Knowledge (XXG)

Hydrogel

Source 📝

845:
the aromatic interactions. Altering the pH can also have similar effects, an example involved the use of the naphthalene (Nap) modified dipeptides Nap-Gly-Ala, and Nap- Ala-Gly, where a drop in pH induced gelation of the former, but led to crystallisation of the latter. A controlled pH decrease method using glucono-ÎŽ-lactone (GdL), where the GdL is hydrolysed to gluconic acid in water is a recent strategy that has been developed as a way to form homogeneous and reproducible hydrogels. The hydrolysis is slow, which allows for a uniform pH change, and thus resulting in reproducible homogenous gels. In addition to this, the desired pH can be achieved by altering the amount of GdL added. The use of GdL has been used various times for the hydrogelation of Fmoc and Nap-dipeptides. In another direction, Morris et al reported the use of GdL as a 'molecular trigger' to predict and control the order of gelation. Chirality also plays an essential role in gel formation, and even changing the chirality of a single amino acid from its natural L-amino acid to its unnatural D-amino acid can significantly impact the gelation properties, with the natural forms not forming gels. Furthermore, aromatic interactions play a key role in hydrogel formation as a result of π- π stacking driving gelation, shown by many studies.
1608:
including composition, crosslink density, polymer chain structure, and hydration level. The toughness of a hydrogel is highly dependent on what polymer(s) and crosslinker(s) make up its matrix as certain polymers possess higher toughness and certain crosslinking covalent bonds are inherently stronger. Additionally, higher crosslinking density generally leads to increased toughness by restricting polymer chain mobility and enhancing resistance to deformation. The structure of the polymer chains is also a factor in that, longer chain lengths and higher molecular weight leads to a greater number of entanglements and higher toughness. A good balance (equilibrium) in the hydration of a hydrogel leads is important because too low hydration causes poor flexibility and toughness within the hydrogel, but too high of water content can cause excessive swelling, weakening the mechanical properties of the hydrogel.
897: 1668:(LCST). UCST polymers increase in their water-solubility at higher temperatures, which lead to UCST hydrogels transitioning from a gel (solid) to a solution (liquid) as the temperature is increased (similar to the melting point behavior of pure materials). This phenomenon also causes UCST hydrogels to expand (increase their swell ratio) as temperature increases while they are below their UCST. However, polymers with LCSTs display an inverse (or negative) temperature-dependence, where their water-solubility decreases at higher temperatures. LCST hydrogels transition from a liquid solution to a solid gel as the temperature is increased, and they also shrink (decrease their swell ratio) as the temperature increases while they are above their LCST. 1587:
compression. This causes a decrease in water pressure, which adds additional stress upon compression. Similar to viscoelasticity, this behavior is time dependent, thus poroelasticity is dependent on compression rate: a hydrogel shows softness upon slow compression, but fast compression makes the hydrogel stiffer. This phenomenon is due to the friction between the water and the porous matrix is proportional to the flow of water, which in turn is dependent on compression rate. Thus, a common way to measure poroelasticity is to do compression tests at varying compression rates. Pore size is an important factor in influencing poroelasticity. The
575: 1612: 909: 749: 1639:, as the hydrogel may need to withstand mechanical forces within the body, but also maintain mechanical performance and stability over time. Most typical hydrogels, both natural and synthetic, have a positive correlation between toughness and hysteresis, meaning that the higher the toughness, the longer the hydrogel takes to recover its original shape and vice versa. This is largely due to sacrificial bonds being the source of toughness within many of these hydrogels. Sacrificial bonds are non-covalent interactions such as 1651:, that can break and reform under mechanical stress. The reforming of these bonds takes time, especially when there are more of them, which leads to an increase in hysteresis. However, there is currently research focused on the development of highly entangled hydrogels, which instead rely on the long chain length of the polymers and their entanglement to limit the deformation of the hydrogel, thereby increasing the toughness without increasing hysteresis as there is no need for the reformation of the bonds. 1624:
stored as it deforms in mechanical extension or compression. When the mechanical stress is removed, the hydrogel begins to recover its original shape, but there may be a delay in the recovery process due to factors like viscoelasticity, internal friction, etc. This leads to a difference between the stress-strain curve during loading and unloading. Hysteresis within a hydrogel is influenced by several factors including composition, crosslink density, polymer chain structure, and
603: 2107: 1754:
morphologies and anisotropic mechanical properties. Directional freezing of the hydrogels helps to align and coalesce the polymer chains, creating anisotropic array honeycomb tube-like structures while salting out the hydrogel yielded out a nano-fibril network on the surface of these honeycomb tube-like structures. While maintaining a water content of over 70%, these hydrogels' toughness values are well above those of water-free polymers such as
1730:. One unique processing technique is through the formation of multi-layered hydrogels to create a spatially-varying matrix composition and by extension, mechanical properties. This can be done by polymerizing the hydrogel matrixes in a layer by layer fashion via UV polymerization. This technique can be useful in creating hydrogels that mimic articular cartilage, enabling a material with three separate zones of distinct mechanical properties. 40: 1788: 1820: 567: 1504:
mathematical model for linear viscoelastic response. In this model, viscoelasticity is modeled analogous to an electrical circuit with a Hookean spring, that represents the Young's modulus, and a Newtonian dashpot that represents the viscosity. A material that exhibit properties described in this model is a
1692:
The mechanical properties of hydrogels can be fine-tuned in many ways beginning with attention to their hydrophobic properties. Another method of modifying the strength or elasticity of hydrogels is to graft or surface coat them onto a stronger/stiffer support, or by making superporous hydrogel (SPH)
1607:
of a hydrogel refers to the ability of the hydrogel to withstand deformation or mechanical stress without fracturing or breaking apart. A hydrogel with high toughness can maintain its structural integrity and functionality under higher stress. Several factors contribute to the toughness of a hydrogel
1671:
Applications can dictate for diverse thermal responses. For example, in the biomedical field, LCST hydrogels are being investigated as drug delivery systems due to being injectable (liquid) at room temp and then solidifying into a rigid gel upon exposure to the higher temperatures of the human body.
844:
residues. The order of amino acids within the sequence is crucial for gelation, as has been shown many times. In one example, a short peptide sequence Fmoc-Phe-Gly readily formed a hydrogel, whereas Fmoc-Gly-Phe failed to do so as a result of the two adjacent aromatic moieties being moved, hindering
598:
three dimensional network of natural or synthetic polymers and a fluid, having absorbed a large amount of water or biological fluids. These properties underpin several applications, especially in the biomedical area. Many hydrogels are synthetic, but some are derived from nature. The term 'hydrogel'
1623:
of a hydrogel refers to the phenomenon where there is a delay in the deformation and recovery of a hydrogel when it is subjected to mechanical stress and relieved of that stress. This occurs because the polymer chains within a hydrogel rearrange, and the water molecules are displaced, and energy is
1594:
Poroelasticity is described by several coupled equations, thus there are few mechanical tests that relate directly to the poroelastic behavior of the material, thus more complicated tests such as indentation testing, numerical or computational models are utilized. Numerical or computational methods
936:
can vary from 10 Pa to 3 MPa, a range of about five orders of magnitude. A similar effect can be seen by altering the crosslinking concentration. This much variability of the mechanical stiffness is why hydrogels are so appealing for biomedical applications, where it is vital for implants to match
1499:
For hydrogels, their elasticity comes from the solid polymer matrix while the viscosity originates from the polymer network mobility and the water and other components that make up the aqueous phase. Viscoelastic properties of a hydrogel is highly dependent on the nature of the applied mechanical
1586:
is a characteristic of materials related to the migration of solvent through a porous material and the concurrent deformation that occurs. Poroelasticity in hydrated materials such as hydrogels occurs due to friction between the polymer and water as the water moves through the porous matrix upon
649:, and chain entanglements (among others). A hydrogel generated through the use of physical crosslinks is sometimes called a 'reversible' hydrogel. Chemical crosslinks consist of covalent bonds between polymer strands. Hydrogels generated in this manner are sometimes called 'permanent' hydrogels. 784:
irradiation, the photoinitiators will cleave and form free radicals, which will begin a polymerization reaction that forms crosslinks between polymer strands. This reaction will cease if the light source is removed, allowing the amount of crosslinks formed in the hydrogel to be controlled. The
1523:
is often performed. Typically, in these measurements the one side of the hydrogel is subjected to a sinusoidal load in shear mode while the applied stress is measured with a stress transducer and the change in sample length is measured with a strain transducer. One notation used to model the
764:
precursors. The precursors self-assemble into fibers, tapes, tubes, or ribbons that entangle to form non-covalent cross-links. The second mechanism involves non-covalent interactions of cross-linked domains that are separated by water-soluble linkers, and this is usually observed in longer
1753:
is another method in which a directional temperature gradient is applied to the hydrogel is another way to form materials with anisotropic mechanical properties. Utilizing both the freeze-casting and salting-out processing techniques on poly(vinyl alcohol) hydrogels to induce hierarchical
1503:
Physical models for viscoelasticity attempt to capture the elastic and viscous material properties of a material. In an elastic material, the stress is proportional to the strain while in a viscous material, the stress is proportional to the strain rate. The Maxwell model is one developed
937:
the mechanical properties of the surrounding tissues. Characterizing the mechanical properties of hydrogels can be difficult especially due to the differences in mechanical behavior that hydrogels have in comparison to other traditional engineering materials. In addition to its rubber
896: 632:
being cross-linked via disulfide bonds, are non-toxic and are used in numerous medicinal products. Physical hydrogels usually have high biocompatibility, are not toxic, and are also easily reversible by simply changing an external stimulus such as pH, ion concentration
2027:
swelling forces resulting from the exchange of counterions within the gel matrix. Particularly significant is its application in assessing the binding of peptide drugs to biopolymers within the body, as the swelling response of the gel can provide insights into these
2084:, and poly (lactic-co-glycolic acid) have been implemented extensively for drug delivery to organs such as eye, nose, kidneys, lungs, intestines, skin and brain. Future work is focused on reducing toxicity, improving biocompatibility, expanding assembly techniques 1709:
While a hydrogel's mechanical properties can be tuned and modified through crosslink concentration and additives, these properties can also be enhanced or optimized for various applications through specific processing techniques. These techniques include
789:
a popular choice for fine-tuning hydrogels. This technique has seen considerable use in cell and tissue engineering applications due to the ability to inject or mold a precursor solution loaded with cells into a wound site, then solidify it in situ.
765:
multi-domain structures. Tuning of the supramolecular interactions to produce a self-supporting network that does not precipitate, and is also able to immobilize water which is vital for to gel formation. Most oligopeptide hydrogels have a
1924:
Environmentally sensitive hydrogels (also known as 'smart gels' or 'intelligent gels'). These hydrogels have the ability to sense changes of pH, temperature, or the concentration of metabolite and release their load as result of such a
810:
hydrogels are formed by temperature change. A water solution of gelatin forms an hydrogel at temperatures below 37–35 Â°C, as Van der Waals interactions between collagen fibers become stronger than thermal molecular vibrations.
1512:. In order to describe the time-dependent creep and stress-relaxation behavior of hydrogel, a variety of physical lumped parameter models can be used. These modeling methods vary greatly and are extremely complex, so the empirical 1363: 908: 1435: 4837:
Nguyen LH, Kudva AK, Saxena NS, Roy K (October 2011). "Engineering articular cartilage with spatially-varying matrix composition and mechanical properties from a single stem cell population using a multi-layered hydrogel".
797:
hydrogels are usually produced by the freeze-thawed technique. In this, the solution is frozen for a few hours, then thawed at room temperature, and the cycle is repeated until a strong and stable hydrogel is formed.
827:
qualities, giving rise to their wide use of applications, particularly in biomedicine; as such, their physical properties can be fine-tuned in order to maximise their use. Methods to do this are: modulation of the
2087:
Hydrogels have been considered as vehicles for drug delivery. They can also be made to mimic animal mucosal tissues to be used for testing mucoadhesive properties. They have been examined for use as reservoirs in
876: 1489: 857:", hydrogels can encapsulate chemical systems which upon stimulation by external factors such as a change of pH may cause specific compounds such as glucose to be liberated to the environment, in most cases by a 780:, compounds that cleave from the absorption of photons, are added to the precursor solution which will become the hydrogel. When the precursor solution is exposed to a concentrated source of light, usually 5859:
Pupkaite J, Rosenquist J, Hilborn J, Samanta A (September 2019). "Injectable Shape-Holding Collagen Hydrogel for Cell Encapsulation and Delivery Cross-linked Using Thiol-Michael Addition Click Reaction".
1061: 1659:
The most commonly seen environmental sensitivity in hydrogels is a response to temperature. Many polymers/hydrogels exhibit a temperature dependent phase transition, which can be classified as either an
628:. Chemical hydrogels can result in strong reversible or irreversible gels due to the covalent bonding. Chemical hydrogels that contain reversible covalent cross-linking bonds, such as hydrogels of 773:
peptides have also been reported. The typical mechanism of gelation involves the oligopeptide precursors self-assemble into fibers that become elongated, and entangle to form cross-linked gels.
3836:
Ma M, Kuang Y, Gao Y, et al. (March 2010). "Aromatic-aromatic interactions induce the self-assembly of pentapeptidic derivatives in water to form nanofibers and supramolecular hydrogels".
1737:. Due to this phenomenon, through the addition of salt solution, the polymer chains of a hydrogel aggregate and crystallize, which increases the toughness of the hydrogel. This method, called " 880: 1227: 877: 2038:
Thermodynamic electricity generation: When combined with ions allows for heat dissipation for electronic devices and batteries and converting the heat exchange to an electrical charge.
1570: 1162: 1128: 5955:
Mellati A, Dai S, Bi J, et al. (2014). "A biodegradable thermosensitive hydrogel with tuneable properties for mimicking three-dimensional microenvironments of stem cells".
5296:
Youhong Guo; C. M. Dundas; X. Zhou; K. P. Johnston; Guihua Yu (2021). "Molecular Engineering of Hydrogels for Rapid Water Disinfection and Sustainable Solar Vapor Generation".
1823:
An adhesive bandage with a hydrogel pad, used for blisters and burns. The central gel is clear, the adhesive waterproof plastic film is clear, the backing is white and blue.
987:
In the unswollen state, hydrogels can be modelled as highly crosslinked chemical gels, in which the system can be described as one continuous polymer network. In this case:
2064:
Implanted or injected hydrogels have the potential to support tissue regeneration by mechanical tissue support, localized drug or cell delivery, local cell recruitement or
879: 1283: 1256: 6454:
Gao J, Liu R, Wu J, et al. (May 2012). "The use of chitosan based hydrogel for enhancing the therapeutic benefits of adipose-derived MSCs for acute kidney injury".
3527:
Orbach R, Adler-Abramovich L, Zigerson S, et al. (September 2009). "Self-assembled Fmoc-peptides as a platform for the formation of nanostructures and hydrogels".
3871:
Kwon GH, Jeong GS, Park JY, et al. (September 2011). "A low-energy-consumption electroactive valveless hydrogel micropump for long-term biomedical applications".
3033: 3437:
Fichman G, Gazit E (April 2014). "Self-assembly of short peptides to form hydrogels: design of building blocks, physical properties and technological applications".
