286: 6285: 6281: 6272: 6270: 6261: 6260: 6256: 6246: 6244: 6235: 6234: 6230: 6220: 6218: 6199: 6198: 6194: 6185: 6183: 6174: 6173: 6169: 6127: 6126: 6122: 6068: 6067: 6063: 6021: 6020: 6016: 5986: 5985: 5981: 5943: 5942: 5938: 5894: 5893: 5886: 5847: 5846: 5839: 5795: 5794: 5787: 5741: 5740: 5733: 5693: 5692: 5688: 5679: 5677: 5670: 5655: 5654: 5650: 5594: 5593: 5589: 5537: 5536: 5532: 5486: 5485: 5481: 5440:(7): eaaw3963. 5427: 5426: 5422: 5392: 5391: 5387: 5335: 5334: 5330: 5293:(35): 2102994. 5284: 5283: 5279: 5242:(11): 1907061. 5233: 5232: 5228: 5186: 5185: 5181: 5142:(29): 2201452. 5129: 5128: 5124: 5064: 5063: 5059: 4999: 4998: 4994: 4987: 4966: 4965: 4961: 4907: 4906: 4899: 4861: 4860: 4856: 4825: 4824: 4820: 4774: 4773: 4769: 4723: 4722: 4718: 4664: 4663: 4659: 4615: 4614: 4610: 4580: 4579: 4564: 4557: 4534: 4533: 4529: 4469: 4468: 4464: 4404: 4403: 4399: 4357: 4356: 4352: 4308: 4307: 4303: 4256:(1): eade3240. 4243: 4242: 4238: 4188: 4187: 4178: 4144: 4143: 4139: 4109: 4108: 4101: 4091: 4089: 4081: 4076: 4075: 4071: 4041: 4040: 4033: 3989: 3988: 3984: 3977: 3962: 3961: 3957: 3911: 3910: 3889: 3859: 3858: 3854: 3824: 3823: 3819: 3785: 3784: 3780: 3734: 3733: 3729: 3685: 3684: 3680: 3638: 3637: 3630: 3600: 3599: 3592: 3550: 3549: 3545: 3515: 3514: 3510: 3460: 3459: 3455: 3425: 3424: 3420: 3376: 3375: 3371: 3329: 3328: 3324: 3264: 3263: 3259: 3221: 3220: 3213: 3177: 3176: 3169: 3117: 3116: 3112: 3068: 3067: 3063: 3056: 3039: 3038: 3034: 3013: 2988: 2987: 2983: 2941: 2940: 2936: 2892: 2891: 2887: 2853: 2852: 2848: 2806: 2805: 2801: 2759: 2758: 2754: 2712: 2711: 2707: 2647: 2646: 2639: 2605: 2604: 2600: 2556: 2555: 2551: 2507: 2506: 2502: 2494: 2492: 2490: 2465: 2464: 2460: 2430: 2429: 2425: 2381: 2380: 2373: 2366: 2345: 2344: 2337: 2330: 2308: 2307: 2303: 2296: 2274: 2273: 2269: 2261: 2259: 2257: 2232: 2231: 2227: 2185: 2184: 2169: 2119: 2118: 2114: 2091: 2051: 1980:methylcellulose 1837:polyacrylamides 1824:Breast implants 1798: 1774: 1769: 1696: 1679: 1646: 1590: 1570: 1543: 1529: 1518: 1517: 1486: 1484:Viscoelasticity 1458: 1441: 1430: 1429: 1398: 1391: 1387: 1375: 1362: 1357: 1356: 1326: 1313: 1312: 1308: 1296: 1283: 1278: 1277: 1254: 1249: 1248: 1227: 1222: 1221: 1187: 1169: 1164: 1163: 1126: 1121: 1120: 1092: 1087: 1086: 1075: 1023: 1012: 991: 980: 979: 974: 966:viscoelasticity 932:viscoelasticity 923:storage modulus 915:Young's modulus 911: 904: 901: 892: 889: 880: 873: 864: 844:smart materials 840: 806: 767:photoinitiators 735: 647:hyaluronic acid 607: 602: 549: 520: 519: 431: 423: 422: 353: 345: 344: 288: 278: 277: 195:Polyisobutylene 176:Functional type 172: 162: 161: 108: 98: 97: 41: 22:Polymer science 17: 12: 11: 5: 6861: 6859: 6851: 6850: 6845: 6840: 6835: 6825: 6824: 6820: 6819: 6781: 6779: 6776: 6773: 6772: 6743:(2): 991–998. 6727: 6676: 6647:(4): 583–594. 6627: 6586: 6580: 6554: 6527:(4): 290–296. 6511: 6490:(4): 922–926. 6470: 6435: 6400: 6371:(3): 199–213. 6351: 6308: 6279: 6254: 6228: 6192: 6167: 6120: 6061: 6014: 5995:(6): 435–444. 5979: 5936: 5907:(2): 834–873. 5884: 5837: 5785: 5731: 5686: 5668: 5648: 5618:10.1.1.318.690 5587: 5530: 5479: 5420: 5385: 5328: 5277: 5226: 5179: 5122: 5057: 4992: 4985: 4959: 4897: 4854: 4818: 4767: 4716: 4657: 4608: 4589:(3): 321–339. 4562: 4555: 4527: 4462: 4397: 4370:(3): 312–317. 4350: 4301: 4236: 4176: 4157:(2): 101–114. 4137: 4099: 4069: 4031: 3982: 3975: 3955: 3887: 3852: 3817: 3778: 3727: 3678: 3628: 3590: 3543: 3508: 3473:(5): 611–614. 3453: 3418: 3389:(3): 416–426. 3369: 3342:(8): 623–633. 3322: 3257: 3211: 3167: 3130:(7): 596–600. 3110: 3081:(6): 431–439. 3061: 3054: 3032: 3001:(4): 297–304. 2981: 2934: 2885: 2846: 2799: 2752: 2705: 2637: 2598: 2549: 2500: 2488: 2458: 2439:(7): 213–214. 2423: 2394:(2): 105–121. 