Knowledge (XXG)

Metapopulation

Source šŸ“

158:
first, Huffaker experienced difficulties similar to those of Gause in creating a stable predatorā€“prey interaction. By using oranges only, the prey species quickly became extinct followed consequently with predator extinction. However, he discovered that by modifying the spatial structure of the habitat, he could manipulate the population dynamics and allow the overall survival rate for both species to increase. He did this by altering the distance between the prey and oranges (their food), establishing barriers to predator movement, and creating corridors for the prey to disperse. These changes resulted in increased habitat patches and in turn provided more areas for the prey to seek temporary protection. When the prey would become extinct locally at one habitat patch, they were able to reestablish by migrating to new patches before being attacked by predators. This habitat spatial structure of patches allowed for coexistence between the predator and prey species and promoted a stable population oscillation model. Although the term metapopulation had not yet been coined, the environmental factors of
485:, synthetic habitat landscapes have been fabricated on a chip by building a collection of bacterial mini-habitats with nano-scale channels providing them with nutrients for habitat renewal, and connecting them by corridors in different topological arrangements, generating a spatial mosaic of patches of opportunity distributed in time. This can be used for landscape experiments by studying the bacteria metapopulations on the chip, for example their 33: 470: 513:. The seasonal duration of wetlands and the migratory range of the species determines which ponds are connected and if they form a metapopulation. The duration of the life history stages of amphibians relative to the duration of the vernal pool before it dries up regulates the ecological development of metapopulations connecting aquatic patches to terrestrial patches. 405:
Huffaker's studies of spatial structure and species interactions are an example of early experimentation in metapopulation dynamics. Since the experiments of Huffaker and Levins, models have been created which integrate stochastic factors. These models have shown that the combination of environmental
171:
Levins' original model applied to a metapopulation distributed over many patches of suitable habitat with significantly less interaction between patches than within a patch. Population dynamics within a patch were simplified to the point where only presence and absence were considered. Each patch in
162:
and habitat patchiness would later describe the conditions of a metapopulation relating to how groups of spatially separated populations of species interact with one another. Huffaker's experiment is significant because it showed how metapopulations can directly affect the predatorā€“prey interactions
80:
Although individual populations have finite life-spans, the metapopulation as a whole is often stable because immigrants from one population (which may, for example, be experiencing a population boom) are likely to re-colonize habitat which has been left open by the extinction of another population.
99:
Metapopulation theory was first developed for terrestrial ecosystems, and subsequently applied to the marine realm. In fisheries science, the term "sub-population" is equivalent to the metapopulation science term "local population". Most marine examples are provided by relatively sedentary species
68:
A metapopulation is generally considered to consist of several distinct populations together with areas of suitable habitat which are currently unoccupied. In classical metapopulation theory, each population cycles in relative independence of the other populations and eventually goes extinct as a
36:
Metapopulations are important in fisheries. The local population (1.) serves as a source for hybridization with surrounding subspecies populations (1.a, 1.b, and 1.c).The populations are normally spatially separated and independent but spatial overlap between them during breeding times allows for
157:
In order to study predation and population oscillations, Huffaker used mite species, one being the predator and the other being the prey. He set up a controlled experiment using oranges, which the prey fed on, as the spatially structured habitat in which the predator and prey would interact. At
148:
accurately depicted the oscillations predicted by the Lotka-Volterra equation, with the peaks in prey abundance shifted slightly to the left of the peaks of the predator densities. Huffaker's experiments expanded on those of Gause by examining how both the factors of migration and spatial
104:, with both local recruitment and recruitment from other local populations in the larger metapopulation. Kritzer & Sale have argued against strict application of the metapopulation definitional criteria that extinction risks to local populations must be non-negligible. 143:
over time based on the initial densities of predator and prey. Gause's early experiments to prove the predicted oscillations of this theory failed because the predatorā€“prey interactions were not influenced by immigration. However, once immigration was introduced, the
96:, emphasised the importance of connectivity between seemingly isolated populations. Although no single population may be able to guarantee the long-term survival of a given species, the combined effect of many populations may be able to do this. 406:
variability (stochasticity) and relatively small migration rates cause indefinite or unpredictable persistence. However, Huffaker's experiment almost guaranteed infinite persistence because of the controlled immigration variable.
139:, which was formulated in the mid-1920s, but no further application had been conducted. The Lotka-Volterra equation suggested that the relationship between predators and their prey would result in population 293: 347: 434:
in a given time interval. The Levins model cannot address this issue. A simple way to extend the Levins' model to incorporate space and stochastic considerations is by using the
392: 1783: 1036: 1927: 766:
Keymer J.E; P.A. Marquet; J.X. Velasco-HernƔndez; S.A. Levin (November 2000). "Extinction Thresholds and Metapopulation Persistence in Dynamic Landscapes".