3037: 2617:
Leichner, C; Jelkmann, M; Bernkop-SchnĂŒrch, A (2019). "Thiolated polymers: Bioinspired polymers utilizing one of the most important bridging structures in nature".
2031:
Window coating/replacement: Hydrogels are under consideration for reducing infrared light absorption by 75%. Another approach reduced interior temperature using a
594:
solids and at least 10% by weight or volume of interstitial fluid composed completely or mainly by water. In hydrogels the porous permeable solid is a water
3000:
Gdansk University of Technology, Chemical Faculty, Polymer Technology Department, 80-233 Gdansk, ul Narutowicza 11/12; Gibas, Iwona; Janik, Helena (2010-12-15).
890:
based on a hydrogel bar (4×0.3×0.05 mm size) actuated by applied voltage. This pump can be continuously operated with a 1.5 V battery for at least 6 months.
3975: 656:, which can be divided broadly into two categories according to their origin: natural or synthetic polymers. Natural polymers for hydrogel preparation include 1290: 924:
Hydrogels have been investigated for diverse applications. By modifying the polymer concentration of a hydrogel (or conversely, the water concentration), the
949:. These properties are extremely important to consider while performing mechanical experiments. Some common mechanical testing experiments for hydrogels are 1799:
hydrogels. They have replaced hard contact lenses. One of their most attractive properties is oxygen permeability, which is required since the cornea lacks
620:
The crosslinks which bond the polymers of a hydrogel fall under two general categories: physical hydrogels and chemical hydrogels. Chemical hydrogels have
5245:
Youhong Guo; H. Lu; F. Zhao; X. Zhou; W. Shi; Guihua Yu (2020). "Biomass-Derived Hybrid Hydrogel Evaporators for Cost-Effective Solar Water Purification".
1369: 3746:
Marchesan S, Waddington L, Easton CD, et al. (November 2012). "Unzipping the role of chirality in nanoscale self-assembly of tripeptide hydrogels".
553: 574: 148: 6573:
Liu X, Ma L, Mao Z, Gao C (2011), Jayakumar R, Prabaharan M, Muzzarelli RA (eds.), "Chitosan-Based Biomaterials for Tissue Repair and Regeneration",
6419:
Ozcelik B, Brown KD, Blencowe A, et al. (May 2013). "Ultrathin chitosan-poly(ethylene glycol) hydrogel films for corneal tissue engineering".
1985:
scaffolds. When used as scaffolds, hydrogels may contain human cells to repair tissue. They mimic 3D microenvironment of cells. Materials include
6530:
Ramdas M, Dileep KJ, Anitha Y, et al. (April 1999). "Alginate encapsulated bioadhesive chitosan microspheres for intestinal drug delivery".
2076:. Polymeric drug delivery systems have overcome challenges due to their biodegradability, biocompatibility, and anti-toxicity. Materials such as 1919: 1812: 6590: 5678: 4565: 3985: 3064: 2498: 2338: 2265: 6327:
Tang Y, Heaysman CL, Willis S, Lewis AL (September 2011). "Physical hydrogels with self-assembled nanostructures as drug delivery systems".
1857:
Water sustainability: Hydrogels have emerged as promising materials platforms for solar-powered water purification, water disinfection, and
1442: 902:
A short-peptide-based hydrogel matrix, capable of holding about one hundred times its own weight in water. Developed as a medical dressing.
3276:
Adelnia, Hossein; Ensandoost, Reza; Shebbrin Moonshi, Shehzahdi; Gavgani, Jaber Nasrollah; Vasafi, Emad Izadi; Ta, Hang Thu (2022-02-05).
878: 3612:
Chen L, Morris K, Laybourn A, et al. (April 2010). "Self-assembly mechanism for a naphthalene-dipeptide leading to hydrogelation".
1665: 1661: 91: 86: 6796:
Warren DS, Sutherland SP, Kao JY, et al. (2017). "The Preparation and Simple Analysis of a Clay Nanoparticle Composite Hydrogel".
1745:
salt solution. Some of these processing techniques can be used synergistically with each other to yield optimal mechanical properties.
1701:, have been shown to significantly modify the stiffness and gelation temperature of certain hydrogels used in biomedical applications. 2374: 728:
is usually much lower than synthetic hydrogels. There are also synthetic hydrogels that can be used for medical applications, such as
2771:
Yan, Yonggan; Xu, Shulei; Liu, Huanxi; Cui, Xin; Shao, Jinlong; Yao, Peng; Huang, Jun; Qiu, Xiaoyong; Huang, Chuanzhen (2020-05-20).
2477:
Nikolić, LjubiĆĄa B.; Zdravković, Aleksandar S.; Nikolić, Vesna D.; Ilić-Stojanović, SneĆŸana S. (2018), Mondal, Md. Ibrahim H. (ed.),
1500:
motion. Thus, the time dependence of these applied forces is extremely important for evaluating the viscoelasticity of the material.
861:
to the liquid state. Chemomechanical polymers are mostly also hydrogels, which upon stimulation change their volume and can serve as
853:
Hydrogels also possess a degree of flexibility very similar to natural tissue due to their significant water content. As responsive "
806:, is dissolved into an aqueous sodium alginate solution, that causes the calcium ions to create ionic bonds between alginate chains. 96: 4995: 4053:
Anseth KS, Bowman CN, Brannon-Peppas L (September 1996). "Mechanical properties of hydrogels and their experimental determination".
2304: 2199:"Harnessing the power of biological macromolecules in hydrogels for controlled drug release in the central nervous system: A review" 318: 133: 4735:
Rose S, Prevoteau A, ElziĂšre P, et al. (January 2014). "Nanoparticle solutions as adhesives for gels and biological tissues".
2011:
The swelling behavior exhibited by charged hydrogels can be used as a valuable tool for investigating interactions between charged
992: 5998:
Malmsten M, Bysell H, Hansson P (2010-12-01). "Biomacromolecules in microgels — Opportunities and challenges for drug delivery".
1958:: Hydrogels that are responsive to specific molecules, such as glucose or antigens, can be used as biosensors, as well as in DDS. 180: 3001: 5143:"Superaerophobic Polyethyleneimine Hydrogels for Improving Electrochemical Hydrogen Production by Promoting Bubble Detachment" 6035:"Ion-Exchange Controls the Kinetics of Deswelling of Polyelectrolyte Microgels in Solutions of Oppositely Charged Surfactant" 546: 6274: 4919:
Hua M, Wu S, Ma Y, et al. (February 2021). "Strong tough hydrogels via the synergy of freeze-casting and salting out".
1591:
has been used to predict pore size by relating the pressure drop to the difference in stress between two compression rates.
3474:"Nanostructured Hydrogels for Three-Dimensional Cell Culture Through Self-Assembly of Fluorenylmethoxycarbonyl–Dipeptides" 303: 793:
Physically crosslinked hydrogels can be prepared by different methods depending on the nature of the crosslink involved.
6843: 1611: 756:
There are two suggested mechanisms behind physical hydrogel formation, the first one being the gelation of nanofibrous
101: 4678:"Injectable Hydrogels Based on Pluronic/Water Systems Filled with Alginate Microparticles for Biomedical Applications" 1858: 1677: 1631:
The toughness and hysteresis of a hydrogel are especially important in the context of biomedical applications such as
1520: 965: 700:
thereof. Whereas natural hydrogels are usually non-toxic, and often provide other advantages for medical use, such as
333: 128: 123: 6212: 1588: 1176: 5606:
Discher DE, Janmey P, Wang YL (November 2005). "Tissue cells feel and respond to the stiffness of their substrate".
4418:"Tough double network hydrogels with rapid self-reinforcement and low hysteresis based on highly entangled networks" 3059:. Monographs in supramolecular chemistry. Vol. 11. Cambridge, UK: Royal Society of Chemistry. pp. 93–124. 2197:
Ghosh, Shampa; Ghosh, Soumya; Sharma, Hitaishi; Bhaskar, Rakesh; Han, Sung Soo; Sinha, Jitendra Kumar (2024-01-01).
776:
One notable method of initiating a polymerization reaction involves the use of light as a stimulus. In this method,
748: 5076:
Jeon, Dasom; Park, Jinwoo; Shin, Changhwan; Kim, Hyunwoo; Jang, Ji-Wook; Lee, Dong Woog; Ryu, Jungki (2020-04-10).
1965:. Hydrogels with reversible chemistry are required to allow for fluidization during injection/printing followed by 328: 157: 6139:
Wanselius, Marcus; Searle, Sean; Rodler, Agnes; Tenje, Maria; Abrahmsén-Alami, Susanna; Hansson, Per (June 2022).
5668: 2008:
systems. Ionic strength, pH and temperature can be used as a triggering factor to control the release of the drug.
1961:
Cell carrier: Injectable hydrogels can be used to carry drugs or cells for applications in tissue regeneration or
1509: 81: 4629:"Effect of crosslinker length on the elastic and compression modulus of poly(acrylamide) nanocomposite hydrogels" 1998: 1508:. Another physical model used is called the Kelvin-Voigt Model and a material that follow this model is called a 539: 6853: 3239: 296: 6187: 5011:
Schmid, Julian; Armstrong, Tobias; Dickhardt, Fabian J.; Iqbal, SK Rameez; Schutzius, Thomas M. (2023-12-22).
2867:"Hydrogels based on pH-responsive reversible carbon–nitrogen double-bond linkages for biomedical applications" 1672:
There are many other stimuli that hydrogels can be responsive to, including: pH, glucose, electrical signals,
914:
Photo of the same short-peptide-based hydrogel, held in forceps to demonstrate its stiffness and transparency.
1945:
Air bubble-repellent (superaerophobicity). Can improve the performance and stability of electrodes for water
6648:"Three-dimensional porous biodegradable polymeric scaffolds fabricated with biodegradable hydrogel porogens" 945:, hydrogels have an additional time dependent deformation mechanism which is dependent on fluid flow called 398: 393: 167: 4546:
Hadjichristidis, Nikos; Gnanou, Yves; Matyjaszewski, Krzysztof; Muthukumar, Murugappan, eds. (2022-03-07).
5623: 1893: 717: 279: 1133: 1099: 6300:"Electro-active polymer hydrogels exhibit emergent memory when embodied in a simulated game environment" 6080:
Wanselius, Marcus; Rodler, Agnes; Searle, Sean S.; Abrahmsén-Alami, Susanna; Hansson, Per (2022-09-15).
5200:"Nanofibrillar hydrogels outperform Pt/C for hydrogen evolution reactions under high-current conditions" 3564:"The delicate balance between gelation and crystallisation: structural and computational investigations" 3027: 2089: 1966: 837: 802:
hydrogels are formed by ionic interactions between alginate and double-charged cations. A salt, usually
725: 493: 313: 308: 6746:
Cook MT, Khutoryanskiy VV (November 2015). "Mucoadhesion and mucosa-mimetic materials--A mini-review".
6299: 3277: 2772: 2198: 6858: 6805: 6247: 5964: 5615: 5562: 5551:"Superaerophobic hydrogels for enhanced electrochemical and photoelectrochemical hydrogen production" 5452: 5360: 5305: 5254: 5154: 5089: 5078:"Superaerophobic hydrogels for enhanced electrochemical and photoelectrochemical hydrogen production" 5024: 4928: 4744: 4689: 4640: 4494: 4429: 4322:"Influence of the Degree of Swelling on the Stiffness and Toughness of Microgel-Reinforced Hydrogels" 4268: 4213: 3932: 3755: 3710: 3663: 3575: 3485: 3401: 3289: 3248: 3142: 2672: 2144: 2069: 2041: 1913: 1755: 1746: 1575:
in which G' is the real (elastic or storage) modulus, G" is the imaginary (viscous or loss) modulus.
954: 938: 737: 162: 56: 5199: 3652:"Relationship between molecular structure, gelation behaviour and gel properties of Fmoc-dipeptides" 2866: 1733:
Another emerging technique to optimize hydrogel mechanical properties is by taking advantage of the
858: 5628: 5349:"Scalable super hygroscopic polymer films for sustainable moisture harvesting in arid environments" 4788:"Exploring the Role of Nanoparticles in Enhancing Mechanical Properties of Hydrogel Nanocomposites" 1815:
Human mesenchymal stem cell interacting with 3D hydrogel - imaged with label-free live cell imaging
786: 729: 689: 685: 503: 71: 4873:
Hua M, Wu D, Wu S, et al. (March 2021). "4D Printable Tough and Thermoresponsive Hydrogels".
1693:
composites, in which a cross-linkable matrix swelling additive is added. Other additives, such as
6555: 6491:"Sealing effect of rapidly curable gelatin-poly (L-glutamic acid) hydrogel glue on lung air leak" 6352: 5885: 5755:"Injectable hydrogels delivering therapeutic agents for disease treatment and tissue engineering" 5649: 5329: 5278: 5227: 5180: 4960: 4898: 4768: 4547: 4138: 3956: 3509: 3323: 2982: 2800: 2638: 2550: 2459: 2366: 2226: 2168: 1982: 1905: 1648: 1632: 1261: 1234: 785:
properties of a hydrogel are highly dependent on the type and quantity of its crosslinks, making
721: 646: 466: 449: 408: 232: 5711:"Holographic sensors: three-dimensional analyte-sensitive nanostructures and their applications" 4483:"Hydrogels of arrested phase separation simultaneously achieve high strength and low hysteresis" 2111: 925: 6082:"Responsive Hyaluronic Acid–Ethylacrylamide Microgels Fabricated Using Microfluidics Technique" 3799:"Exploiting CH-π interactions in supramolecular hydrogels of aromatic carbohydrate amphiphiles" 1530: 6821: 6773: 6728: 6677: 6628: 6586: 6547: 6512: 6471: 6436: 6401: 6344: 6168: 6160: 6121: 6103: 6062: 6054: 6015: 5980: 5937: 5877: 5838: 5786: 5732: 5706: 5674: 5641: 5588: 5531: 5480: 5421: 5386: 5321: 5270: 5219: 5172: 5123: 5105: 5058: 5040: 4991: 4952: 4944: 4890: 4855: 4819: 4760: 4717: 4658: 4609: 4561: 4528: 4510: 4463: 4445: 4398: 4390: 4351: 4343: 4302: 4284: 4237: 4229: 4177: 4121:
Isobe N, Kimura S, Wada M, Deguchi S (November 2018). "Poroelasticity of cellulose hydrogel".
4070: 4032: 3981: 3948: 3888: 3853: 3818: 3779: 3728: 3679: 3629: 3591: 3544: 3501: 3454: 3419: 3370: 3362: 3315: 3212: 3168: 3111: 3060: 2974: 2935: 2886: 2847: 2839: 2792: 2753: 2745: 2706: 2688: 2630: 2599: 2542: 2494: 2424: 2370: 2334: 2300: 2261: 2218: 2160: 1734: 1513: 972: 950: 841: 794: 681: 625: 459: 423: 242: 237: 5906:
Bertsch, Pascal; Diba, Mani; Mooney, David J.; Leeuwenburgh, Sander C. G. (25 January 2023).