2371: 2365:978-0471238966 2364: 2335: 2328: 2301: 2294: 2267: 2255: 2225: 2167: 2111: 2110: 2090: 2087: 2050: 2047: 2046: 2045: 2042: 2036: 2033: 2028: 2025: 2018: 1998: 1991: 1969: 1966: 1963:holotomography 1959: 1952:3D bioprinting 1948: 1942: 1939: 1932: 1925: 1920: 1915: 1911: 1906: 1880: 1865: 1851: 1844: 1829:Contact lenses 1826: 1821: 1818: 1797: 1794: 1773: 1770: 1768: 1765: 1740:freeze-casting 1732:sodium sulfate 1717:freeze-casting 1695: 1692: 1688:microparticles 1678: 1675: 1645: 1642: 1630:hydrogen bonds 1589: 1586: 1573:Poroelasticity 1569: 1568:Poroelasticity 1566: 1562: 1561: 1549: 1546: 1542: 1539: 1535: 1532: 1528: 1525: 1485: 1482: 1461: 1456: 1444: 1440: 1437: 1414: 1408: 1405: 1401: 1397: 1394: 1390: 1378: 1374: 1369: 1365: 1342: 1336: 1333: 1329: 1325: 1320: 1316: 1311: 1299: 1295: 1290: 1286: 1261: 1257: 1234: 1230: 1205: 1201: 1197: 1194: 1190: 1186: 1183: 1172: 1140: 1134: 1131: 1106: 1100: 1097: 1073: 1037: 1031: 1028: 1021: 1018: 1015: 1009: 1006: 1003: 998: 994: 990: 987: 973: 970: 936:poroelasticity 910: 907: 906: 905: 902: 895: 893: 890: 883: 881: 874: 862: 839: 836: 805: 802: 734: 731: 632:hydrogen bonds 606: 605:Classification 603: 601: 598: 551: 550: 548: 547: 540: 533: 525: 522: 521: 518: 517: 512: 510:Plastic bottle 507: 502: 497: 496: 495: 493:Food Container 490: 480: 479: 478: 468: 463: 458: 453: 452: 451: 446: 436: 432: 429: 428: 425: 424: 421: 420: 415: 410: 405: 400: 395: 390: 385: 380: 375: 370: 365: 360: 354: 351: 350: 347: 346: 343: 342: 341: 340: 335: 325: 320: 315: 310: 305: 300: 295: 289: 284: 283: 280: 279: 276: 275: 274: 273: 272: 271: 256: 251: 246: 242: 241: 240: 239: 234: 229: 224: 217:Vinyl polymers 214: 209: 204: 199: 198: 197: 192: 187: 177: 173: 170:Classification 168: 167: 164: 163: 160: 159: 154: 149: 143: 142: 141: 140: 135: 130: 120: 115: 109: 104: 103: 100: 99: 96: 95: 94: 93: 88: 83: 78: 73: 66:Phase behavior 63: 58: 53: 48: 42: 39: 38: 35: 34: 24: 23: 15: 13: 10: 9: 6: 4: 3: 2: 6860: 6849: 6846: 6844: 6841: 6839: 6836: 6834: 6831: 6830: 6828: 6816: 6812: 6808: 6804: 6800: 6796: 6792: 6788: 6783: 6782: 6777: 6768: 6764: 6759: 6754: 6750: 6746: 6742: 6738: 6731: 6728: 6723: 6719: 6714: 6709: 6704: 6699: 6695: 6691: 6687: 6680: 6677: 6672: 6668: 6663: 6658: 6654: 6650: 6646: 6642: 6638: 6631: 6628: 6623: 6619: 6614: 6609: 6605: 6601: 6597: 6590: 6587: 6583: 6577: 6573: 6569: 6565: 6558: 6555: 6550: 6546: 6542: 6538: 6534: 6530: 6526: 6522: 6515: 6512: 6507: 6503: 6498: 6493: 6489: 6485: 6481: 6474: 6471: 6466: 6462: 6458: 6454: 6450: 6446: 6439: 6436: 6431: 6427: 6423: 6419: 6415: 6411: 6404: 6401: 6396: 6392: 6387: 6382: 6378: 6374: 6370: 6366: 6362: 6355: 6352: 6347: 6343: 6339: 6335: 6331: 6327: 6323: 6319: 6312: 6309: 6303: 6298: 6294: 6290: 6283: 6280: 6269: 6265: 6258: 6255: 6242: 6238: 6232: 6229: 6216: 6211: 6207: 6203: 6196: 6193: 6182: 6178: 6171: 6168: 6163: 6159: 6155: 6151: 6147: 6143: 6139: 6135: 6131: 6124: 6121: 6116: 6112: 6107: 6102: 6098: 6094: 6089: 6084: 6080: 6076: 6072: 6065: 6062: 6057: 6053: 6049: 6045: 6041: 6037: 6033: 6029: 6025: 6018: 6015: 6010: 6006: 6002: 5998: 5994: 5990: 5983: 5980: 5975: 5971: 5967: 5963: 5959: 5955: 5951: 5947: 5940: 5937: 5932: 5928: 5923: 5918: 5914: 5910: 5906: 5902: 5898: 5891: 5889: 5885: 5880: 5876: 5872: 5868: 5864: 5860: 5856: 5852: 5844: 5842: 5838: 5833: 5829: 5824: 5819: 5815: 5811: 5807: 5803: 5802:Bone Research 5799: 5792: 5790: 5786: 5781: 5777: 5772: 5767: 5762: 5757: 5753: 5749: 5745: 5738: 5736: 5732: 5727: 5723: 5718: 5713: 5709: 5705: 5701: 5697: 5690: 5687: 5676:on 2017-10-29 5675: 5671: 5665: 5661: 5660: 5652: 5649: 5644: 5640: 5636: 5632: 5628: 5624: 5619: 5614: 5610: 5606: 5602: 5598: 5591: 5588: 5583: 5579: 5574: 5569: 5565: 5561: 5557: 5553: 5549: 5545: 5541: 5534: 5531: 5526: 5522: 5517: 5512: 5507: 5502: 5498: 5494: 5490: 5483: 5480: 5475: 5471: 5466: 5461: 5456: 5451: 5447: 5443: 5439: 5435: 5431: 5424: 5421: 5416: 5412: 5408: 5404: 5400: 5396: 5389: 5386: 5381: 5377: 5372: 5367: 5363: 5359: 5355: 5351: 5347: 5343: 5339: 5332: 5329: 5324: 5320: 5316: 5312: 5308: 5304: 5300: 5296: 5292: 5288: 5281: 5278: 5273: 5269: 5265: 5261: 5257: 5253: 5249: 5245: 5241: 5237: 5230: 5227: 5222: 5218: 5214: 5210: 5206: 5202: 5198: 5194: 5190: 5183: 5180: 5175: 5171: 5167: 5163: 5158: 5153: 5149: 5145: 5141: 5137: 5133: 5126: 5123: 5118: 5114: 5109: 5104: 5100: 5096: 5092: 5088: 5084: 5080: 5076: 5072: 5068: 5061: 5058: 5053: 5049: 5044: 5039: 5035: 5031: 5027: 5023: 5019: 5015: 5011: 5007: 5003: 4996: 4993: 4988: 4986:9780471484943 4982: 4978: 4974: 4970: 4963: 4960: 4955: 4951: 4947: 4943: 4939: 4935: 4931: 4927: 4923: 4919: 4915: 4911: 4904: 4902: 4898: 4893: 4889: 4885: 4881: 4877: 4873: 4869: 4865: 4858: 4855: 4850: 4846: 4842: 4838: 4834: 4830: 4822: 4819: 4814: 4810: 4805: 4800: 4795: 4790: 4786: 4782: 4781:Nanomaterials 4778: 4771: 4768: 4763: 4759: 4755: 4751: 4747: 4743: 4739: 4735: 4731: 4727: 4720: 4717: 4712: 4708: 4703: 4698: 4693: 4688: 4684: 4680: 4676: 4672: 4668: 4661: 4658: 4653: 4649: 4644: 4639: 4635: 4631: 4628:(1): 012037. 