1997: 878:
Petranka, J. W. (2007), "Evolution of complex life cycles of amphibians: bridging the gap between metapopulation dynamics and life history evolution",
1534: 461:
nature of extinction and colonisation. Also, in order to apply these models, the extinctions and colonisations of the patches must be asynchronous.
2007: 1735: 457:
purposes, metapopulation models must include (a) the finite nature of metapopulations (how many patches are suitable for habitat), and (b) the
2600: 2012: 1569: 970:
Fahrig, L. 2003. Effects of Habitat Fragmentation on Biodiversity. Annual Review of ecology, evolution, and systematics. 34:1, p. 487.
2200: 1617: 1953: 1776: 1029: 1289: 965: 509:. Alternative ecological strategies have evolved. For example, some salamanders forgo metamorphosis and sexually mature as aquatic 2032: 1745: 1612: 1324: 2290: 2417: 2062: 61:
of insect pests in agricultural fields, but the idea has been most broadly applied to species in naturally or artificially
2463: 2017: 1769: 1022: 547: 435: 1895: 537: 136: 2931: 2252: 1143: 580:
Levins, R. (1969), "Some demographic and genetic consequences of environmental heterogeneity for biological control",
224: 2936: 2317: 2037: 1241: 1138: 2593: 2498: 2110: 2002: 1860: 1845: 1840: 1231: 920:
Bascompte J.; SolƩ R. V. (1996), "Habitat Fragmentation and Extinction Thresholds in spatially explicit models",
427: 2257: 93: 2638: 2488: 2483: 2453: 1720: 1602: 643:
Huffaker, C.B. (1958), "Experimental Studies on Predation: Dispersion factors and predatorā€“prey oscillations",
2332: 2195: 2105: 1973: 1855: 1825: 1682: 1647: 1367: 1334: 1309: 2890: 2724: 2478: 2422: 2357: 2220: 2155: 2090: 1750: 1652: 1440: 1148: 1128: 680: 312: 184: 112: 2719: 2382: 2327: 2190: 2175: 1958: 1915: 1905: 1900: 1657: 1637: 1493: 1483: 1425: 1420: 1256: 1108: 557: 522: 447: 443: 159: 128: 77:
events); the smaller the population, the more chances of inbreeding depression and prone to extinction.
62: 2586: 2508: 2473: 2468: 2392: 2387: 2342: 2240: 2210: 2205: 2057: 1920: 1910: 1455: 1294: 1083: 929: 887: 832: 724: 527: 498: 486: 454: 1014: 685: 81:
They may also emigrate to a small population and rescue that population from extinction (called the
2941: 2558: 2533: 2397: 2367: 2312: 2225: 2115: 2100: 2047: 1880: 1815: 1697: 1627: 1158: 58: 1761: 2662: 2569: 2518: 2513: 2322: 2285: 1983: 1948: 1805: 1730: 1632: 1564: 1554: 1488: 1435: 1246: 1191: 1153: 1078: 991: 945: 903: 801: 740: 698: 458: 2027: 2796: 2791: 2458: 2427: 2215: 2042: 1850: 1715: 1692: 1549: 1430: 1206: 1118: 1103: 1088: 1068: 961: 860: 793: 532: 482: 361: 299: 101: 715:
Kareiva, P. (1987), "Habitat Fragmentation and the Stability of Predatorā€“Prey Interactions",
397:
At equilibrium, therefore, some fraction of the species's habitat will always be unoccupied.
2811: 2628: 2412: 2275: 2267: 2185: 2067: 2052: 1988: 1968: 1885: 1875: 1870: 1835: 1667: 1607: 1478: 1279: 1221: 1133: 1093: 983: 937: 895: 850: 840: 783: 775: 732: 690: 652: 589: 145: 2880: 2855: 2836: 2756: 2548: 2407: 2377: 2372: 2362: 2295: 2280: 2160: 2140: 2022: 1890: 1796: 1687: 1597: 1539: 1524: 1123: 1049: 450:
effects take place in these configurations predicting more drastic extinction thresholds.
89:
may occur because declining populations leave niche opportunities open to the "rescuers".
933: 891: 836: 728: 2875: 2865: 2860: 2806: 2776: 2739: 2729: 2528: 2352: 2305: 2235: 2125: 1992: 1865: 1672: 1662: 1642: 1519: 1445: 1410: 1349: 1226: 1181: 1073: 855: 820: 478: 439: 54: 756:
Janssen, A. et al. 1997. Metapopulation Dynamics of a Persisting Predatorā€“Prey system.