4201: 3473: 3342: 6813: 6763: 6755: 6718: 6708: 6667: 6659: 6618: 6578: 6539: 6502: 6463: 6428: 6391: 6383: 6336: 6307: 6220: 6152: 6111: 6093: 6046: 6007: 5972: 5927: 5919: 5869: 5828: 5820: 5776: 5766: 5722: 5633: 5578: 5570: 5521: 5511: 5470: 5460: 5413: 5376: 5368: 5313: 5262: 5211: 5162: 5113: 5097: 5048: 5032: 4983: 4936: 4882: 4847: 4809: 4799: 4752: 4707: 4697: 4648: 4601: 4553: 4549:
Macromolecular Engineering: From Precise Synthesis to Macroscopic Materials and Applications
4518: 4502: 4453: 4437: 4382: 4333: 4292: 4276: 4221: 4169: 4130: 4062: 4022: 4014: 3940: 3880: 3845: 3810: 3771: 3763: 3718: 3671: 3621: 3583: 3536: 3493: 3446: 3409: 3354: 3305: 3297: 3256: 3202: 3158: 3150: 3101: 3093: 3013: 2966: 2925: 2917: 2878: 2831: 2784: 2737: 2696: 2680: 2622: 2589: 2581: 2532: 2486: 2451: 2414: 2406: 2362: 2326: 2292: 2253: 2210: 2152: 2065: 1897: 1763: 1505: 824: 820: 803: 733: 701: 693: 413: 383: 323: 138: 6577:, Advances in Polymer Science, vol. 244, Springer Berlin Heidelberg, pp. 81–127, 4481:
Zhang, Guogao; Steck, Jason; Kim, Junsoo; Ahn, Christine Heera; Suo, Zhigang (2023-06-30).
1791:
Molecular structure of silicone hydrogel used in flexible, oxygen-permeable contact lenses.
4156:
Kuang, Xiao; Arıcan, Mehmet Onur; Zhou, Tao; Zhao, Xuanhe; Zhang, Yu Shrike (2023-02-24).
2955:"Polymer-based hydrogel scaffolds for skin tissue engineering applications: a mini-review" 2820:"Some studies of crosslinking chitosan-glutaraldehyde interaction in a homogeneous system" 2115: 2106: 2049: 1990: 1873: 1711: 1130: is the (number) average molecular weight between two adjacent cross-linking points. 976: 942: 933: 657: 486: 428: 378: 205: 4653: 4628: 4369:
Bai, Ruobing; Yang, Jiawei; Morelle, Xavier P.; Yang, Canhui; Suo, Zhigang (2018-03-20).
4089: 6809: 5968: 5619: 5566: 5456: 5364: 5309: 5258: 5158: 5093: 5053: 5028: 5012: 4932: 4748: 4693: 4644: 4523: 4498: 4482: 4458: 4433: 4417: 4370: 4272: 4217: 3936: 3759: 3714: 3667: 3579: 3489: 3405: 3293: 3252: 3146: 2676: 2245: 2148: 2132: 1358:{\displaystyle \sigma _{t}=G_{\textrm {swollen}}\left(\lambda ^{2}-\lambda ^{-1}\right)} 6672: 6647: 6467: 6396: 6371: 6116: 6081: 5932: 5907: 5833: 5808: 5781: 5754: 5583: 5550: 5526: 5499: 5475: 5440: 5381: 5348: 5118: 5077: 4851: 4814: 4787: 4712: 4677: 4297: 4256: 4027: 4002: 3163: 3130: 3106: 3081: 2930: 2905: 2701: 2660: 2594: 2569: 2419: 2394: 2257: 1973: 1962: 1928: 1847: 1834: 1750: 1742: 1727: 1583: 946: 854: 777: 705: 520: 373: 116: 39: 6507: 6490: 4605: 4157: 3057:
Polymeric and self assembled hydrogels: from fundamental understanding to applications
2835: 2741: 2052:
Shock Absorbing Materials - protein-based hydrogels that can absorb supersonic impacts
1811: 6848: 6837: 5889: 5333: 5282: 5231: 5184: 4964: 4902: 4772: 4142: 4066: 3960: 3513: 3327: 2986: 2954: 2804: 2642: 2554: 2463: 2230: 2093: 2073: 2005: 1879: 1723: 1698: 1644: 1640: 1636: 1070: 929: 642: 621: 418: 227: 222: 200: 6559: 6356: 5198:
Park, Jinwoo; Jeon, Dasom; Kang, Yunseok; Ryu, Jungki; Lee, Dong Woog (2023-01-24).
4592:
Qiu Y, Park K (December 2001). "Environment-sensitive hydrogels for drug delivery".
3301: 3261: 3234: 3097: 2521:"Thiolated polymeric hydrogels for biomedical application: Cross-linking mechanisms" 2442:
Bemmelen JM (1907). "Der Hydrogel und das kristallinische Hydrat des Kupferoxydes".
2246:"Magnetically responsive polymeric gels and elastomeric system(s) for drug delivery" 2244:
Shrivastava, Priya; Vishwakarma, Nikhar; Gautam, Laxmikant; Vyas, Suresh P. (2023),
1430:{\displaystyle \sigma _{e}=G_{\textrm {swollen}}\left(\lambda -\lambda ^{-2}\right)} 6697:"Novel glycopolymer hydrogels as mucosa-mimetic materials to reduce animal testing" 6140: 5653: 5141:
Bae, Misol; Kang, Yunseok; Lee, Dong Woog; Jeon, Dasom; Ryu, Jungki (August 2022).
3944: 3235:"Biomedical applications of hydrogels: A review of patents and commercial products" 2788: 2490: 2214: 2172: 1946: 1839: 1694: 1673: 958: 799: 761: 752:
Simplified scheme to show the self-assembly process involved in hydrogel formation.
634: 510: 454: 403: 388: 212: 195: 6759: 6156: 5417: 5404:
Brudno Y, Mooney DJ (December 2015). "On-demand drug delivery from local depots".
4557: 2570:"Thiolated Chitosans: A Multi-talented Class of Polymers for Various Applications" 2537: 2520: 6432: 6387: 6340: 4386: 3450: 2906:"Designing degradable hydrogels for orthogonal control of cell microenvironments" 2519:
Summonte, S; Racaniello, GF; Lopedota, A; Denora, N; Bernkop-SchnĂŒrch, A (2021).
2478: 1516:
description is commonly used to describe the viscoelastic behavior in hydrogels.
6817: 6298:
Strong, Vincent; Holderbaum, William; Hayashi, Yoshikatsu (September 18, 2024).
6011: 5923: 5441:"Bioinspired mechanically active adhesive dressings to accelerate wound closure" 4320:
Kessler, Michael; Yuan, Tianyu; Kolinski, John M.; Amstad, Esther (2023-02-21).
4134: 2032: 1800: 1771: 1738: 1719: 1715: 1625: 1595:
attempt to simulate the three dimensional permeability of the hydrogel network.
781: 770: 525: 471: 259: 247: 6543: 6312: 5873: 5372: 4940: 4441: 4173: 3131:"Rational design and application of responsive alpha-helical peptide hydrogels" 2684: 2626: 2585: 2410: 1831:
Coatings for gas evolution reaction electrodes for efficient bubble detachment
1787: 641:); they are also used for medical applications. Physical crosslinks consist of 6663: 6225: 5771: 3191:"Recent advances in photo-crosslinkable hydrogels for biomedical applications" 2970: 1994: 1955: 1901: 1620: 829: 766: 713: 709: 595: 591: 368: 348: 190: 6825: 6632: 6623: 6606: 6372:"Defining and designing polymers and hydrogels for neural tissue engineering" 6164: 6141:"Microfluidics platform for studies of peptide – polyelectrolyte interaction" 6107: 6058: 6034: 6019: 5984: 5223: 5176: 5109: 5044: 4662: 4514: 4449: 4394: 4347: 4288: 4233: 4181: 4158:"Functional Tough Hydrogels: Design, Processing, and Biomedical Applications" 3952: 3923:
Oyen ML (January 2014). "Mechanical characterisation of hydrogel materials".
3822: 3683: 3595: 3505: 3423: 3366: 3319: 3052: 2978: 2890: 2843: 2796: 2749: 2692: 2661:"The design of reversible hydrogels to capture extracellular matrix dynamics" 2320: 2286: 2222: 2164: 1979:
Provide absorption, desloughing and debriding of necrotic and fibrotic tissue
5824: 5637: 4003:"Strain rate viscoelastic analysis of soft and highly hydrated biomaterials" 3018: 2819: 2725: 2330: 2296: 2081: 1887: 1851: 1819: 1604: 961: 887: 862: 697: 343: 274: 264: 217: 61: 6777: 6732: 6681: 6551: 6516: 6475: 6440: 6405: 6348: 6172: 6125: 6066: 5941: 5881: 5842: 5790: 5736: 5645: 5592: 5574: 5535: 5484: 5465: 5425: 5390: 5325: 5317: 5274: 5266: 5167: 5142: 5127: 5101: 5062: 5036: 4956: 4894: 4886: 4859: 4823: 4764: 4721: 4613: 4532: 4506: 4467: 4402: 4355: 4338: 4321: 4306: 4280: 4241: 4225: 4036: 3892: 3857: 3783: 3732: 3633: 3548: 3497: 3458: 3374: 3358: 3216: 3172: 3115: 2939: 2851: 2757: 2710: 2634: 2603: 2546: 2428: 602: 4074: 3207: 3190: 3082:"Functionalized α-Helical Peptide Hydrogels for Neural Tissue Engineering" 5684: 5516: 5013:"Imparting scalephobicity with rational microtexturing of soft materials" 3775: 2077: 1933: 1909: 1843: 1796: 1519:
In order to measure the time-dependent viscoelastic behavior of polymers
669: 661: 587: 498: 476: 338: 17: 6582: 6098: 4804: 4756: 4018: 3414: 3389: 3310: 6713: 6696: 6607:"Hydrogels with self-assembling ordered structures and their functions" 5976: 5215: 4987: 4702: 3884: 3814: 3798: 3767: 3723: 3698: 3587: 3563: 2921: 2882: 2455: 2024: 2020: 2016: 2012: 1986: 1952:
Culturing cells: Hydrogel-coated wells have been used for cell culture.
1865: 1681: 807: 757: 673: 665: 653: 638: 629: 76: 66: 6768: 6723: 6050: 5727: 5710: 4948: 4200:
Nian, Guodong; Kim, Junsoo; Bao, Xianyang; Suo, Zhigang (2022-09-20).
3849: 3625: 3540: 3675: 3651: 3388:
Jaipan, Panupong; Nguyen, Alexander; Narayan, Roger J. (2017-09-01).
3341:
Augst, Alexander D.; Kong, Hyun Joon; Mooney, David J. (2006-08-07).
3278:"Freeze/thawed polyvinyl alcohol hydrogels: Present, past and future" 3154: 2395:"Hydrogel: Preparation, characterization, and applications: A review" 2156: 1767: 1759: 1484:{\displaystyle \lambda =l_{\textrm {current}}/l_{\textrm {original}}} 1231:
In a simple uniaxial extension or compression test, the true stress,
866: 677: 515: 4257:"Concurrent stiffening and softening in hydrogels under dehydration" 1890:
are excellent for helping to create or maintain a moist environment.
566: 6275:"New protein-based armor material can withstand supersonic impacts" 4416:
Zhu, Ruixin; Zhu, Dandan; Zheng, Zhen; Wang, Xinling (2024-02-13).
4255:
Xu, Shuai; Zhou, Zidi; Liu, Zishun; Sharma, Pradeep (2023-01-06).
1883: 1869: 1818: 1810: 1786: 1610: 747: 601: 573: 565: 3002:"Review: Synthetic Polymer Hydrogels for Biomedical Applications" 1741:", has been applied to poly(vinyl alcohol) hydrogels by adding a 5809:"Injectable hydrogels for cartilage and bone tissue engineering" 2777:
Colloids and Surfaces A: Physicochemical and Engineering Aspects
2479:"Synthetic Hydrogels and Their Impact on Health and Environment" 1939: 1171:
For the swollen state, a perfect gel network can be modeled as:
481: 269: 143: 6248:"A new way to cool down electronic devices, recover waste heat" 5347:
Youhong Guo; W. Guan; C. Lei; H. Lu; W. Shi; Guihua Yu (2022).
2953:
Jeong, Kwang-Hun; Park, Duckshin; Lee, Young-Chul (July 2017).
2046:
Controlled release of agrochemicals (pesticides and fertilizer)
2724:
Jeong, Byeongmoon; Kim, Sung Wan; Bae, You Han (2002-01-17).
1056:{\displaystyle G=N_{p}kT={\rho RT \over {\overline {M}}_{c}}} 578:
Peptide hydrogel formation shown by the inverted vial method.
4786:
Zaragoza J, Fukuoka S, Kraus M, et al. (October 2018).
3129:
Banwell EF, Abelardo ES, Adams DJ, et al. (July 2009).
38: 5908:"Self-Healing Injectable Hydrogels for Tissue Regeneration" 833: 2485:, Cham: Springer International Publishing, pp. 1–29, 971:
Hydrogels have two main regimes of mechanical properties:
5439:
Blacklow SO, Li J, Freedman BR, et al. (July 2019).
4676:
Cidade MT, Ramos DJ, Santos J, et al. (April 2019).
3472:
Jayawarna V, Ali M, Jowitt TA, et al. (2006-03-03).
1524:
sinusoidal response to the periodic stress or strain is:
6188:"Hydrogel glass windows let in more light and less heat" 3699:"Chemically programmed self-sorting of gelator networks" 3080:
Mehrban N, Zhu B, Tamagnini F, et al. (June 2015).
4978:
Lai YC, Wilson AC, Zantos SG (2000). "Contact Lenses".
4202:"Making Highly Elastic and Tough Hydrogels from Doughs" 3697:
Morris KL, Chen L, Raeburn J, et al. (June 2013).
1972:
Investigate cell biomechanical functions combined with
5709:, da Cruz Vasconcellos F, et al. (October 2014). 2865:
Zhang, Zhen; He, Chaoliang; Chen, Xuesi (2018-09-27).
2659:
Rosales, Adrianne M.; Anseth, Kristi S. (2016-02-02).
1795:
The dominant material for contact lenses are acrylate-
4123:
Journal of the Taiwan Institute of Chemical Engineers
3977:
Stem Cells and Biomaterials for Regenerative Medicine
3797:
Birchall LS, Roy S, Jayawarna V, et al. (2011).
3390:"Gelatin-based hydrogels for biomedical applications" 2568:
Federer, C; Kurpiers, M; Bernkop-SchnĂŒrch, A (2021).
1533: 1445: 1372: 1293: 1264: 1237: 1179: 1136: 1102: 995: 6695:
Cook MT, Smith SL, Khutoryanskiy VV (October 2015).
5500:"Smart hydrogels for advanced drug delivery systems" 3189:
Choi JR, Yong KW, Choi JY, Cowie AC (January 2019).
1766:. The values also surpass the toughness of natural 570:
Gelatin, here in sheets for cooking, is a hydrogel.