4627: 4623: 4619: 4612: 4609: 4604: 4600: 4596: 4592: 4588: 4584: 4577: 4575: 4573: 4571: 4569: 4567: 4563: 4558: 4552: 4548: 4544: 4540: 4539: 4531: 4528: 4523: 4519: 4514: 4509: 4505: 4501: 4497: 4493: 4489: 4485: 4481: 4477: 4473: 4466: 4463: 4458: 4454: 4449: 4444: 4440: 4436: 4432: 4428: 4424: 4420: 4416: 4412: 4408: 4401: 4398: 4393: 4389: 4385: 4381: 4377: 4373: 4369: 4365: 4361: 4354: 4351: 4346: 4342: 4338: 4334: 4329: 4324: 4320: 4316: 4312: 4305: 4302: 4297: 4293: 4288: 4283: 4279: 4275: 4271: 4267: 4263: 4259: 4255: 4251: 4247: 4240: 4237: 4232: 4228: 4224: 4220: 4216: 4212: 4208: 4204: 4200: 4196: 4192: 4185: 4183: 4181: 4177: 4172: 4168: 4164: 4160: 4156: 4152: 4148: 4141: 4138: 4133: 4129: 4125: 4121: 4117: 4113: 4106: 4104: 4100: 4087: 4080: 4073: 4070: 4065: 4061: 4057: 4053: 4049: 4045: 4038: 4036: 4032: 4027: 4023: 4018: 4013: 4009: 4005: 4001: 3997: 3993: 3986: 3983: 3978: 3972: 3968: 3967: 3959: 3956: 3951: 3947: 3943: 3939: 3935: 3931: 3927: 3923: 3919: 3915: 3908: 3906: 3904: 3902: 3900: 3898: 3896: 3894: 3892: 3888: 3883: 3879: 3875: 3871: 3867: 3863: 3862:Lab on a Chip 3856: 3853: 3848: 3844: 3840: 3836: 3832: 3828: 3821: 3818: 3813: 3809: 3805: 3801: 3797: 3793: 3789: 3782: 3779: 3774: 3770: 3766: 3765:11368/2841344 3762: 3758: 3754: 3750: 3746: 3742: 3738: 3731: 3728: 3723: 3719: 3714: 3709: 3705: 3701: 3697: 3693: 3689: 3682: 3679: 3674: 3670: 3666: 3662: 3658: 3654: 3650: 3646: 3642: 3635: 3633: 3629: 3624: 3620: 3616: 3612: 3608: 3604: 3597: 3595: 3591: 3586: 3582: 3578: 3574: 3570: 3566: 3562: 3558: 3554: 3547: 3544: 3539: 3535: 3531: 3527: 3523: 3519: 3512: 3509: 3504: 3500: 3496: 3492: 3488: 3484: 3480: 3476: 3472: 3468: 3464: 3457: 3454: 3449: 3445: 3441: 3437: 3433: 3429: 3422: 3419: 3414: 3410: 3405: 3400: 3396: 3392: 3388: 3384: 3380: 3373: 3370: 3365: 3361: 3357: 3353: 3349: 3345: 3341: 3337: 3333: 3326: 3323: 3318: 3314: 3310: 3306: 3301: 3296: 3292: 3288: 3284: 3280: 3276: 3272: 3268: 3261: 3258: 3252: 3247: 3243: 3239: 3235: 3231: 3230: 3225: 3218: 3216: 3212: 3207: 3203: 3198: 3193: 3189: 3185: 3184:BioTechniques 3181: 3174: 3172: 3168: 3163: 3159: 3154: 3149: 3145: 3141: 3137: 3133: 3129: 3125: 3121: 3114: 3111: 3106: 3102: 3097: 3092: 3088: 3084: 3080: 3076: 3072: 3065: 3062: 3057: 3051: 3047: 3043: 3036: 3033: 3028: 3024: 3018: 3009: 3004: 3000: 2996: 2992: 2985: 2982: 2977: 2973: 2969: 2965: 2961: 2957: 2953: 2949: 2945: 2938: 2935: 2930: 2926: 2921: 2916: 2912: 2908: 2904: 2900: 2896: 2889: 2886: 2881: 2877: 2873: 2869: 2865: 2861: 2857: 2850: 2847: 2842: 2838: 2834: 2830: 2826: 2822: 2818: 2814: 2810: 2803: 2800: 2795: 2791: 2787: 2783: 2779: 2775: 2771: 2767: 2763: 2756: 2753: 2748: 2744: 2740: 2736: 2732: 2728: 2724: 2720: 2716: 2709: 2706: 2701: 2697: 2692: 2687: 2683: 2679: 2675: 2671: 2667: 2663: 2659: 2655: 2651: 2644: 2642: 2638: 2633: 2629: 2625: 2621: 2617: 2613: 2609: 2602: 2599: 2594: 2590: 2585: 2580: 2576: 2572: 2568: 2564: 2560: 2553: 2550: 2545: 2541: 2537: 2533: 2528: 2523: 2519: 2515: 2511: 2504: 2501: 2491: 2485: 2481: 2477: 2473: 2469: 2462: 2459: 2454: 2450: 2446: 2442: 2438: 2434: 2427: 2424: 2419: 2415: 2410: 2405: 2401: 2397: 2393: 2389: 2385: 2378: 2376: 2372: 2367: 2361: 2357: 2353: 2349: 2342: 2340: 2336: 2331: 2325: 2321: 2317: 2313: 2312: 2305: 2302: 2297: 2295:9780081021941 2291: 2287: 2283: 2279: 2278: 2271: 2268: 2258: 2252: 2248: 2244: 2240: 2236: 2229: 2226: 2221: 2217: 2213: 2209: 2205: 2201: 2197: 2193: 2189: 2182: 2180: 2178: 2176: 2174: 2172: 2168: 2163: 2159: 2155: 2151: 2147: 2143: 2139: 2135: 2131: 2127: 2123: 2116: 2113: 2109: 2108: 2106: 2102: 2097: 2088: 2086: 2084: 2083:iontophoresis 2080: 2074: 2072: 2068: 2064: 2063:brachytherapy 2060: 2056: 2048: 2043: 2040: 2037: 2034: 2032: 2029: 2026: 2023: 2019: 2017:interactions. 2015: 2011: 2007: 2003: 1999: 1996: 1995:drug delivery 1992: 1989: 1985: 1981: 1977: 1973: 1970: 1967: 1964: 1960: 1957: 1953: 1949: 1946: 1943: 1940: 1937: 1933: 1930: 1926: 1924: 1921: 1919: 1916: 1912: 1910: 1907: 1904: 1900: 1896: 1892: 1888: 1884: 1881: 1878: 1874: 1870: 1866: 1864: 1860: 1856: 1852: 1849: 1845: 1842: 1838: 1834: 1830: 1827: 1825: 1822: 1819: 1816: 1815: 1810: 1802: 1795: 1793: 1791: 1787: 1778: 1771: 1766: 1764: 1762: 1758: 1754: 1750: 1746: 1741: 1737: 1733: 1729: 1725: 1720: 1718: 1714: 1713:self-assembly 1710: 1706: 1702: 1693: 1691: 1689: 1685: 1684:nanoparticles 1676: 1674: 1672: 1668: 1664: 1658: 1656: 1652: 1643: 1641: 1639: 1635: 1631: 1627: 1626:drug delivery 1623: 1618: 1616: 1611: 1602: 1598: 1595: 1587: 1585: 1581: 1579: 1574: 1567: 1565: 1547: 1544: 1540: 1537: 1533: 1530: 1526: 1523: 1516: 1515: 1514: 1511: 1506: 1504: 1500: 1496: 1490: 1483: 1481: 1459: 1454: 1442: 1438: 1435: 1426: 1412: 1406: 1403: 1399: 1395: 1392: 1388: 1376: 1372: 1367: 1363: 1354: 1340: 1334: 1331: 1327: 1323: 1318: 1314: 1309: 1297: 1293: 1288: 1284: 1275: 1259: 1255: 1232: 1228: 1218: 1203: 1199: 1195: 1192: 1188: 1184: 1181: 1170: 1161: 1158: 1156: 1138: 1129: 1104: 1095: 1084: 1080: 1076: 1069: 1065: 1061: 1060:shear modulus 1057: 1052: 1035: 1026: 1019: 1016: 1013: 1007: 1004: 1001: 996: 992: 988: 985: 977: 971: 969: 967: 963: 958: 956: 952: 949: 945: 941: 937: 933: 929: 924: 920: 919:shear modulus 916: 908: 899: 894: 887: 882: 878: 861: 859: 857: 853: 849: 845: 837: 835: 832: 828: 824: 820: 815: 811: 803: 801: 798: 794: 790: 785: 780: 777: 772: 768: 763: 761: 757: 752: 748: 739: 732: 730: 728: 724: 720: 716: 712: 708: 704: 700: 696: 692: 688: 684: 680: 676: 672: 668: 664: 660: 656: 652: 648: 644: 639: 637: 633: 629: 625: 620: 616: 612: 604: 599: 593: 589: 586: 582: 578: 574: 565: 557: 546: 541: 539: 534: 532: 527: 526: 524: 523: 516: 513: 511: 508: 506: 503: 501: 498: 494: 491: 489: 486: 485: 484: 481: 477: 474: 473: 472: 469: 467: 464: 462: 459: 457: 454: 450: 447: 445: 442: 441: 440: 437: 434: 433: 427: 426: 419: 416: 414: 411: 409: 406: 404: 401: 399: 396: 394: 391: 389: 386: 384: 381: 379: 376: 374: 371: 369: 366: 364: 361: 359: 356: 355: 349: 348: 339: 336: 334: 331: 330: 329: 326: 324: 321: 319: 316: 314: 311: 309: 306: 304: 301: 299: 296: 294: 291: 290: 287: 282: 281: 270: 267: 266: 265: 262: 261: 260: 257: 255: 252: 250: 247: 244: 243: 238: 235: 233: 230: 228: 225: 223: 220: 219: 218: 215: 213: 212:Polycarbonate 210: 208: 205: 203: 200: 196: 193: 191: 190:Polypropylene 188: 186: 183: 182: 181: 178: 175: 174: 171: 166: 165: 158: 155: 153: 150: 148: 145: 144: 139: 136: 134: 131: 129: 126: 125: 124: 121: 119: 116: 114: 111: 110: 107: 102: 101: 92: 89: 87: 84: 82: 79: 77: 74: 72: 69: 68: 67: 64: 62: 59: 57: 54: 52: 49: 47: 44: 43: 37: 36: 30: 26: 25: 20: 6790: 6786: 6740: 6736: 6730: 6693: 6689: 6679: 6644: 6640: 6630: 6606:(6): 57–64. 6603: 6599: 6589: 6563: 6557: 6524: 6520: 6514: 6487: 6483: 6473: 6448: 6445:Biomaterials 6444: 6438: 6413: 6409: 6403: 6368: 6364: 6354: 6321: 6317: 6311: 6292: 6282: 6271:. Retrieved 6267: 6257: 6245:. Retrieved 6240: 6231: 6219:. Retrieved 6205: 6195: 6184:. Retrieved 6180: 6170: 6137: 6133: 6123: 6078: 6074: 6064: 6031: 6027: 6017: 5992: 5988: 5982: 5949: 5945: 5939: 5904: 5900: 5854: 5850: 5808:(1): 17014. 5805: 5801: 5751: 5747: 5707: 5703: 5694:Yetisen AK, 5689: 5678:. Retrieved 5674:the original 5658: 5651: 5600: 5596: 5590: 5547: 5543: 5533: 5496: 5492: 5482: 5437: 5433: 5423: 5398: 5394: 5388: 5345: 5341: 5331: 5290: 5286: 5280: 5239: 5235: 5229: 5196: 5192: 5182: 5139: 5135: 5125: 5074: 5070: 5060: 5009: 5005: 4995: 4968: 4962: 4913: 4909: 4867: 4863: 4857: 4832: 4829:Biomaterials 4828: 4821: 4784: 4780: 4770: 4729: 4725: 4719: 4674: 4670: 4660: 4625: 4621: 4611: 4586: 4582: 4537: 4530: 4479: 4475: 4465: 4414: 4410: 4400: 4367: 4363: 4353: 4318: 4314: 4304: 4253: 4249: 4239: 4198: 4194: 4154: 4150: 4140: 4115: 4111: 4090:. Retrieved 4085: 4077:Roylance D. 4072: 4047: 4044:Biomaterials 4043: 3999: 3995: 3985: 3965: 3958: 3920:(1): 44–59. 