6000:Current Opinion in Colloid & Interface Science 5807:Liu M, Zeng X, Ma C, et al. (December 2017). 5549:Jeon D, Park J, Shin C, et al. (April 2020). 3650:Adams DJ, Mullen LM, Berta M, et al. (2010). 2904:Kharkar PM, Kiick KL, Kloxin AM (September 2013). 2824:International Journal of Biological Macromolecules 2203:International Journal of Biological Macromolecules 1564: 1483: 1429: 1357: 1277: 1250: 1221: 1156: 1122: 1055: 4001:Tirella A, Mattei G, Ahluwalia A (October 2014). 2773:"A multi-functional reversible hydrogel adhesive" 2444:Zeitschrift fĂŒr Chemie und Industrie der Kolloide 2015:and various species, including multivalent ions, 1088:is the number of polymer chains per unit volume, 4007:Journal of Biomedical Materials Research. Part A 3562:Adams DJ, Morris K, Chen L, et al. (2010). 2250:Smart Polymeric Nano-Constructs in Drug Delivery 1168:, which is relatively easy to test and measure. 6370:Aurand ER, Lampe KJ, Bjugstad KB (March 2012). 4980:Kirk-Othmer Encyclopedia of Chemical Technology 2359:Kirk-Othmer Encyclopedia of Chemical Technology 2114: by Jessica Hutchinson available under the 2055:Computational tasks, including emergent memory. 1900:medical electrodes using hydrogels composed of 1222:{\displaystyle G_{\textrm {swollen}}=GQ^{-1/3}} 5901: 5899: 2818:Monteiro, O. A.; Airoldi, C. (November 1999). 2726:"Thermosensitive sol-gel reversible hydrogels" 2068:, or encapsulation of nanoparticles for local 4627:Zaragoza J, Chang A, Asuri P (January 2017). 4371:"Fatigue Fracture of Self-Recovery Hydrogels" 819:Peptides based hydrogels possess exceptional 547: 8: 3032:: CS1 maint: multiple names: authors list ( 2367:10.1002/0471238961.0825041807211620.a01.pub2 6646:Kim J, Yaszemski MJ, Lu L (December 2009). 6033:Nilsson, Peter; Hansson, Per (2005-12-01). 5504:International Journal of Molecular Sciences 3974:Los MJ, Hudecki A, Wiechec E (2018-11-07). 3228: 3226: 3184: 3182: 3086:ACS Biomaterials Science & Engineering 3036:) CS1 maint: numeric names: authors list ( 2322:Polymer Science: A Comprehensive Reference 2023:. This response arises due to fluctuating 652:Hydrogels are prepared using a variety of 554: 540: 29: 6767: 6722: 6712: 6671: 6622: 6506: 6489:Otani Y, Tabata Y, Ikada Y (April 1999). 6395: 6311: 6224: 6115: 6097: 5931: 5832: 5780: 5770: 5726: 5673:. Cambridge: Royal Society of Chemistry. 5627: 5582: 5525: 5515: 5474: 5464: 5380: 5166: 5117: 5052: 4914: 4912: 4813: 4803: 4711: 4701: 4652: 4522: 4457: 4337: 4296: 4026: 3722: 3413: 3309: 3260: 3206: 3162: 3105: 3017: 2929: 2700: 2593: 2536: 2418: 2092:; particularly ionic drugs, delivered by 1532: 1474: 1473: 1464: 1457: 1456: 1444: 1413: 1391: 1390: 1377: 1371: 1341: 1328: 1312: 1311: 1298: 1292: 1269: 1263: 1242: 1236: 1209: 1202: 1185: 1184: 1178: 1148: 1138: 1135: 1114: 1104: 1101: 1045: 1035: 1021: 1006: 994: 149:Nitroxide-mediated radical polymerization 3838:Journal of the American Chemical Society 2483:Cellulose-Based Superabsorbent Hydrogels 1164:can be calculated from the swell ratio, 769:, and assemble to form fibers, although 4116: 4114: 4099:. Massachusetts Institute of Technology 4048: 4046: 2123: 2001:, and other naturally derived polymers. 957:(confined or unconfined), indentation, 871: 32: 6748:International Journal of Pharmaceutics 6145:International Journal of Pharmaceutics 4875:ACS Applied Materials & Interfaces 3645: 3643: 3607: 3605: 3025: 5854: 5852: 5802: 5800: 5748: 5746: 4633:Journal of Physics: Conference Series 4587: 4585: 4583: 4581: 4579: 4577: 4195: 4193: 4191: 3918: 3916: 3914: 3912: 3910: 3908: 3906: 3904: 3902: 2654: 2652: 2357:Cai W, Gupta RB (2012). "Hydrogels". 2133:"Hydrophilic Gels for Biological Use" 2131:Wichterle, O.; LĂ­m, D. (1960-01-01). 586:is a biphasic material, a mixture of 7: 6532:Journal of Biomaterials Applications 5498:Bordbar-Khiabani A, Gasik M (2022). 3343:"Alginate Hydrogels as Biomaterials" 2388: 2386: 2352: 2350: 2192: 2190: 2188: 2186: 2184: 2182: 680:. Common synthetic polymers include 6652:Tissue Engineering. Part C, Methods 6211:Miller, Brittney J. (8 June 2022). 6039:The Journal of Physical Chemistry B 4326:Macromolecular Rapid Communications 3006:Chemistry & Chemical Technology 1969:of the original hydrogel structure. 1666:lower critical solution temperature 1662:upper critical solution temperature 1157:{\displaystyle {\overline {M}}_{c}} 1123:{\displaystyle {\overline {M}}_{c}} 6468:10.1016/j.biomaterials.2012.01.061 4852:10.1016/j.biomaterials.2011.06.014 2288:Fundamental Biomaterials: Polymers 2258:10.1016/b978-0-323-91248-8.00012-x 624:, whereas physical hydrogels have 25: 4244:– via Wiley Online Library. 4097:Modules in Mechanics of Materials 3233:CalĂł E, Khutoryanskiy VV (2015). 760:assemblies, usually observed for 134:Controlled radical polymerization 5204:Journal of Materials Chemistry A 3053:"Peptide and Protein Hydrogels." 2110: This article incorporates 2105: 1828:Scalephobicity and antifouling 907: 895: 874: 6329:Expert Opinion on Drug Delivery 6213:"How smart windows save energy" 4090:""Engineering viscoelasticity"" 3925:International Materials Reviews 3302:10.1016/j.eurpolymj.2021.110974 3262:10.1016/j.eurpolymj.2014.11.024 3098:10.1021/acsbiomaterials.5b00051 3051:Dooling LJ, Tirrell DA (2013). 2033:temperature-responsive hydrogel 1096:is the ideal gas constant, and 840:, and increasing the number of 606:IUPAC definition for a hydrogel 6495:The Annals of Thoracic Surgery 6186:Irving, Michael (2022-08-31). 4982:. John Wiley & Sons, Inc. 4654:10.1088/1742-6596/790/1/012037 4594:Advanced Drug Delivery Reviews 4162:Accounts of Materials Research 3945:10.1179/1743280413Y.0000000022 2789:10.1016/j.colsurfa.2020.124622 2730:Advanced Drug Delivery Reviews 2619:Advanced Drug Delivery Reviews 2491:10.1007/978-3-319-76573-0_61-1 2252:, Elsevier, pp. 129–150, 2215:10.1016/j.ijbiomac.2023.127708 1: 6798:Journal of Chemical Education 6760:10.1016/j.ijpharm.2015.09.064 6508:10.1016/S0003-4975(99)00153-8 6304:Cell Reports Physical Science 6157:10.1016/j.ijpharm.2022.121785 5418:10.1016/j.jconrel.2015.09.011 5406:Journal of Controlled Release 4606:10.1016/S0169-409X(01)00203-4 4558:10.1002/9783527815562.mme0043 2871:Materials Chemistry Frontiers 2836:10.1016/s0141-8130(99)00068-9 2742:10.1016/s0169-409x(01)00242-3 2538:10.1016/j.jconrel.2020.12.037 2525:Journal of Controlled Release 1920:Encapsulation of quantum dots 97:Flory–Huggins solution theory 6605:Wu ZL, Gong JP (June 2011). 6575:Chitosan for Biomaterials II 6433:10.1016/j.actbio.2013.01.020 6388:10.1016/j.neures.2011.12.005 6341:10.1517/17425247.2011.588205 4387:10.1021/acsmacrolett.8b00045 4067:10.1016/0142-9612(96)87644-7 3451:10.1016/j.actbio.2013.08.013 2399:Journal of Advanced Research 1143: 1109: 1040: 622:covalent cross-linking bonds 6818:10.1021/acs.jchemed.6b00389 6273:Lavars, Nick (2022-12-15). 6012:10.1016/j.cocis.2010.05.016 5924:10.1021/acs.chemrev.2c00179 4135:10.1016/j.jtice.2018.02.017 2959:Journal of Polymer Research 1859:Atmospheric water generator 1521:dynamic mechanical analysis 1278:{\displaystyle \sigma _{e}} 1251:{\displaystyle \sigma _{t}} 1077:is the Boltzmann constant, 966:dynamic mechanical analysis 163:Condensation polymerization 129:Free-radical polymerization 124:Chain-growth polymerization 27:Soft water-rich polymer gel 6875: 6544:10.1177/088532829901300402 6313:10.1016/j.xcrp.2024.102151 5874:10.1021/acs.biomac.9b00769 5667:Schneider HJ, ed. (2015). 5373:10.1038/s41467-022-30505-2 4941:10.1038/s41586-021-03212-z 4442:10.1038/s41467-024-45485-8 4174:10.1021/accountsmr.2c00026 2685:10.1038/natrevmats.2015.12 2627:10.1016/j.addr.2019.04.007 2586:10.1021/acs.biomac.0c00663 2411:10.1016/j.jare.2013.07.006 1258:, and engineering stress, 738:polyvinylpyrrolidone (PVP) 158:Step-growth polymerization 6664:10.1089/ten.TEC.2008.0642 6226:10.1146/knowable-060822-3 5772:10.1186/s40824-018-0138-6 5670:Chemoresponsive Materials 5147:Advanced Energy Materials 3347:Macromolecular Bioscience 2971:10.1007/s10965-017-1278-4 1999:elastin-like polypeptides 1878:Dressings for healing of 1565:{\displaystyle G=G'+iG''} 730:polyethylene glycol (PEG) 6624:10.1038/asiamat.2010.200 5753:Lee JH (December 2018). 3282:European Polymer Journal 3240:European Polymer Journal 2910:Chemical Society Reviews 2665:Nature Reviews Materials 1649:hydrophobic interactions 1615:Model of Hysteresis Loop 1599:Toughness and Hysteresis 1285:, can be calculated as: 815:Peptides based hydrogels 720:of nearby tissue, their 647:hydrophobic interactions 6701:Chemical Communications 5825:10.1038/boneres.2017.14 5638:10.1126/science.1116995 3019:10.23939/chcht04.04.297 2393:Ahmed EM (March 2015). 2331:10.1016/c2009-1-28406-1 2297:10.1016/c2016-0-03544-1 168:Addition polymerization 102:Coil–globule transition 5575:10.1126/sciadv.aaz3944 5466:10.1126/sciadv.aaw3963 5318:10.1002/adma.202102994 5267:10.1002/adma.201907061 5168:10.1002/aenm.202201452 5102:10.1126/sciadv.aaz3944 5037:10.1126/sciadv.adj0324 4887:10.1021/acsami.0c17532 4507:10.1126/sciadv.adh7742 4339:10.1002/marc.202200864 4281:10.1126/sciadv.ade3240 4226:10.1002/adma.202206577 3498:10.1002/adma.200501522 3359:10.1002/mabi.200600069 1942:moisture in arid areas 1882:or other hard-to-heal 1824: 1816: 1792: 1655:Environmental response 1616: 1589:Kozeny–Carman equation 1566: 1491: is the stretch. 1485: 1431: 1359: 1279: 1252: 1223: 1158: 1124: 1057: 753: 607: 579: 571: 280:Self-healing hydrogels 43: 6376:Neuroscience Research 5759:Biomaterials Research 5353:Nature Communications 4552:(1 ed.). Wiley. 4422:Nature Communications 3703:Nature Communications 3208:10.2144/btn-2018-0083 2090:topical drug delivery 1938:Granules for holding 1822: 1814: 1790: 1705:Processing techniques 1614: 1567: 1510:Kelvin–Voigt material 1486: 1432: 1360: 1280: 1253: 1224: 1159: 1125: 1058: 920:Mechanical properties 751: 605: 577: 569: 494:Cookware and bakeware 446:Industrial production 314:X-ray crystallography 42: 5963:(109): 63951–63961. 5517:10.3390/ijms23073665 2621:. 151–152: 191–221. 2070:photothermal therapy 2042:Water gel explosives 1914:polyvinylpyrrolidone 1756:polydimethylsiloxane 1747:Directional freezing 1531: 1443: 1370: 1291: 1262: 1235: 1177: 1134: 1100: 993: 599:was coined in 1894. 6844:Colloidal chemistry 6810:2017JChEd..94.1772W 6707:(77): 14447–14450. 6583:10.1007/12_2011_118 6099:10.3390/gels8090588 6045:(50): 23843–23856. 5969:2014RSCAd...463951M 5721:(20): 10654–10696. 5620:2005Sci...310.1139D 5614:(5751): 1139–1143. 5567:2020SciA....6.3944J 5457:2019SciA....5.3963B 5365:2022NatCo..13.2761G 5310:2021AdM....3302994G 5259:2020AdM....3207061G 5159:2022AdEnM..1201452B 5094:2020SciA....6.3944J 5029:2023SciA....9J.324S 4933:2021Natur.590..594H 4881:(11): 12689–12697. 4805:10.3390/nano8110882 4757:10.1038/nature12806 4749:2014Natur.505..382R 4694:2019Mate...12.1083C 4645:2017JPhCS.790a2037Z 4499:2023SciA....9H7742Z 4434:2024NatCo..15.1344Z 4273:2023SciA....9E3240X 4218:2022AdM....3406577N 4019:10.1002/jbm.a.34914 3937:2014IMRv...59...44O 3760:2012Nanos...4.6752M 3715:2013NatCo...4.1480M 3668:2010SMat....6.1971A 3580:2010SMat....6.4144A 3490:2006AdM....18..611J 3415:10.1557/mrc.2017.92 3406:2017MRSCo...7..416J 3294:2022EurPJ.16410974A 3253:2015EurPJ..65..252C 3147:2009NatMa...8..596B 2677:2016NatRM...115012R 2149:1960Natur.185..117W 1783:Soft contact lenses 787:photopolymerization 716:effect and improve 690:sodium polyacrylate 686:polyethylene glycol 654:polymeric materials 467:Protective Coatings 82:Mark–Houwink theory 6714:10.1039/C5CC02428E 6611:NPG Asia Materials 6421:Acta Biomaterialia 5977:10.1039/C4RA12215A 5298:Advanced Materials 5247:Advanced Materials 5216:10.1039/D2TA08775H 4988:10.1002/0471238961 4703:10.3390/ma12071083 4206:Advanced Materials 3980:. Academic Press. 3885:10.1039/C1LC20288J 3815:10.1039/c0sc00621a 3768:10.1039/c2nr32006a 3724:10.1038/ncomms2499 3588:10.1039/c0sm00409j 3478:Advanced Materials 3439:Acta Biomaterialia 3394:MRS Communications 2922:10.1039/C3CS60040H 2883:10.1039/C8QM00317C 2456:10.1007/BF01830147 2325:. Elsevier. 2012. 2004:Sustained-release 1983:Tissue engineering 1906:polyethylene oxide 1868:where they absorb 1825: 1817: 1793: 1645:ionic interactions 1633:tissue engineering 1617: 1562: 1481: 1427: 1355: 1275: 1248: 1219: 1154: 1120: 1053: 859:gel–sol transition 754: 637:) or temperature ( 626:non-covalent bonds 608: 580: 572: 44: 6804:(11): 1772–1779. 6592:978-3-642-24061-4 6462:(14): 3673–3681. 6217:Knowable Magazine 6051:10.1021/jp054835d 5862:Biomacromolecules 5728:10.1021/cr500116a 5680:978-1-78262-242-0 4927:(7847): 594–599. 4846:(29): 6946–6952. 4743:(7483): 382–385. 4567:978-3-527-34455-0 4375:ACS Macro Letters 4061:(17): 1647–1657. 4013:(10): 3352–3360. 3987:978-0-12-812278-5 3879:(17): 2910–2915. 3850:10.1021/ja9088764 3754:(21): 6752–6760. 3626:10.1021/la903694a 3541:10.1021/bm900584m 3529:Biomacromolecules 3066:978-1-84973-561-2 2916:(17): 7335–7372. 2877:(10): 1765–1778. 2574:Biomacromolecules 2500:978-3-319-76573-0 2361:. pp. 1–20. 2340:978-0-08-087862-1 2267:978-0-323-91248-8 2143:(4706): 117–118. 1735:Hofmeister series 1477: 1460: 1394: 1315: 1188: 1146: 1112: 1051: 1043: 983:Rubber elasticity 973:rubber elasticity 881: 795:Polyvinyl alcohol 767:ÎČ-sheet structure 694:acrylate polymers 682:polyvinyl alcohol 564: 563: 477:Consumer products 16:(Redirected from 6866: 6829: 6782: 6781: 6771: 6743: 6737: 6736: 6726: 6716: 6692: 6686: 6685: 6675: 6643: 6637: 6636: 6626: 6602: 6596: 6595: 6570: 6564: 6563: 6527: 6521: 6520: 6510: 6486: 6480: 6479: 6451: 6445: 6444: 6427:(5): 6594–6605. 6416: 6410: 6409: 6399: 6367: 6361: 6360: 6335:(9): 1141–1159. 6324: 6318: 6317: 6315: 6295: 6289: 6288: 6286: 6285: 6270: 6264: 6263: 6261: 6259: 6254:. April 22, 2020 6244: 6238: 6237: 6235: 6233: 6228: 6208: 6202: 6201: 6199: 6198: 6183: 6177: 6176: 6136: 6130: 6129: 6119: 6101: 6077: 6071: 6070: 6030: 6024: 6023: 5995: 5989: 5988: 5952: 5946: 5945: 5935: 5912:Chemical Reviews 5903: 5894: 5893: 5868:(9): 3475–3484. 5856: 5847: 5846: 5836: 5804: 5795: 5794: 5784: 5774: 5750: 5741: 5740: 5730: 5715:Chemical Reviews 5702: 5696: 5695: 5693: 5692: 5683:. Archived from 5664: 5658: 5657: 5631: 5603: 5597: 5596: 5586: 5561:(15): eaaz3944. 5555:Science Advances 5546: 5540: 5539: 5529: 5519: 5495: 5489: 5488: 5478: 5468: 5445:Science Advances 5436: 5430: 5429: 5401: 5395: 5394: 5384: 5344: 5338: 5337: 5293: 5287: 5286: 5242: 5236: 5235: 5210:(4): 1658–1665. 5195: 5189: 5188: 5170: 5138: 5132: 5131: 5121: 5088:(15): eaaz3944. 5082:Science Advances 5073: 5067: 5066: 5056: 5023:(51): eadj0324. 5017:Science Advances 5008: 5002: 5001: 4975: 4969: 4968: 4916: 4907: 4906: 4870: 4864: 4863: 4834: 4828: 4827: 4817: 4807: 4783: 4777: 4776: 4732: 4726: 4725: 4715: 4705: 4673: 4667: 4666: 4656: 4624: 4618: 4617: 4589: 4572: 4571: 4543: 4537: 4536: 4526: 4493:(26): eadh7742. 4487:Science Advances 4478: 4472: 4471: 4461: 4413: 4407: 4406: 4366: 4360: 4359: 4341: 4332:(16): e2200864. 4317: 4311: 4310: 4300: 4261:Science Advances 4252: 4246: 4245: 4197: 4186: 4185: 4153: 4147: 4146: 4118: 4109: 4108: 4106: 4104: 4094: 4085: 4079: 4078: 4050: 4041: 4040: 4030: 3998: 3992: 3991: 3971: 3965: 3964: 3920: 3897: 3896: 3868: 3862: 3861: 3844:(8): 2719–2728. 3833: 3827: 3826: 3803:Chemical Science 3794: 3788: 3787: 3743: 3737: 3736: 3726: 3694: 3688: 3687: 3676:10.1039/b921863g 3647: 3638: 3637: 3620:(7): 5232–5242. 3609: 3600: 3599: 3559: 3553: 3552: 3535:(9): 2646–2651. 3524: 3518: 3517: 3469: 3463: 3462: 3445:(4): 1671–1682. 3434: 3428: 3427: 3417: 3385: 3379: 3378: 3338: 3332: 3331: 3313: 3273: 3267: 3266: 3264: 3230: 3221: 3220: 3210: 3186: 3177: 3176: 3166: 3155:10.1038/nmat2479 3135:Nature Materials 3126: 3120: 3119: 3109: 3077: 3071: 3070: 3048: 3042: 3041: 3031: 3023: 3021: 2997: 2991: 2990: 2950: 2944: 2943: 2933: 2901: 2895: 2894: 2862: 2856: 2855: 2830:(2–3): 119–128. 2815: 2809: 2808: 2768: 2762: 2761: 2721: 2715: 2714: 2704: 2656: 2647: 2646: 2614: 2608: 2607: 2597: 2565: 2559: 2558: 2540: 2516: 2510: 2509: 2508: 2507: 2474: 2468: 2467: 2439: 2433: 2432: 2422: 2390: 2381: 2380: 2354: 2345: 2344: 2317: 2311: 2310: 2283: 2277: 2276: 2275: 2274: 2241: 2235: 2234: 2194: 2177: 2176: 2157:10.1038/185117a0 2128: 2109: 2066:immunomodulation 1874:sanitary napkins 1764:synthetic rubber 1712:electro-spinning 1571: 1569: 1568: 1563: 1561: 1547: 1506:Maxwell material 1490: 1488: 1487: 1482: 1480: 1479: 1478: 1475: 1468: 1463: 1462: 1461: 1458: 1436: 1434: 1433: 1428: 1426: 1422: 1421: 1420: 1397: 1396: 1395: 1392: 1382: 1381: 1364: 1362: 1361: 1356: 1354: 1350: 1349: 1348: 1333: 1332: 1318: 1317: 1316: 1313: 1303: 1302: 1284: 1282: 1281: 1276: 1274: 1273: 1257: 1255: 1254: 1249: 1247: 1246: 1228: 1226: 1225: 1220: 1218: 1217: 1213: 1191: 1190: 1189: 1186: 1163: 1161: 1160: 1155: 1153: 1152: 1147: 1139: 1129: 1127: 1126: 1121: 1119: 1118: 1113: 1105: 1092:is the density, 1081:is temperature, 1062: 1060: 1059: 1054: 1052: 1050: 1049: 1044: 1036: 1033: 1022: 1011: 1010: 911: 899: 883: 882: 825:biodegradability 821:biocompatibility 804:calcium chloride 706:biodegradability 702:biocompatibility 556: 549: 542: 460:Applied coatings 297:Characterization 30: 21: 6874: 6873: 6869: 6868: 6867: 6865: 6864: 6863: 6854:Water chemistry 6834: 6833: 6832: 6795: 6791: 6789:Further reading 6786: 6785: 6745: 6744: 6740: 6694: 6693: 6689: 6645: 6644: 6640: 6604: 6603: 6599: 6593: 6572: 6571: 6567: 6529: 6528: 6524: 6488: 6487: 6483: 6453: 6452: 6448: 6418: 6417: 6413: 6369: 6368: 6364: 6326: 6325: 6321: 6297: 6296: 6292: 6283: 6281: 6272: 6271: 6267: 6257: 6255: 6246: 6245: 6241: 6231: 6229: 6210: 6209: 6205: 6196: 6194: 6185: 6184: 6180: 6138: 6137: 6133: 6079: 6078: 6074: 6032: 6031: 6027: 5997: 5996: 5992: 5954: 5953: 5949: 5905: 5904: 5897: 5858: 5857: 5850: 5806: 5805: 5798: 5752: 5751: 5744: 5704: 5703: 5699: 5690: 5688: 5681: 5666: 5665: 5661: 5605: 5604: 5600: 5548: 5547: 5543: 5497: 5496: 5492: 5451:(7): eaaw3963. 5438: 5437: 5433: 5403: 5402: 5398: 5346: 5345: 5341: 5304:(35): 2102994. 5295: 5294: 5290: 5253:(11): 1907061. 5244: 5243: 5239: 5197: 5196: 5192: 5153:(29): 2201452. 5140: 5139: 5135: 5075: 5074: 5070: 5010: 5009: 5005: 4998: 4977: 4976: 4972: 4918: 4917: 4910: 4872: 4871: 4867: 4836: 4835: 4831: 4785: 4784: 4780: 4734: 4733: 4729: 4675: 4674: 4670: 4626: 4625: 4621: 4591: 4590: 4575: 4568: 4545: 4544: 4540: 4480: 4479: 4475: 4415: 4414: 4410: 4368: 4367: 4363: 4319: 4318: 4314: 4267:(1): eade3240. 4254: 4253: 4249: 4199: 4198: 4189: 4155: 4154: 4150: 4120: 4119: 4112: 4102: 4100: 4092: 4087: 4086: 4082: 4052: 4051: 4044: 4000: 3999: 3995: 3988: 3973: 3972: 3968: 3922: 3921: 3900: 3870: 3869: 3865: 3835: 3834: 3830: 3796: 3795: 3791: 3745: 3744: 3740: 3696: 3695: 3691: 3649: 3648: 3641: 3611: 3610: 3603: 3561: 3560: 3556: 3526: 3525: 3521: 3471: 3470: 3466: 3436: 3435: 3431: 3387: 3386: 3382: 3340: 3339: 3335: 3275: 3274: 3270: 3232: 3231: 3224: 3188: 3187: 3180: 3128: 3127: 3123: 3079: 3078: 3074: 3067: 3050: 3049: 3045: 3024: 2999: 2998: 2994: 2952: 2951: 2947: 2903: 2902: 2898: 2864: 2863: 2859: 2817: 2816: 2812: 2770: 2769: 2765: 2723: 2722: 2718: 2658: 2657: 2650: 2616: 2615: 2611: 2567: 2566: 2562: 2518: 2517: 2513: 2505: 2503: 2501: 2476: 2475: 2471: 2441: 2440: 2436: 2392: 2391: 2384: 2377: 2356: 2355: 2348: 2341: 2319: 2318: 2314: 2307: 2285: 2284: 2280: 2272: 2270: 2268: 2243: 2242: 2238: 2196: 2195: 2180: 2130: 2129: 2125: 2102: 2062: 1991:methylcellulose 1848:polyacrylamides 1835:Breast implants 1809: 1785: 1780: 1707: 1690: 1657: 1601: 1581: 1554: 1540: 1529: 1528: 1497: 1495:Viscoelasticity 1469: 1452: 1441: 1440: 1409: 1402: 1398: 1386: 1373: 1368: 1367: 1337: 1324: 1323: 1319: 1307: 1294: 1289: 1288: 1265: 1260: 1259: 1238: 1233: 1232: 1198: 1180: 1175: 1174: 1137: 1132: 1131: 1103: 1098: 1097: 1086: 1034: 1023: 1002: 991: 990: 985: 977:viscoelasticity 943:viscoelasticity 934:storage modulus 926:Young's modulus 922: 915: 912: 903: 900: 891: 884: 875: 855:smart materials 851: 817: 778:photoinitiators 746: 658:hyaluronic acid 618: 613: 560: 531: 530: 442: 434: 433: 364: 356: 355: 299: 289: 288: 206:Polyisobutylene 187:Functional type 183: 173: 172: 119: 109: 108: 52: 33:Polymer science 28: 23: 22: 15: 12: 11: 5: 6872: 6870: 6862: 6861: 6856: 6851: 6846: 6836: 6835: 6831: 6830: 6792: 6790: 6787: 6784: 6783: 6754:(2): 991–998. 