3917: 3913: 3865: 3861: 3855: 3830: 3826: 3820: 3795: 3791: 3781: 3740: 3736: 3730: 3695: 3691: 3681: 3648: 3644: 3606: 3602: 3563:(17): 4144. 3560: 3556: 3546: 3521: 3517: 3511: 3470: 3466: 3456: 3431: 3427: 3421: 3386: 3382: 3372: 3339: 3335: 3325: 3300:10072/417476 3274: 3270: 3260: 3233: 3227: 3190:(1): 40–53. 3187: 3183: 3127: 3123: 3113: 3078: 3074: 3064: 3045: 3035: 3017:cite journal 2998: 2994: 2984: 2951: 2947: 2937: 2902: 2898: 2888: 2863: 2859: 2849: 2816: 2812: 2802: 2769: 2765: 2755: 2725:(1): 37–51. 2722: 2718: 2708: 2660:(2): 15012. 2657: 2653: 2607: 2601: 2569:(1): 24–56. 2566: 2562: 2552: 2517: 2513: 2503: 2493:, retrieved 2471: 2461: 2436: 2432: 2426: 2391: 2387: 2347: 2310: 2304: 2276: 2270: 2260:, retrieved 2238: 2228: 2195: 2191: 2129: 2125: 2115: 2093: 2092: 2075: 2069:, chitosan, 2052: 2049:Biomaterials 1956:self-healing 1936:electrolysis 1891:cross-linked 1783: 1767:Applications 1721: 1697: 1680: 1673:, and more. 1659: 1647: 1619: 1607: 1591: 1582: 1571: 1563: 1507: 1503:Prony Series 1491: 1487: 1427: 1355: 1276: 1219: 1162: 1159: 1154: 1082: 1078: 1071: 1067: 1063: 1055: 1053: 978: 975: 959: 912: 841: 807: 781: 764: 751:oligopeptide 744: 723:polyacrylate 707:regeneration 640: 608: 572: 570: 500:Vinyl record 444:Blow molding 430:Applications 202:Polyurethane 185:Polyethylene 46:Architecture 6848:Soft matter 5696:Naydenova I 5499:(7): 3665. 5348:(1): 2761. 4787:(11): 882. 4677:(7): 1083. 4417:(1): 1344. 4118:: 118–122. 3798:(7): 1349. 3698:(1): 1480. 3651:(9): 1971. 3645:Soft Matter 3557:Soft Matter 3236:: 252–267. 2520:: 470–482. 1853:Disposable 1835:hydrogels, 1790:vasculature 1761:spider silk 1728:salting out 1709:4D printing 1615:temperature 944:compression 771:ultraviolet 733:Preparation 515:Plastic bag 461:3D printing 249:Homopolymer 237:Polystyrene 61:Degradation 6827:Categories 6758:2299/16856 6713:2299/16512 6273:2022-12-25 6186:2022-09-26 6140:: 121785. 6081:(9): 588. 5680:2019-04-17 3277:: 110974. 2954:(7): 112. 2772:: 124622. 2495:2023-01-17 2262:2023-01-16 2198:: 127708. 2089:References 1984:hyaluronan 1965:microscopy 1945:Biosensors 1893:polymers ( 1877:Wound gels 1653:(UCST) or 1610:hysteresis 928:elasticity 821:sequence, 819:amino acid 703:antifungal 699:antibiotic 687:copolymers 476:Whitewalls 398:Staudinger 368:MacDiarmid 352:Scientists 338:Viscometry 180:Polyolefin 56:Morphology 40:Properties 6815:0021-9584 6622:1884-4057 6268:New Atlas 6247:April 23, 6181:New Atlas 6154:0378-5173 6097:2310-2861 6048:1520-6106 6009:1359-0294 5974:2046-2069 5879:199574808 5754:(1): 27. 5613:CiteSeerX 5323:236174198 5272:211036014 5221:254387206 5213:2050-7496 5174:249355500 5166:1614-6832 5099:2375-2548 5034:2375-2548 4954:232048202 4892:227258845 4762:205236639 4671:Materials 4652:1742-6588 4504:2375-2548 4439:2041-1723 4384:2161-1653 4337:1022-1336 4278:2375-2548 4223:0935-9648 4171:2643-6728 4132:103246330 3950:136844625 3942:0950-6608 3812:2041-6520 3737:Nanoscale 3673:1744-683X 3585:1744-683X 3503:136880479 3495:0935-9648 3413:2159-6867 3356:1616-5187 3317:245576810 3309:0014-3057 2976:136085690 2968:1022-9760 2880:2052-1537 2833:0141-8130 2794:213116098 2786:0927-7757 2739:0169-409X 2682:2058-8437 2632:135464452 2544:229694027 2453:197928622 2220:264944892 2212:0141-8130 2154:0028-0836 2105:CC BY 3.0 2071:cellulose 1841:polymacon 1677:Additives 1594:toughness 1436:λ 1404:− 1400:λ 1396:− 1393:λ 1364:σ 1332:− 1328:λ 1324:− 1315:λ 1285:σ 1256:σ 1229:σ 1193:− 1133:¯ 1099:¯ 1030:¯ 1014:ρ 951:rheometry 877:micropump 852:actuators 827:chirality 760:α-helical 711:stability 600:Chemistry 585:insoluble 581:permeable 439:Extrusion 418:Braconnot 408:Baekeland 388:de Gennes 373:Shirakawa 333:Rheometry 264:Hydrogels 254:Copolymer 245:Structure 207:Polyester 106:Synthesis 51:Tacticity 6767:26440734 6722:26221632 6671:19216632 6549:31364133 6541:10340211 6506:10320229 6465:22361096 6430:23376126 6395:22192467 6346:24843309 6338:21619469 6241:Phys.org 6162:35500690 6115:36135299 6056:16375370 5931:35930422 5871:31408340 5832:28584674 5780:30275970 5726:25211200 5635:16293750 5582:32300656 5525:35409025 5474:31355332 5415:26374941 5401:: 8–17. 5380:35589809 5315:34292641 5264:32022974 5117:32300656 5052:38117897 5043:10732533 4946:33627812 4884:33263991 4849:21723599 4813:30380606 4754:24336207 4711:30986948 4603:11744175 4522:37390216 4513:10313164 4457:38350981 4448:10864390 4392:35632906 4345:36809684 4296:36598986 4231:36126085 4026:23946054 3882:21761057 3847:20131781 3773:22955637 3722:23403581 3623:19921840 3603:Langmuir 3538:19705843 3448:23958781 3364:16881042 3206:30730212 3162:19543314 3105:26240838 2929:23609001 2841:10517518 2747:11755705 2700:29214058 2624:31028759 2593:32567846 2536:33359581 2418:25750745 2280:. 2018. 2107:license. 2067:collagen 2010:proteins 2006:peptides 2002:polymers 1899:polyAMPS 1861:, or in 1833:silicone 1796:Research 1786:siloxane 1747:(PDMS), 1671:antigens 1669:, ions, 1667:pressure 1548:″ 1534:′ 1465:original 831:aromatic 789:Alginate 715:strength 659:alginate 651:chitosan 628:gelatine 624:alginate 619:thiomers 573:hydrogel 488:Bakelite 403:Goodyear 328:Rheology 6795:Bibcode 6662:2819712 6386:3408056 6221:15 July 6106:9498840 5954:Bibcode 5946:RSC Adv 5922:9881015 5823:5448314 5771:6158836 5643:9036803 5605:Bibcode 5597:Science 5573:7148083 5552:Bibcode 5516:8998863 5465:6656537 5442:Bibcode 5371:9120194 5350:Bibcode 5295:Bibcode 5244:Bibcode 5144:Bibcode 5108:7148083 5079:Bibcode 5014:Bibcode 4938:1774154 4918:Bibcode 4804:6265757 4734:Bibcode 4702:6479463 4679:Bibcode 4630:Bibcode 4484:Bibcode 4419:Bibcode 4287:9812377 4258:Bibcode 4203:Bibcode 4064:8866026 4017:4304325 3922:Bibcode 3745:Bibcode 3700:Bibcode 3653:Bibcode 3565:Bibcode 3475:Bibcode 3391:Bibcode 3279:Bibcode 3238:Bibcode 3153:2869032 3132:Bibcode 3096:4517957 2920:3762890 2691:5714327 2662:Bibcode 2584:7805012 2409:4348459 2162:4211987 2134:Bibcode 2014:osmotic 1976:agarose 1914:change. 1855:diapers 1448:current 1382:swollen 1303:swollen 1176:swollen 1058:is the 940:tension 856:sensors 797:Gelatin 747:peptide 663:gelatin 655:heparin 413:Hayward 393:Ziegler 383:Edwards 6813:  6765:  6720:  6669:  6659:  6620:  6578:  6547:  6539:  6504:  6463:  6428:  6393:  6383:  6344:  6336:  6160:  6152:  6113:  6103:  6095:  6054:  6046:  6007:  5972:  5929:  5919:  5877:  5869:  5830:  5820:  5778:  5768:  5724:  5666:  5641:  5633:  5615:  5580:  5570:  5523:  5513:  5472:  5462:  5413:  5378:  5368:  5321:  5313:  5270:  5262:  5219:  5211:  5172:  5164:  5115:  5105:  5097:  5050:  5040:  5032:  4983:  4952:  4944:  4936:  4910:Nature 4890:  4882:  4847:  4811:  4801:  4760:  4752:  4726:Nature 4709:  4699:  4650:  4601:  4553:  4520:  4510:  4502:  4455:  4445:  4437:  4390:  4382:  4343:  4335:  4294:  4284:  4276:  4229:  4221:  4201:(50). 4169:  4130:  4092:11 May 4062:  4024:  4014:  3973:  3948:  3940:  3880:  3845:  3810:  3771:  3720:  3671:  3621:  3583:  3536:  3501:  3493:  3446:  3411:  3362:  3354:  3315:  3307:  3204:  3160:  3150:  3103:  3093:  3052:  2974:  2966:  2927:  2917:  2878:  2839:  2831:  2792:  2784:  2745:  2737:  2698:  2688:  2680:  2630:  2622:  2591:  2581:  2542:  2534:  2486:  2451:  2416:  2406:  2362:  2326:  2292:  2253:  2218:  2210:  2160:  2152:  2126:Nature 2008:, and 1918:Fibers 1873:wounds 1757:tendon 1751:, and 1749:Kevlar 1715:, and 1636:, and 1428:where 1054:where 921:, and 725:, and 667:fibrin 577:porous 505:Kevlar 363:Heeger 6545:S2CID 6342:S2CID 5875:S2CID 5639:S2CID 5319:S2CID 5268:S2CID 5217:S2CID 5170:S2CID 4950:S2CID 4888:S2CID 4758:S2CID 4128:S2CID 4082:(PDF) 3946:S2CID 3499:S2CID 3313:S2CID 2972:S2CID 2790:S2CID 2628:S2CID 2540:S2CID 2449:S2CID 2216:S2CID 2158:S2CID 2039:Talin 1859:urine 1663:light 948:shear 838:Other 471:Tires 378:Natta 358:Flory 6838:Gels 6811:ISSN 6763:PMID 6718:PMID 6667:PMID 6618:ISSN 6576:ISBN 6537:PMID 6502:PMID 6461:PMID 6426:PMID 6391:PMID 6334:PMID 6249:2020 6223:2022 6158:PMID 6150:ISSN 6111:PMID 6093:ISSN 6075:Gels 6052:PMID 6044:ISSN 6005:ISSN 5970:ISSN 5927:PMID 5867:PMID 5828:PMID 5776:PMID 5722:PMID 5664:ISBN 5631:PMID 5578:PMID 5521:PMID 5470:PMID 5411:PMID 5376:PMID 5311:PMID 