6738: 6687: 6658:(4): 583–594. 6638: 6597: 6591: 6565: 6538:(4): 290–296. 6522: 6501:(4): 922–926. 6481: 6446: 6411: 6382:(3): 199–213. 6362: 6319: 6290: 6265: 6239: 6203: 6178: 6131: 6072: 6025: 6006:(6): 435–444. 5990: 5947: 5918:(2): 834–873. 5895: 5848: 5796: 5742: 5697: 5679: 5659: 5629:10.1.1.318.690 5598: 5541: 5490: 5431: 5396: 5339: 5288: 5237: 5190: 5133: 5068: 5003: 4996: 4970: 4908: 4865: 4829: 4778: 4727: 4668: 4619: 4600:(3): 321–339. 4573: 4566: 4538: 4473: 4408: 4381:(3): 312–317. 4361: 4312: 4247: 4187: 4168:(2): 101–114. 4148: 4110: 4080: 4042: 3993: 3986: 3966: 3898: 3863: 3828: 3789: 3738: 3689: 3639: 3601: 3554: 3519: 3484:(5): 611–614. 3464: 3429: 3400:(3): 416–426. 3380: 3353:(8): 623–633. 3333: 3268: 3222: 3178: 3141:(7): 596–600. 3121: 3092:(6): 431–439. 3072: 3065: 3043: 3012:(4): 297–304. 2992: 2945: 2896: 2857: 2810: 2763: 2716: 2648: 2609: 2560: 2511: 2499: 2469: 2450:(7): 213–214. 2434: 2405:(2): 105–121. 2382: 2376:978-0471238966 2375: 2346: 2339: 2312: 2305: 2278: 2266: 2236: 2178: 2122: 2121: 2101: 2098: 2061: 2058: 2057: 2056: 2053: 2047: 2044: 2039: 2036: 2029: 2009: 2002: 1980: 1977: 1974:holotomography 1970: 1963:3D bioprinting 1959: 1953: 1950: 1943: 1936: 1931: 1926: 1922: 1917: 1891: 1876: 1862: 1855: 1840:Contact lenses 1837: 1832: 1829: 1808: 1805: 1784: 1781: 1779: 1776: 1751:freeze-casting 1743:sodium sulfate 1728:freeze-casting 1706: 1703: 1699:microparticles 1689: 1686: 1656: 1653: 1641:hydrogen bonds 1600: 1597: 1584:Poroelasticity 1580: 1579:Poroelasticity 1577: 1573: 1572: 1560: 1557: 1553: 1550: 1546: 1543: 1539: 1536: 1496: 1493: 1472: 1467: 1455: 1451: 1448: 1425: 1419: 1416: 1412: 1408: 1405: 1401: 1389: 1385: 1380: 1376: 1353: 1347: 1344: 1340: 1336: 1331: 1327: 1322: 1310: 1306: 1301: 1297: 1272: 1268: 1245: 1241: 1216: 1212: 1208: 1205: 1201: 1197: 1194: 1183: 1151: 1145: 1142: 1117: 1111: 1108: 1084: 1048: 1042: 1039: 1032: 1029: 1026: 1020: 1017: 1014: 1009: 1005: 1001: 998: 984: 981: 947:poroelasticity 921: 918: 917: 916: 913: 906: 904: 901: 894: 892: 885: 873: 850: 847: 816: 813: 745: 742: 643:hydrogen bonds 617: 616:Classification 614: 612: 609: 562: 561: 559: 558: 551: 544: 536: 533: 532: 529: 528: 523: 521:Plastic bottle 518: 513: 508: 507: 506: 504:Food Container 501: 491: 490: 489: 479: 474: 469: 464: 463: 462: 457: 447: 443: 440: 439: 436: 435: 432: 431: 426: 421: 416: 411: 406: 401: 396: 391: 386: 381: 376: 371: 365: 362: 361: 358: 357: 354: 353: 352: 351: 346: 336: 331: 326: 321: 316: 311: 306: 300: 295: 294: 291: 290: 287: 286: 285: 284: 283: 282: 267: 262: 257: 253: 252: 251: 250: 245: 240: 235: 228:Vinyl polymers 225: 220: 215: 210: 209: 208: 203: 198: 188: 184: 181:Classification 179: 178: 175: 174: 171: 170: 165: 160: 154: 153: 152: 151: 146: 141: 131: 126: 120: 115: 114: 111: 110: 107: 106: 105: 104: 99: 94: 89: 84: 77:Phase behavior 74: 69: 64: 59: 53: 50: 49: 46: 45: 35: 34: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 6871: 6860: 6857: 6855: 6852: 6850: 6847: 6845: 6842: 6841: 6839: 6827: 6823: 6819: 6815: 6811: 6807: 6803: 6799: 6794: 6793: 6788: 6779: 6775: 6770: 6765: 6761: 6757: 6753: 6749: 6742: 6739: 6734: 6730: 6725: 6720: 6715: 6710: 6706: 6702: 6698: 6691: 6688: 6683: 6679: 6674: 6669: 6665: 6661: 6657: 6653: 6649: 6642: 6639: 6634: 6630: 6625: 6620: 6616: 6612: 6608: 6601: 6598: 6594: 6588: 6584: 6580: 6576: 6569: 6566: 6561: 6557: 6553: 6549: 6545: 6541: 6537: 6533: 6526: 6523: 6518: 6514: 6509: 6504: 6500: 6496: 6492: 6485: 6482: 6477: 6473: 6469: 6465: 6461: 6457: 6450: 6447: 6442: 6438: 6434: 6430: 6426: 6422: 6415: 6412: 6407: 6403: 6398: 6393: 6389: 6385: 6381: 6377: 6373: 6366: 6363: 6358: 6354: 6350: 6346: 6342: 6338: 6334: 6330: 6323: 6320: 6314: 6309: 6305: 6301: 6294: 6291: 6280: 6276: 6269: 6266: 6253: 6249: 6243: 6240: 6227: 6222: 6218: 6214: 6207: 6204: 6193: 6189: 6182: 6179: 6174: 6170: 6166: 6162: 6158: 6154: 6150: 6146: 6142: 6135: 6132: 6127: 6123: 6118: 6113: 6109: 6105: 6100: 6095: 6091: 6087: 6083: 6076: 6073: 6068: 6064: 6060: 6056: 6052: 6048: 6044: 6040: 6036: 6029: 6026: 6021: 6017: 6013: 6009: 6005: 6001: 5994: 5991: 5986: 5982: 5978: 5974: 5970: 5966: 5962: 5958: 5951: 5948: 5943: 5939: 5934: 5929: 5925: 5921: 5917: 5913: 5909: 5902: 5900: 5896: 5891: 5887: 5883: 5879: 5875: 5871: 5867: 5863: 5855: 5853: 5849: 5844: 5840: 5835: 5830: 5826: 5822: 5818: 5814: 5813:Bone Research 5810: 5803: 5801: 5797: 5792: 5788: 5783: 5778: 5773: 5768: 5764: 5760: 5756: 5749: 5747: 5743: 5738: 5734: 5729: 5724: 5720: 5716: 5712: 5708: 5701: 5698: 5687:on 2017-10-29 5686: 5682: 5676: 5672: 5671: 5663: 5660: 5655: 5651: 5647: 5643: 5639: 5635: 5630: 5625: 5621: 5617: 5613: 5609: 5602: 5599: 5594: 5590: 5585: 5580: 5576: 5572: 5568: 5564: 5560: 5556: 5552: 5545: 5542: 5537: 5533: 5528: 5523: 5518: 5513: 5509: 5505: 5501: 5494: 5491: 5486: 5482: 5477: 5472: 5467: 5462: 5458: 5454: 5450: 5446: 5442: 5435: 5432: 5427: 5423: 5419: 5415: 5411: 5407: 5400: 5397: 5392: 5388: 5383: 5378: 5374: 5370: 5366: 5362: 5358: 5354: 5350: 5343: 5340: 5335: 5331: 5327: 5323: 5319: 5315: 5311: 5307: 5303: 5299: 5292: 5289: 5284: 5280: 5276: 5272: 5268: 5264: 5260: 5256: 5252: 5248: 5241: 5238: 5233: 5229: 5225: 5221: 5217: 5213: 5209: 5205: 5201: 5194: 5191: 5186: 5182: 5178: 5174: 5169: 5164: 5160: 5156: 5152: 5148: 5144: 5137: 5134: 5129: 5125: 5120: 5115: 5111: 5107: 5103: 5099: 5095: 5091: 5087: 5083: 5079: 5072: 5069: 5064: 5060: 5055: 5050: 5046: 5042: 5038: 5034: 5030: 5026: 5022: 5018: 5014: 5007: 5004: 4999: 4997:9780471484943 4993: 4989: 4985: 4981: 4974: 4971: 4966: 4962: 4958: 4954: 4950: 4946: 4942: 4938: 4934: 4930: 4926: 4922: 4915: 4913: 4909: 4904: 4900: 4896: 4892: 4888: 4884: 4880: 4876: 4869: 4866: 4861: 4857: 4853: 4849: 4845: 4841: 4833: 4830: 4825: 4821: 4816: 4811: 4806: 4801: 4797: 4793: 4792:Nanomaterials 4789: 4782: 4779: 4774: 4770: 4766: 4762: 4758: 4754: 4750: 4746: 4742: 4738: 4731: 4728: 4723: 4719: 4714: 4709: 4704: 4699: 4695: 4691: 4687: 4683: 4679: 4672: 4669: 4664: 4660: 4655: 4650: 4646: 4642: 4639:(1): 012037. 4638: 4634: 4630: 4623: 4620: 4615: 4611: 4607: 4603: 4599: 4595: 4588: 4586: 4584: 4582: 4580: 4578: 4574: 4569: 4563: 4559: 4555: 4551: 4550: 4542: 4539: 4534: 4530: 4525: 4520: 4516: 4512: 4508: 4504: 4500: 4496: 4492: 4488: 4484: 4477: 4474: 4469: 4465: 4460: 4455: 4451: 4447: 4443: 4439: 4435: 4431: 4427: 4423: 4419: 4412: 4409: 4404: 4400: 4396: 4392: 4388: 4384: 4380: 4376: 4372: 4365: 4362: 4357: 4353: 4349: 4345: 4340: 4335: 4331: 4327: 4323: 4316: 4313: 4308: 4304: 4299: 4294: 4290: 4286: 4282: 4278: 4274: 4270: 4266: 4262: 4258: 4251: 4248: 4243: 4239: 4235: 4231: 4227: 4223: 4219: 4215: 4211: 4207: 4203: 4196: 4194: 4192: 4188: 4183: 4179: 4175: 4171: 4167: 4163: 4159: 4152: 4149: 4144: 4140: 4136: 4132: 4128: 4124: 4117: 4115: 4111: 4098: 4091: 4084: 4081: 4076: 4072: 4068: 4064: 4060: 4056: 4049: 4047: 4043: 4038: 4034: 4029: 4024: 4020: 4016: 4012: 4008: 4004: 3997: 3994: 3989: 3983: 3979: 3978: 3970: 3967: 3962: 3958: 3954: 3950: 3946: 3942: 3938: 3934: 3930: 3926: 3919: 3917: 3915: 3913: 3911: 3909: 3907: 3905: 3903: 3899: 3894: 3890: 3886: 3882: 3878: 3874: 3873:Lab on a Chip 3867: 3864: 3859: 3855: 3851: 3847: 3843: 3839: 3832: 3829: 3824: 3820: 3816: 3812: 3808: 3804: 3800: 3793: 3790: 3785: 3781: 3777: 3776:11368/2841344 3773: 3769: 3765: 3761: 3757: 3753: 3749: 3742: 3739: 3734: 3730: 3725: 3720: 3716: 3712: 3708: 3704: 3700: 3693: 3690: 3685: 3681: 3677: 3673: 3669: 3665: 3661: 3657: 3653: 3646: 3644: 3640: 3635: 3631: 3627: 3623: 3619: 3615: 3608: 3606: 3602: 3597: 3593: 3589: 3585: 3581: 3577: 3573: 3569: 3565: 3558: 3555: 3550: 3546: 3542: 3538: 3534: 3530: 3523: 3520: 3515: 3511: 3507: 3503: 3499: 3495: 3491: 3487: 3483: 3479: 3475: 3468: 3465: 3460: 3456: 3452: 3448: 3444: 3440: 3433: 3430: 3425: 3421: 3416: 3411: 3407: 3403: 3399: 3395: 3391: 3384: 3381: 3376: 3372: 3368: 3364: 3360: 3356: 3352: 3348: 3344: 3337: 3334: 3329: 3325: 3321: 3317: 3312: 3307: 3303: 3299: 3295: 3291: 3287: 3283: 3279: 3272: 3269: 3263: 3258: 3254: 3250: 3246: 3242: 3241: 3236: 3229: 3227: 3223: 3218: 3214: 3209: 3204: 3200: 3196: 3195:BioTechniques 3192: 3185: 3183: 3179: 3174: 3170: 3165: 3160: 3156: 3152: 3148: 3144: 3140: 3136: 3132: 3125: 3122: 3117: 3113: 3108: 3103: 3099: 3095: 3091: 3087: 3083: 3076: 3073: 3068: 3062: 3058: 3054: 3047: 3044: 3039: 3035: 3029: 3020: 3015: 3011: 3007: 3003: 2996: 2993: 2988: 2984: 2980: 2976: 2972: 2968: 2964: 2960: 2956: 2949: 2946: 2941: 2937: 2932: 2927: 2923: 2919: 2915: 2911: 2907: 2900: 2897: 2892: 2888: 2884: 2880: 2876: 2872: 2868: 2861: 2858: 2853: 2849: 2845: 2841: 2837: 2833: 2829: 2825: 2821: 2814: 2811: 2806: 2802: 2798: 2794: 2790: 2786: 2782: 2778: 2774: 2767: 2764: 2759: 2755: 2751: 2747: 2743: 2739: 2735: 2731: 2727: 2720: 2717: 2712: 2708: 2703: 2698: 2694: 2690: 2686: 2682: 2678: 2674: 2670: 2666: 2662: 2655: 2653: 2649: 2644: 2640: 2636: 2632: 2628: 2624: 2620: 2613: 2610: 2605: 2601: 2596: 2591: 2587: 2583: 2579: 2575: 2571: 2564: 2561: 2556: 2552: 2548: 2544: 2539: 2534: 2530: 2526: 2522: 2515: 2512: 2502: 2496: 2492: 2488: 2484: 2480: 2473: 2470: 2465: 2461: 2457: 2453: 2449: 2445: 2438: 2435: 2430: 2426: 2421: 2416: 2412: 2408: 2404: 2400: 2396: 2389: 2387: 2383: 2378: 2372: 2368: 2364: 2360: 2353: 2351: 2347: 2342: 2336: 2332: 2328: 2324: 2323: 2316: 2313: 2308: 2306:9780081021941 2302: 2298: 2294: 2290: 2289: 2282: 2279: 2269: 2263: 2259: 2255: 2251: 2247: 2240: 2237: 2232: 2228: 2224: 2220: 2216: 2212: 2208: 2204: 2200: 2193: 2191: 2189: 2187: 2185: 2183: 2179: 2174: 2170: 2166: 2162: 2158: 2154: 2150: 2146: 2142: 2138: 2134: 2127: 2124: 2120: 2119: 2117: 2113: 2108: 2099: 2097: 2095: 2094:iontophoresis 2091: 2085: 2083: 2079: 2075: 2074:brachytherapy 2071: 2067: 2059: 2054: 2051: 2048: 2045: 2043: 2040: 2037: 2034: 2030: 2028:interactions. 