5260:PMID 5209:ISSN 5162:ISSN 5113:PMID 5095:ISSN 5048:PMID 5030:ISSN 4981:ISBN 4942:PMID 4934:OSTI 4880:PMID 4845:PMID 4809:PMID 4750:PMID 4707:PMID 4648:ISSN 4599:PMID 4551:ISBN 4518:PMID 4500:ISSN 4453:PMID 4435:ISSN 4388:PMID 4380:ISSN 4341:PMID 4333:ISSN 4292:PMID 4274:ISSN 4227:PMID 4219:ISSN 4167:ISSN 4094:2021 4060:PMID 4022:PMID 3971:ISBN 3938:ISSN 3878:PMID 3843:PMID 3808:ISSN 3769:PMID 3718:PMID 3669:ISSN 3619:PMID 3581:ISSN 3534:PMID 3491:ISSN 3444:PMID 3409:ISSN 3360:PMID 3352:ISSN 3305:ISSN 3202:PMID 3158:PMID 3101:PMID 3050:ISBN 3027:link 3023:link 2964:ISSN 2925:PMID 2876:ISSN 2837:PMID 2829:ISSN 2782:ISSN 2743:PMID 2735:ISSN 2696:PMID 2678:ISSN 2620:PMID 2589:PMID 2532:PMID 2484:ISBN 2414:PMID 2360:ISBN 2324:ISBN 2290:ISBN 2251:ISBN 2208:ISSN 2150:ISSN 2101:text 1929:soil 1923:Glue 1901:and 1885:and 1869:burn 1759:and 1686:and 1624:and 1608:The 1592:The 964:and 930:and 812:and 713:and 685:and 665:and 298:FTIR 259:Gels 232:PVAc 133:RAFT 128:ATRP 81:LCST 76:UCST 6803:doi 6753:hdl 6745:doi 6741:495 6708:hdl 6698:doi 6657:PMC 6649:doi 6608:doi 6568:doi 6529:doi 6492:doi 6453:doi 6418:doi 6381:PMC 6373:doi 6326:doi 6297:doi 6210:doi 6142:doi 6138:621 6101:PMC 6083:doi 6036:doi 6032:109 5997:doi 5962:doi 5917:PMC 5909:doi 5905:123 5859:doi 5818:PMC 5810:doi 5766:PMC 5756:doi 5712:doi 5708:114 5623:doi 5601:310 5568:PMC 5560:doi 5511:PMC 5501:doi 5460:PMC 5450:doi 5403:doi 5399:219 5366:PMC 5358:doi 5303:doi 5252:doi 5201:doi 5152:doi 5103:PMC 5087:doi 5038:PMC 5022:doi 4973:doi 4926:doi 4914:590 4872:doi 4837:doi 4799:PMC 4789:doi 4742:doi 4730:505 4697:PMC 4687:doi 4638:doi 4626:790 4591:doi 4543:doi 4508:PMC 4492:doi 4443:PMC 4427:doi 4372:doi 4323:doi 4282:PMC 4266:doi 4211:doi 4159:doi 4120:doi 4052:doi 4012:PMC 4004:doi 4000:102 3930:doi 3870:doi 3835:doi 3831:132 3800:doi 3761:hdl 3753:doi 3708:doi 3661:doi 3611:doi 3573:doi 3526:doi 3483:doi 3436:doi 3399:doi 3344:doi 3295:hdl 3287:doi 3275:164 3246:doi 3192:doi 3148:PMC 3140:doi 3091:PMC 3083:doi 3003:doi 2956:doi 2915:PMC 2907:doi 2868:doi 2821:doi 2774:doi 2770:593 2727:doi 2686:PMC 2670:doi 2612:doi 2579:PMC 2571:doi 2522:doi 2518:330 2476:doi 2441:doi 2404:PMC 2396:doi 2352:doi 2316:doi 2282:doi 2243:doi 2200:doi 2196:254 2142:doi 2130:185 2061:or 1887:ECG 1883:EEG 1738:or 953:or 854:or 323:DMA 318:TGA 313:NMR 308:DSC 293:GPC 227:PVA 222:PVC 6829:: 6809:. 6801:. 6791:94 6789:. 6761:. 6751:. 6739:. 6716:. 6706:. 6694:51 6692:. 6688:. 6665:. 6655:. 6645:15 6643:. 6639:. 6616:. 6602:. 6598:. 6574:, 6543:. 6535:. 6525:13 6523:. 6500:. 6488:67 6486:. 6482:. 6459:. 6449:33 6447:. 6424:. 6412:. 6389:. 6379:. 6369:72 6367:. 6363:. 6340:. 6332:. 6320:. 6295:. 6291:. 6266:. 6239:. 6208:. 6204:. 6179:. 6156:. 6148:. 6136:. 6132:. 6109:. 6099:. 6091:. 6077:. 6073:. 6050:. 6042:. 6030:. 6026:. 6003:. 5993:15 5991:. 5968:. 5960:. 5948:. 5925:. 5915:. 5903:. 5899:. 5887:^ 5873:. 5865:. 5855:20 5853:. 5840:^ 5826:. 5816:. 5804:. 5800:. 5788:^ 5774:. 5764:. 5752:22 5750:. 5746:. 5734:^ 5720:. 5706:. 5702:. 5637:. 5629:. 5621:. 5611:. 5599:. 5576:. 5566:. 5558:. 5546:. 5542:. 5519:. 5509:. 5497:23 5495:. 5491:. 5468:. 5458:. 5448:. 5436:. 5432:. 5409:. 5397:. 5374:. 5364:. 5356:. 5346:13 5344:. 5340:. 5317:. 5309:. 5301:. 5291:33 5289:. 5266:. 5258:. 5250:. 5240:32 5238:. 5215:. 5207:. 5197:11 5195:. 5191:. 5168:. 5160:. 5150:. 5140:12 5138:. 5134:. 5111:. 5101:. 5093:. 5085:. 5073:. 5069:. 5046:. 5036:. 5028:. 5020:. 5008:. 5004:. 4979:. 4948:. 4940:. 4932:. 4924:. 4912:. 4900:^ 4886:. 4878:. 4868:13 4866:. 4843:. 4833:32 4831:. 4807:. 4797:. 4783:. 4779:. 4756:. 4748:. 4740:. 4728:. 4705:. 4695:. 4685:. 4675:12 4673:. 4669:. 4646:. 4636:. 4624:. 4620:. 4597:. 4587:53 4585:. 4565:^ 4549:. 4516:. 4506:. 4498:. 4490:. 4478:. 4474:. 4451:. 4441:. 4433:. 4425:. 4415:15 4413:. 4409:. 4386:. 4378:. 4366:. 4362:. 4339:. 4331:. 4319:44 4317:. 4313:. 4290:. 4280:. 4272:. 4264:. 4252:. 4248:. 4225:. 4217:. 4209:. 4199:34 4197:. 4193:. 4179:^ 4165:. 4153:. 4149:. 4126:. 4116:92 4114:. 4102:^ 4084:. 4058:. 4048:17 4046:. 4034:^ 4020:. 4010:. 3998:. 3994:. 3944:. 3936:. 3928:. 3918:59 3916:. 3890:^ 3876:. 3866:11 3864:. 3841:. 3829:. 3806:. 3794:. 3790:. 3767:. 3759:. 3751:. 3739:. 3716:. 3706:. 3694:. 3690:. 3667:. 3659:. 3647:. 3643:. 3631:^ 3617:. 3607:26 3605:. 3593:^ 3579:. 3571:. 3559:. 3555:. 3532:. 3522:10 3520:. 3497:. 3489:. 3481:. 3471:18 3469:. 3465:. 3442:. 3432:10 3430:. 3407:. 3397:. 3385:. 3381:. 3358:. 3350:. 3338:. 3334:. 3311:. 3303:. 3293:. 3285:. 3273:. 3269:. 3244:. 3234:65 3232:. 3226:. 3214:^ 3200:. 3188:66 3186:. 3182:. 3170:^ 3156:. 3146:. 3138:. 3126:. 3122:. 3099:. 3089:. 3077:. 3073:. 3044:. 3019:}} 3015:{{ 2997:. 2993:. 2970:. 2962:. 2952:24 2950:. 2946:. 2923:. 2913:. 2903:42 2901:. 2897:. 2874:. 2862:. 2858:. 2835:. 2827:. 2817:26 2815:. 2811:. 2788:. 2780:. 2768:. 2764:. 2741:. 2733:. 2723:54 2721:. 2717:. 2694:. 2684:. 2676:. 2668:. 2656:. 2652:. 2640:^ 2626:. 2618:. 2587:. 2577:. 2567:22 2565:. 2561:. 2538:. 2530:. 2516:. 2512:. 2482:, 2470:, 2447:. 2435:. 2412:. 2402:. 2390:. 2386:. 2374:^ 2358:. 2338:^ 2322:. 2288:. 2249:, 2237:, 2214:. 2206:. 2194:. 2190:. 2170:^ 2156:. 2148:. 2140:. 2128:. 2124:. 2085:. 1986:, 1982:, 1978:, 1897:, 1875:. 1839:, 1792:. 1763:. 1711:, 1705:3D 1703:, 1665:, 1632:, 1617:. 1062:, 968:: 957:. 942:, 917:, 875:A 858:. 825:, 823:pH 729:. 721:, 697:, 693:, 681:, 677:, 673:, 661:, 657:, 653:, 649:, 634:, 579:, 571:A 6817:. 6805:: 6797:: 6769:. 6755:: 6747:: 6724:. 6710:: 6700:: 6673:. 6651:: 6624:. 6610:: 6604:3 6570:: 6551:. 6531:: 6508:. 6494:: 6467:. 6455:: 6432:. 6420:: 6414:9 6397:. 6375:: 6348:. 6328:: 6322:8 6305:. 6299:: 6276:. 6251:. 6225:. 6212:: 6189:. 6164:. 6144:: 6117:. 6085:: 6079:8 6058:. 6038:: 6011:. 5999:: 5976:. 5964:: 5956:: 5950:4 5933:. 5911:: 5881:. 5861:: 5834:. 5812:: 5806:5 5782:. 5758:: 5728:. 5714:: 5683:. 5645:. 5625:: 5607:: 5584:. 5562:: 5554:: 5548:6 5527:. 5503:: 5476:. 5452:: 5444:: 5438:5 5417:. 5405:: 5382:. 5360:: 5352:: 5325:. 5305:: 5297:: 5274:. 5254:: 5246:: 5223:. 5203:: 5176:. 5154:: 5146:: 5119:. 5089:: 5081:: 5075:6 5054:. 5024:: 5016:: 5010:9 4989:. 4975:: 4956:. 4928:: 4920:: 4894:. 4874:: 4851:. 4839:: 4815:. 4791:: 4785:8 4764:. 4744:: 4736:: 4713:. 4689:: 4681:: 4654:. 4640:: 4632:: 4605:. 4593:: 4559:. 4545:: 4524:. 4494:: 4486:: 4480:9 4459:. 4429:: 4421:: 4394:. 4374:: 4368:7 4347:. 4325:: 4298:. 4268:: 4260:: 4254:9 4213:: 4205:: 4173:. 4161:: 4155:4 4134:. 4122:: 4096:. 4066:. 4054:: 4028:. 4006:: 3979:. 3952:. 3932:: 3924:: 3884:. 3872:: 3849:. 3837:: 3814:. 3802:: 3796:2 3775:. 3763:: 3755:: 3747:: 3741:4 3724:. 3710:: 3702:: 3696:4 3675:. 3663:: 3655:: 3649:6 3625:. 3613:: 3587:. 3575:: 3567:: 3561:6 3540:. 3528:: 3505:. 3485:: 3477:: 3450:. 3438:: 3415:. 3401:: 3393:: 3387:7 3366:. 3346:: 3340:6 3319:. 3297:: 3289:: 3281:: 3254:. 3248:: 3240:: 3208:. 3194:: 3164:. 3142:: 3134:: 3128:8 3107:. 3085:: 3079:1 3058:. 3029:) 3011:. 3005:: 2999:4 2978:. 2958:: 2931:. 2909:: 2882:. 2870:: 2864:2 2843:. 2823:: 2796:. 2776:: 2749:. 2729:: 2702:. 2672:: 2664:: 2658:1 2634:. 2614:: 2595:. 2573:: 2546:. 2524:: 2478:: 2455:. 2443:: 2437:1 2420:. 2398:: 2392:6 2368:. 2354:: 2332:. 2318:: 2298:. 2284:: 2245:: 2222:. 2202:: 2164:. 2144:: 2136:: 2024:. 1938:. 1905:) 1850:. 1843:) 1831:( 1707:/ 1545:G 1541:i 1538:+ 1531:G 1527:= 1524:G 1460:l 1455:/ 1443:l 1439:= 1413:) 1407:2 1389:( 1377:G 1373:= 1368:e 1341:) 1335:1 1319:2 1310:( 1298:G 1294:= 1289:t 1260:e 1233:t 1204:3 1200:/ 1196:1 1189:Q 1185:G 1182:= 1171:G 1155:Q 1139:c 1130:M 1105:c 1096:M 1083:R 1079:ρ 1074:p 1072:N 1068:T 1064:k 1056:G 1036:c 1027:M 1020:T 1017:R 1008:= 1005:T 1002:k 997:p 993:N 989:= 986:G 701:/ 622:( 544:e 537:t 530:v

Index

Polyacetylene
Architecture
Tacticity
Morphology
Degradation
Phase behavior
Mark–Houwink theory
UCST
LCST
Flory–Huggins solution theory
Coil–globule transition
Synthesis
Chain-growth polymerization
Free-radical polymerization
Controlled radical polymerization
ATRP
RAFT
Nitroxide-mediated radical polymerization
Step-growth polymerization
Condensation polymerization
Addition polymerization
Classification
Polyolefin
Polyethylene
Polypropylene
Polyisobutylene
Polyurethane
Polyester
Polycarbonate
Vinyl polymers

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