2026: 2022: 2018: 2014: 2010: 2007: 2006:drug delivery 2003: 2000: 1996: 1992: 1988: 1984: 1981: 1978: 1975: 1971: 1968: 1964: 1960: 1957: 1954: 1951: 1948: 1944: 1941: 1937: 1935: 1932: 1930: 1927: 1923: 1921: 1918: 1915: 1911: 1907: 1903: 1899: 1895: 1892: 1889: 1885: 1881: 1877: 1875: 1871: 1867: 1863: 1860: 1856: 1853: 1849: 1845: 1841: 1838: 1836: 1833: 1830: 1827: 1826: 1821: 1813: 1806: 1804: 1802: 1798: 1789: 1782: 1777: 1775: 1773: 1769: 1765: 1761: 1757: 1752: 1748: 1744: 1740: 1736: 1731: 1729: 1725: 1724:self-assembly 1721: 1717: 1713: 1704: 1702: 1700: 1696: 1695:nanoparticles 1687: 1685: 1683: 1679: 1675: 1669: 1667: 1663: 1654: 1652: 1650: 1646: 1642: 1638: 1637:drug delivery 1634: 1629: 1627: 1622: 1613: 1609: 1606: 1598: 1596: 1592: 1590: 1585: 1578: 1576: 1558: 1555: 1551: 1548: 1544: 1541: 1537: 1534: 1527: 1526: 1525: 1522: 1517: 1515: 1511: 1507: 1501: 1494: 1492: 1470: 1465: 1453: 1449: 1446: 1437: 1423: 1417: 1414: 1410: 1406: 1403: 1399: 1387: 1383: 1378: 1374: 1365: 1351: 1345: 1342: 1338: 1334: 1329: 1325: 1320: 1308: 1304: 1299: 1295: 1286: 1270: 1266: 1243: 1239: 1229: 1214: 1210: 1206: 1203: 1199: 1195: 1192: 1181: 1172: 1169: 1167: 1149: 1140: 1115: 1106: 1095: 1091: 1087: 1080: 1076: 1072: 1071:shear modulus 1068: 1063: 1046: 1037: 1030: 1027: 1024: 1018: 1015: 1012: 1007: 1003: 999: 996: 988: 982: 980: 978: 974: 969: 967: 963: 960: 956: 952: 948: 944: 940: 935: 931: 930:shear modulus 927: 919: 910: 905: 898: 893: 889: 872: 870: 868: 864: 860: 856: 848: 846: 843: 839: 835: 831: 826: 822: 814: 812: 809: 805: 801: 796: 791: 788: 783: 779: 774: 772: 768: 763: 759: 750: 743: 741: 739: 735: 731: 727: 723: 719: 715: 711: 707: 703: 699: 695: 691: 687: 683: 679: 675: 671: 667: 663: 659: 655: 650: 648: 644: 640: 636: 631: 627: 623: 615: 610: 604: 600: 597: 593: 589: 585: 576: 568: 557: 552: 550: 545: 543: 538: 537: 535: 534: 527: 524: 522: 519: 517: 514: 512: 509: 505: 502: 500: 497: 496: 495: 492: 488: 485: 484: 483: 480: 478: 475: 473: 470: 468: 465: 461: 458: 456: 453: 452: 451: 448: 445: 444: 438: 437: 430: 427: 425: 422: 420: 417: 415: 412: 410: 407: 405: 402: 400: 397: 395: 392: 390: 387: 385: 382: 380: 377: 375: 372: 370: 367: 366: 360: 359: 350: 347: 345: 342: 341: 340: 337: 335: 332: 330: 327: 325: 322: 320: 317: 315: 312: 310: 307: 305: 302: 301: 298: 293: 292: 281: 278: 277: 276: 273: 272: 271: 268: 266: 263: 261: 258: 255: 254: 249: 246: 244: 241: 239: 236: 234: 231: 230: 229: 226: 224: 223:Polycarbonate 221: 219: 216: 214: 211: 207: 204: 202: 201:Polypropylene 199: 197: 194: 193: 192: 189: 186: 185: 182: 177: 176: 169: 166: 164: 161: 159: 156: 155: 150: 147: 145: 142: 140: 137: 136: 135: 132: 130: 127: 125: 122: 121: 118: 113: 112: 103: 100: 98: 95: 93: 90: 88: 85: 83: 80: 79: 78: 75: 73: 70: 68: 65: 63: 60: 58: 55: 54: 48: 47: 41: 37: 36: 31: 19: 6801: 6797: 6751: 6747: 6741: 6704: 6700: 6690: 6655: 6651: 6641: 6617:(6): 57–64. 6614: 6610: 6600: 6574: 6568: 6535: 6531: 6525: 6498: 6494: 6484: 6459: 6456:Biomaterials 6455: 6449: 6424: 6420: 6414: 6379: 6375: 6365: 6332: 6328: 6322: 6303: 6293: 6282:. Retrieved 6278: 6268: 6256:. Retrieved 6251: 6242: 6230:. Retrieved 6216: 6206: 6195:. Retrieved 6191: 6181: 6148: 6144: 6134: 6089: 6085: 6075: 6042: 6038: 6028: 6003: 5999: 5993: 5960: 5956: 5950: 5915: 5911: 5865: 5861: 5819:(1): 17014. 5816: 5812: 5762: 5758: 5718: 5714: 5705:Yetisen AK, 5700: 5689:. Retrieved 5685:the original 5669: 5662: 5611: 5607: 5601: 5558: 5554: 5544: 5507: 5503: 5493: 5448: 5444: 5434: 5409: 5405: 5399: 5356: 5352: 5342: 5301: 5297: 5291: 5250: 5246: 5240: 5207: 5203: 5193: 5150: 5146: 5136: 5085: 5081: 5071: 5020: 5016: 5006: 4979: 4973: 4924: 4920: 4878: 4874: 4868: 4843: 4840:Biomaterials 4839: 4832: 4795: 4791: 4781: 4740: 4736: 4730: 4685: 4681: 4671: 4636: 4632: 4622: 4597: 4593: 4548: 4541: 4490: 4486: 4476: 4425: 4421: 4411: 4378: 4374: 4364: 4329: 4325: 4315: 4264: 4260: 4250: 4209: 4205: 4165: 4161: 4151: 4126: 4122: 4101:. Retrieved 4096: 4088:Roylance D. 4083: 4058: 4055:Biomaterials 4054: 4010: 4006: 3996: 3976: 3969: 3931:(1): 44–59. 3928: 3924: 3876: 3872: 3866: 3841: 3837: 3831: 3806: 3802: 3792: 3751: 3747: 3741: 3706: 3702: 3692: 3659: 3655: 3617: 3613: 3574:(17): 4144. 3571: 3567: 3557: 3532: 3528: 3522: 3481: 3477: 3467: 3442: 3438: 3432: 3397: 3393: 3383: 3350: 3346: 3336: 3311:10072/417476 3285: 3281: 3271: 3244: 3238: 3201:(1): 40–53. 3198: 3194: 3138: 3134: 3124: 3089: 3085: 3075: 3056: 3046: 3028:cite journal 3009: 3005: 2995: 2962: 2958: 2948: 2913: 2909: 2899: 2874: 2870: 2860: 2827: 2823: 2813: 2780: 2776: 2766: 2736:(1): 37–51. 2733: 2729: 2719: 2671:(2): 15012. 2668: 2664: 2618: 2612: 2580:(1): 24–56. 2577: 2573: 2563: 2528: 2524: 2514: 2504:, retrieved 2482: 2472: 2447: 2443: 2437: 2402: 2398: 2358: 2321: 2315: 2287: 2281: 2271:, retrieved 2249: 2239: 2206: 2202: 2140: 2136: 2126: 2104: 2103: 2086: 2080:, chitosan, 2063: 2060:Biomaterials 1967:self-healing 1947:electrolysis 1902:cross-linked 1794: 1778:Applications 1732: 1708: 1691: 1684:, and more. 1670: 1658: 1630: 1618: 1602: 1593: 1582: 1574: 1518: 1514:Prony Series 1502: 1498: 1438: 1366: 1287: 1230: 1173: 1170: 1165: 1093: 1089: 1082: 1078: 1074: 1066: 1064: 989: 986: 970: 923: 852: 818: 792: 775: 762:oligopeptide 755: 734:polyacrylate 718:regeneration 651: 619: 583: 581: 511:Vinyl record 455:Blow molding 441:Applications 213:Polyurethane 196:Polyethylene 57:Architecture 6859:Soft matter 5707:Naydenova I 5510:(7): 3665. 5359:(1): 2761. 4798:(11): 882. 4688:(7): 1083. 4428:(1): 1344. 4129:: 118–122. 3809:(7): 1349. 3709:(1): 1480. 3662:(9): 1971. 3656:Soft Matter 3568:Soft Matter 3247:: 252–267. 2531:: 470–482. 1864:Disposable 1846:hydrogels, 1801:vasculature 1772:spider silk 1739:salting out 1720:4D printing 1626:temperature 955:compression 782:ultraviolet 744:Preparation 526:Plastic bag 472:3D printing 260:Homopolymer 248:Polystyrene 72:Degradation 6838:Categories 6769:2299/16856 6724:2299/16512 6284:2022-12-25 6197:2022-09-26 6151:: 121785. 6092:(9): 588. 5691:2019-04-17 3288:: 110974. 2965:(7): 112. 2783:: 124622. 2506:2023-01-17 2273:2023-01-16 2209:: 127708. 2100:References 1995:hyaluronan 1976:microscopy 1956:Biosensors 1904:polymers ( 1888:Wound gels 1664:(UCST) or 1621:hysteresis 939:elasticity 832:sequence, 830:amino acid 714:antifungal 710:antibiotic 698:copolymers 487:Whitewalls 409:Staudinger 379:MacDiarmid 363:Scientists 349:Viscometry 191:Polyolefin 67:Morphology 51:Properties 6826:0021-9584 6633:1884-4057 6279:New Atlas 6258:April 23, 6192:New Atlas 6165:0378-5173 6108:2310-2861 6059:1520-6106 6020:1359-0294 5985:2046-2069 5890:199574808 5765:(1): 27. 5624:CiteSeerX 5334:236174198 5283:211036014 5232:254387206 5224:2050-7496 5185:249355500 5177:1614-6832 5110:2375-2548 5045:2375-2548 4965:232048202 4903:227258845 4773:205236639 4682:Materials 4663:1742-6588 4515:2375-2548 4450:2041-1723 4395:2161-1653 4348:1022-1336 4289:2375-2548 4234:0935-9648 4182:2643-6728 4143:103246330 3961:136844625 3953:0950-6608 3823:2041-6520 3748:Nanoscale 3684:1744-683X 3596:1744-683X 3514:136880479 3506:0935-9648 3424:2159-6867 3367:1616-5187 3328:245576810 3320:0014-3057 2987:136085690 2979:1022-9760 2891:2052-1537 2844:0141-8130 2805:213116098 2797:0927-7757 2750:0169-409X 2693:2058-8437 2643:135464452 2555:229694027 2464:197928622 2231:264944892 2223:0141-8130 2165:0028-0836 2116:CC BY 3.0 2082:cellulose 1852:polymacon 1688:Additives 1605:toughness 1447:λ 1415:− 1411:λ 1407:− 1404:λ 1375:σ 1343:− 1339:λ 1335:− 1326:λ 1296:σ 1267:σ 1240:σ 1204:− 1144:¯ 1110:¯ 1041:¯ 1025:ρ 962:rheometry 888:micropump 863:actuators 838:chirality 771:α-helical 722:stability 611:Chemistry 596:insoluble 592:permeable 450:Extrusion 429:Braconnot 419:Baekeland 399:de Gennes 384:Shirakawa 344:Rheometry 275:Hydrogels 265:Copolymer 256:Structure 218:Polyester 117:Synthesis 62:Tacticity 18:Hydrogels 6778:26440734 6733:26221632 6682:19216632 6560:31364133 6552:10340211 6517:10320229 6476:22361096 6441:23376126 6406:22192467 6357:24843309 6349:21619469 6252:Phys.org 6173:35500690 6126:36135299 6067:16375370 5942:35930422 5882:31408340 5843:28584674 5791:30275970 5737:25211200 5646:16293750 5593:32300656 5536:35409025 5485:31355332 5426:26374941 5412:: 8–17. 5391:35589809 5326:34292641 5275:32022974 5128:32300656 5063:38117897 5054:10732533 4957:33627812 4895:33263991 4860:21723599 4824:30380606 4765:24336207 4722:30986948 4614:11744175 4533:37390216 4524:10313164 4468:38350981 4459:10864390 4403:35632906 4356:36809684 4307:36598986 4242:36126085 4037:23946054 3893:21761057 3858:20131781 3784:22955637 3733:23403581 3634:19921840 3614:Langmuir 3549:19705843 3459:23958781 3375:16881042 3217:30730212 3173:19543314 3116:26240838 2940:23609001 2852:10517518 2758:11755705 2711:29214058 2635:31028759 2604:32567846 2547:33359581 2429:25750745 2291:. 2018. 2118:license. 2078:collagen 2021:proteins 2017:peptides 2013:polymers 1910:polyAMPS 1872:, or in 1844:silicone 1807:Research 1797:siloxane 1758:(PDMS), 1682:antigens 1680:, ions, 1678:pressure 1559:″ 1545:′ 1476:original 842:aromatic 800:Alginate 726:strength 670:alginate 662:chitosan 639:gelatine 635:alginate 630:thiomers 584:hydrogel 499:Bakelite 414:Goodyear 339:Rheology 6806:Bibcode 6673:2819712 6397:3408056 6232:15 July 6117:9498840 5965:Bibcode 5957:RSC Adv 5933:9881015 5834:5448314 5782:6158836 5654:9036803 5616:Bibcode 5608:Science 5584:7148083 5563:Bibcode 5527:8998863 5476:6656537 5453:Bibcode 5382:9120194 5361:Bibcode 5306:Bibcode 5255:Bibcode 5155:Bibcode 5119:7148083 5090:Bibcode 5025:Bibcode 4949:1774154 4929:Bibcode 4815:6265757 4745:Bibcode 4713:6479463 4690:Bibcode 4641:Bibcode 4495:Bibcode 4430:Bibcode 4298:9812377 4269:Bibcode 4214:Bibcode 4075:8866026 4028:4304325 3933:Bibcode 3756:Bibcode 3711:Bibcode 3664:Bibcode 3576:Bibcode 3486:Bibcode 3402:Bibcode 3290:Bibcode 3249:Bibcode 3164:2869032 3143:Bibcode 3107:4517957 2931:3762890 2702:5714327 2673:Bibcode 2595:7805012 2420:4348459 2173:4211987 2145:Bibcode 2025:osmotic 1987:agarose 1925:change. 1866:diapers 1459:current 1393:swollen 1314:swollen 1187:swollen 1069:is the 951:tension 867:sensors 808:Gelatin 758:peptide 674:gelatin 666:heparin 424:Hayward 404:Ziegler 394:Edwards 6824:  6776:  6731:  6680:  6670:  6631:  6589:  6558:  6550:  6515:  6474:  6439:  6404:  6394:  6355:  6347:  6171:  6163:  6124:  6114:  6106:  6065:  6057:  6018:  5983:  5940:  5930:  5888:  5880:  5841:  5831:  5789:  5779:  5735:  5677:  5652:  5644:  5626:  5591:  5581:  5534:  5524:  5483:  5473:  5424:  5389:  5379:  5332:  5324:  5281:  5273:  5230:  5222:  5183:  5175:  5126:  5116:  5108:  5061:  5051:  5043:  4994:  4963:  4955:  4947:  4921:Nature 4901:  4893:  4858:  4822:  4812:  4771:  4763:  4737:Nature 4720:  4710:  4661:  4612:  4564:  4531:  4521:  4513:  4466:  4456:  4448:  4401:  4393:  4354:  4346:  4305:  4295:  4287:  4240:  4232:  4212:(50). 4180:  4141:  4103:11 May 4073:  4035:  4025:  3984:  3959:  3951:  3891:  3856:  3821:  3782:  3731:  3682:  3632:  3594:  3547:  3512:  3504:  3457:  3422:  3373:  3365:  3326:  3318:  3215:  3171:  3161:  3114:  3104:  3063:  2985:  2977:  2938:  2928:  2889:  2850:  2842:  2803:  2795:  2756:  2748:  2709:  2699:  2691:  2641:  2633:  2602:  2592:  2553:  2545:  2497:  2462:  2427:  2417:  2373:  2337:  2303:  2264:  2229:  2221:  2171:  2163:  2137:Nature 2019:, and 1929:Fibers 1884:wounds 1768:tendon 1762:, and 1760:Kevlar 1726:, and 1647:, and 1439:where 1065:where 932:, and 736:, and 678:fibrin 588:porous 516:Kevlar 374:Heeger 6556:S2CID 6353:S2CID 5886:S2CID 5650:S2CID 5330:S2CID 5279:S2CID 5228:S2CID 5181:S2CID 4961:S2CID 4899:S2CID 4769:S2CID 4139:S2CID 4093:(PDF) 3957:S2CID 3510:S2CID 3324:S2CID 2983:S2CID 2801:S2CID 2639:S2CID 2551:S2CID 2460:S2CID 2227:S2CID 2169:S2CID 2050:Talin 1870:urine 1674:light 959:shear 849:Other 482:Tires 389:Natta 369:Flory 6849:Gels 6822:ISSN 6774:PMID 6729:PMID 6678:PMID 6629:ISSN 6587:ISBN 6548:PMID 6513:PMID 6472:PMID 6437:PMID 6402:PMID 6345:PMID 6260:2020 6234:2022 6169:PMID 6161:ISSN 6122:PMID 6104:ISSN 6086:Gels 6063:PMID 6055:ISSN 6016:ISSN 5981:ISSN 5938:PMID 5878:PMID 5839:PMID 5787:PMID 5733:PMID 5675:ISBN 5642:PMID 5589:PMID 5532:PMID 5481:PMID 5422:PMID 5387:PMID 5322:PMID 5271:PMID 5220:ISSN 5173:ISSN 5124:PMID 5106:ISSN 5059:PMID 5041:ISSN 4992:ISBN 4953:PMID 4945:OSTI 4891:PMID 4856:PMID 4820:PMID 4761:PMID 4718:PMID 4659:ISSN 4610:PMID 4562:ISBN 4529:PMID 4511:ISSN 4464:PMID 4446:ISSN 4399:PMID 4391:ISSN 4352:PMID 4344:ISSN 4303:PMID 4285:ISSN 4238:PMID 4230:ISSN 4178:ISSN 4105:2021 4071:PMID 4033:PMID 3982:ISBN 3949:ISSN 3889:PMID 3854:PMID 3819:ISSN 3780:PMID 3729:PMID 3680:ISSN 3630:PMID 3592:ISSN 3545:PMID 3502:ISSN 3455:PMID 3420:ISSN 3371:PMID 3363:ISSN 3316:ISSN 3213:PMID 3169:PMID 3112:PMID 3061:ISBN 3038:link 3034:link 2975:ISSN 2936:PMID 2887:ISSN 2848:PMID 2840:ISSN 2793:ISSN 2754:PMID 2746:ISSN 2707:PMID 2689:ISSN 2631:PMID 2600:PMID 2543:PMID 2495:ISBN 2425:PMID 2371:ISBN 2335:ISBN 2301:ISBN 2262:ISBN 2219:ISSN 2161:ISSN 2112:text 1940:soil 1934:Glue 1912:and 1896:and 1880:burn 1770:and 1697:and 1635:and 1619:The 1603:The 975:and 941:and 823:and 724:and 696:and 676:and 309:FTIR 270:Gels 243:PVAc 144:RAFT 139:ATRP 92:LCST 87:UCST 6814:doi 6764:hdl 6756:doi 6752:495 6719:hdl 6709:doi 6668:PMC 6660:doi 6619:doi 6579:doi 6540:doi 6503:doi 6464:doi 6429:doi 6392:PMC 6384:doi 6337:doi 6308:doi 6221:doi 6153:doi 6149:621 6112:PMC 6094:doi 6047:doi 6043:109 6008:doi 5973:doi 5928:PMC 5920:doi 5916:123 5870:doi 5829:PMC 5821:doi 5777:PMC 5767:doi 5723:doi 5719:114 5634:doi 5612:310 5579:PMC 5571:doi 5522:PMC 5512:doi 5471:PMC 5461:doi 5414:doi 5410:219 5377:PMC 5369:doi 5314:doi 5263:doi 5212:doi 5163:doi 5114:PMC 5098:doi 5049:PMC 5033:doi 4984:doi 4937:doi 4925:590 4883:doi 4848:doi 4810:PMC 4800:doi 4753:doi 4741:505 4708:PMC 4698:doi 4649:doi 4637:790 4602:doi 4554:doi 4519:PMC 4503:doi 4454:PMC 4438:doi 4383:doi 4334:doi 4293:PMC 4277:doi 4222:doi 4170:doi 4131:doi 4063:doi 4023:PMC 4015:doi 4011:102 3941:doi 3881:doi 3846:doi 3842:132 3811:doi 3772:hdl 3764:doi 3719:doi 3672:doi 3622:doi 3584:doi 3537:doi 3494:doi 3447:doi 3410:doi 3355:doi 3306:hdl 3298:doi 3286:164 3257:doi 3203:doi 3159:PMC 3151:doi 3102:PMC 3094:doi 3014:doi 2967:doi 2926:PMC 2918:doi 2879:doi 2832:doi 2785:doi 2781:593 2738:doi 2697:PMC 2681:doi 2623:doi 2590:PMC 2582:doi 2533:doi 2529:330 2487:doi 2452:doi 2415:PMC 2407:doi 2363:doi 2327:doi 2293:doi 2254:doi 2211:doi 2207:254 2153:doi 2141:185 2072:or 1898:ECG 1894:EEG 1749:or 964:or 865:or 334:DMA 329:TGA 324:NMR 319:DSC 304:GPC 238:PVA 233:PVC 6840:: 6820:. 6812:. 6802:94 6800:. 6772:. 6762:. 6750:. 6727:. 6717:. 6705:51 6703:. 6699:. 6676:. 6666:. 6656:15 6654:. 6650:. 6627:. 6613:. 6609:. 6585:, 6554:. 6546:. 6536:13 6534:. 6511:. 6499:67 6497:. 6493:. 6470:. 6460:33 6458:. 6435:. 6423:. 6400:. 6390:. 6380:72 6378:. 6374:. 6351:. 6343:. 6331:. 6306:. 6302:. 6277:. 6250:. 6219:. 6215:. 6190:. 6167:. 6159:. 6147:. 6143:. 6120:. 6110:. 6102:. 6088:. 6084:. 6061:. 6053:. 6041:. 6037:. 6014:. 6004:15 6002:. 5979:. 5971:. 5959:. 5936:. 5926:. 5914:. 5910:. 5898:^ 5884:. 5876:. 5866:20 5864:. 5851:^ 5837:. 5827:. 5815:. 5811:. 5799:^ 5785:. 5775:. 5763:22 5761:. 5757:. 5745:^ 5731:. 5717:. 5713:. 5648:. 5640:. 5632:. 5622:. 5610:. 5587:. 5577:. 5569:. 5557:. 5553:. 5530:. 5520:. 5508:23 5506:. 5502:. 5479:. 5469:. 5459:. 5447:. 5443:. 5420:. 5408:. 5385:. 5375:. 5367:. 5357:13 5355:. 5351:. 5328:. 5320:. 5312:. 5302:33 5300:. 5277:. 5269:. 5261:. 5251:32 5249:. 5226:. 5218:. 5208:11 5206:. 5202:. 5179:. 5171:. 5161:. 5151:12 5149:. 5145:. 5122:. 5112:. 5104:. 5096:. 5084:. 5080:. 5057:. 5047:. 5039:. 5031:. 5019:. 5015:. 4990:. 4959:. 4951:. 4943:. 4935:. 4923:. 4911:^ 4897:. 4889:. 4879:13 4877:. 4854:. 4844:32 4842:. 4818:. 4808:. 4794:. 4790:. 4767:. 4759:. 4751:. 4739:. 4716:. 4706:. 4696:. 4686:12 4684:. 4680:. 4657:. 4647:. 4635:. 4631:. 4608:. 4598:53 4596:. 4576:^ 4560:. 4527:. 4517:. 4509:. 4501:. 4489:. 4485:. 4462:. 4452:. 4444:. 4436:. 4426:15 4424:. 4420:. 4397:. 4389:. 4377:. 4373:. 4350:. 4342:. 4330:44 4328:. 4324:. 4301:. 4291:. 4283:. 4275:. 4263:. 4259:. 4236:. 4228:. 4220:. 4210:34 4208:. 4204:. 4190:^ 4176:. 4164:. 4160:. 4137:. 4127:92 4125:. 4113:^ 4095:. 4069:. 4059:17 4057:. 4045:^ 4031:. 4021:. 4009:. 4005:. 3955:. 3947:. 3939:. 3929:59 3927:. 3901:^ 3887:. 3877:11 3875:. 3852:. 3840:. 3817:. 3805:. 3801:. 3778:. 3770:. 3762:. 3750:. 3727:. 3717:. 3705:. 3701:. 3678:. 3670:. 3658:. 3654:. 3642:^ 3628:. 3618:26 3616:. 3604:^ 3590:. 3582:. 3570:. 3566:. 3543:. 3533:10 3531:. 3508:. 3500:. 3492:. 3482:18 3480:. 3476:. 3453:. 3443:10 3441:. 3418:. 3408:. 3396:. 3392:. 3369:. 3361:. 3349:. 3345:. 3322:. 3314:. 3304:. 3296:. 3284:. 3280:. 3255:. 3245:65 3243:. 3237:. 3225:^ 3211:. 3199:66 3197:. 3193:. 3181:^ 3167:. 3157:. 3149:. 3137:. 3133:. 3110:. 3100:. 3088:. 3084:. 3055:. 3030:}} 3026:{{ 3008:. 3004:. 2981:. 2973:. 2963:24 2961:. 2957:. 2934:. 2924:. 2914:42 2912:. 2908:. 2885:. 2873:. 2869:. 2846:. 2838:. 2828:26 2826:. 2822:. 2799:. 2791:. 2779:. 2775:. 2752:. 2744:. 2734:54 2732:. 2728:. 2705:. 2695:. 2687:. 2679:. 2667:. 2663:. 2651:^ 2637:. 2629:. 2598:. 2588:. 2578:22 2576:. 2572:. 2549:. 2541:. 2527:. 2523:. 2493:, 2481:, 2458:. 2446:. 2423:. 2413:. 2401:. 2397:. 2385:^ 2369:. 2349:^ 2333:. 2299:. 2260:, 2248:, 2225:. 2217:. 2205:. 2201:. 2181:^ 2167:. 2159:. 2151:. 2139:. 2135:. 2096:. 1997:, 1993:, 1989:, 1908:, 1886:. 1850:, 1803:. 1774:. 1722:, 1716:3D 1714:, 1676:, 1643:, 1628:. 1073:, 979:: 968:. 953:, 928:, 886:A 869:. 836:, 834:pH 740:. 732:, 708:, 704:, 692:, 688:, 684:, 672:, 668:, 664:, 660:, 645:, 590:, 582:A 6828:. 6816:: 6808:: 6780:. 6766:: 6758:: 6735:. 6721:: 6711:: 6684:. 6662:: 6635:. 6621:: 6615:3 6581:: 6562:. 6542:: 6519:. 6505:: 6478:. 6466:: 6443:. 6431:: 6425:9 6408:. 6386:: 6359:. 6339:: 6333:8 6316:. 6310:: 6287:. 6262:. 6236:. 6223:: 6200:. 6175:. 6155:: 6128:. 6096:: 6090:8 6069:. 6049:: 6022:. 6010:: 5987:. 5975:: 5967:: 5961:4 5944:. 5922:: 5892:. 5872:: 5845:. 5823:: 5817:5 5793:. 5769:: 5739:. 5725:: 5694:. 5656:. 5636:: 5618:: 5595:. 5573:: 5565:: 5559:6 5538:. 5514:: 5487:. 5463:: 5455:: 5449:5 5428:. 5416:: 5393:. 5371:: 5363:: 5336:. 5316:: 5308:: 5285:. 5265:: 5257:: 5234:. 5214:: 5187:. 5165:: 5157:: 5130:. 5100:: 5092:: 5086:6 5065:. 5035:: 5027:: 5021:9 5000:. 4986:: 4967:. 4939:: 4931:: 4905:. 4885:: 4862:. 4850:: 4826:. 4802:: 4796:8 4775:. 4755:: 4747:: 4724:. 4700:: 4692:: 4665:. 4651:: 4643:: 4616:. 4604:: 4570:. 4556:: 4535:. 4505:: 4497:: 4491:9 4470:. 4440:: 4432:: 4405:. 4385:: 4379:7 4358:. 4336:: 4309:. 4279:: 4271:: 4265:9 4224:: 4216:: 4184:. 4172:: 4166:4 4145:. 4133:: 4107:. 4077:. 4065:: 4039:. 4017:: 3990:. 3963:. 3943:: 3935:: 3895:. 3883:: 3860:. 3848:: 3825:. 3813:: 3807:2 3786:. 3774:: 3766:: 3758:: 3752:4 3735:. 3721:: 3713:: 3707:4 3686:. 3674:: 3666:: 3660:6 3636:. 3624:: 3598:. 3586:: 3578:: 3572:6 3551:. 3539:: 3516:. 3496:: 3488:: 3461:. 3449:: 3426:. 3412:: 3404:: 3398:7 3377:. 3357:: 3351:6 3330:. 3308:: 3300:: 3292:: 3265:. 3259:: 3251:: 3219:. 3205:: 3175:. 3153:: 3145:: 3139:8 3118:. 3096:: 3090:1 3069:. 3040:) 3022:. 3016:: 3010:4 2989:. 2969:: 2942:. 2920:: 2893:. 2881:: 2875:2 2854:. 2834:: 2807:. 2787:: 2760:. 2740:: 2713:. 2683:: 2675:: 2669:1 2645:. 2625:: 2606:. 2584:: 2557:. 2535:: 2489:: 2466:. 2454:: 2448:1 2431:. 2409:: 2403:6 2379:. 2365:: 2343:. 2329:: 2309:. 2295:: 2256:: 2233:. 2213:: 2175:. 2155:: 2147:: 2035:. 1949:. 1916:) 1861:. 1854:) 1842:( 1718:/ 1556:G 1552:i 1549:+ 1542:G 1538:= 1535:G 1471:l 1466:/ 1454:l 1450:= 1424:) 1418:2 1400:( 1388:G 1384:= 1379:e 1352:) 1346:1 1330:2 1321:( 1309:G 1305:= 1300:t 1271:e 1244:t 1215:3 1211:/ 1207:1 1200:Q 1196:G 1193:= 1182:G 1166:Q 1150:c 1141:M 1116:c 1107:M 1094:R 1090:ρ 1085:p 1083:N 1079:T 1075:k 1067:G 1047:c 1038:M 1031:T 1028:R 1019:= 1016:T 1013:k 1008:p 1004:N 1000:= 997:G 712:/ 633:( 555:e 548:t 541:v 20:)

Index

Hydrogels
Polyacetylene
Architecture
Tacticity
Morphology
Degradation
Phase behavior
Mark–Houwink theory
UCST
LCST
Flory–Huggins solution theory
Coil–globule transition
Synthesis
Chain-growth polymerization
Free-radical polymerization
Controlled radical polymerization
ATRP
RAFT
Nitroxide-mediated radical polymerization
Step-growth polymerization
Condensation polymerization
Addition polymerization
Classification
Polyolefin
Polyethylene
Polypropylene
Polyisobutylene
Polyurethane
Polyester
Polycarbonate

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