2925: 2826: 2801: 2781: 2771: 2751: 2744: 2734: 2714: 2682: 2667: 2650: 2645: 2623: 2609: 2553: 1529: 1503: 1460: 1450: 1405: 1392: 1372: 1264: 1098: 1053: 502: 415: 86: 995: 907: 702: 497:
Metapopulation models have been used to explain life-history evolution, such as the
469: 2845: 2766: 2709: 2687: 2538: 2523: 2180: 2150: 2095: 1978: 1943: 1820: 1319: 805: 744: 506: 140: 132: 108: 32: 92:
The development of metapopulation theory, in conjunction with the development of
2900: 2895: 2885: 2831: 2786: 2699: 1830: 1559: 1377: 1339: 1314: 1304: 1269: 1216: 1196: 542: 74: 422:. Metapopulations are particularly useful when discussing species in disturbed 17: 2905: 2870: 2816: 2704: 2677: 2655: 2543: 2120: 2085: 1725: 1677: 1622: 1592: 1498: 1415: 1359: 1236: 1186: 899: 671:
Legendre, P.; Fortin, M.J. (1989), "Spatial pattern and ecological analysis",
419: 70: 2910: 2821: 2761: 2633: 2448: 2402: 2130: 1574: 1544: 1344: 1299: 1274: 1211: 1201: 1176: 1168: 1113: 845: 657: 593: 552: 210:, each unoccupied patch can become occupied with a colonization probability 199: 124: 38: 864: 797: 1009: 2692: 2672: 2503: 2432: 1963: 1470: 1382: 1329: 1284: 423: 819:
Keymer J.E.; P. Galajda; C. Muldoon R. & R. Austin (November 2006).
788: 2493: 2300: 2170: 2165: 1792: 1740: 1400: 1045: 694: 510: 431: 50: 65:. In Levins' own words, it consists of "a population of populations". 736: 949: 53:
which interact at some level. The term metapopulation was coined by
987: 779: 179:
be the fraction of patches occupied at a given time. During a time
49:
consists of a group of spatially separated populations of the same
468: 31: 941: 152: 2582: 1765: 1018: 438:. Simple modifications to this model can also incorporate for 974:
Levin S.A. (1974), "Dispersion and Population Interactions",
214:. Accordingly, the time rate of change of occupied patches, 153:
Huffaker's experiments on predatorā€“prey interactions (1958)
465:
Microhabitat patches (MHPs) and bacterial metapopulations
27:
Group of separated yet interacting ecological populations
2578: 821:"Bacterial metapopulations in nanofabricated landscapes" 626:
Foundations of Ecology: Classic papers with commentaries
194:
of the patches are unoccupied. Assuming a constant rate
418:, whereas the fundamental metapopulation processes are 115:
was an important contributor to metapopulation theory.
414:
One major drawback of the Levins model is that it is
364: 315: 227: 183:, each occupied patch can become unoccupied with an 2616: 2441: 2341: 2266: 2139: 2076: 1936: 1804: 1706: 1585: 1512: 1469: 1391: 1358: 1255: 1167: 1061: 386: 341: 298:This equation is mathematically equivalent to the 287: 149:heterogeneity lead to predatorā€“prey oscillations. 582:Bulletin of the Entomological Society of America 73:(fluctuations in population size due to random 638: 636: 634: 608:Kritzer, J. P. & Sale, P. F. (eds) (2006) 288:{\displaystyle {\frac {dN}{dt}}=cN(1-N)-eN.\,} 2594: 1777: 1030: 8: 575: 573: 628:. The University of Chicago Press, Chicago. 604: 602: 163:and in turn influence population dynamics. 2601: 2587: 2579: 1998:Latitudinal gradients in species diversity 1784: 1770: 1762: 1037: 1023: 1015: 624:Real, Leslie A. and Brown, James H. 1991. 854: 844: 787: 684: 656: 410:Stochastic patch occupancy models (SPOMs) 383: 363: 338: 328: 314: 284: 228: 226: 1896:Predatorā€“prey (Lotkaā€“Volterra) equations 1535:Tritrophic interactions in plant defense 620: 618: 1928:Random generalized Lotkaā€“Volterra model 569: 1736:Herbivore adaptations to plant defense 430:, i.e., how likely they are to become 172:his model is either populated or not. 7: 1751:Predator avoidance in schooling fish 342:{\displaystyle K=1-{\frac {e}{c}}\,} 2201:Intermediate disturbance hypothesis 1954:Ecological effects of biodiversity 25: 1290:Generalist and specialist species 473:E. coli metapopulation on a chip. 401:Stochasticity and metapopulations 2013:Occupancyā€“abundance relationship 1010:Helsinki-science: Metapopulation 206:occupied patches, during a time 2033:Relative abundance distribution 1746:Plant defense against herbivory 1613:Competitive exclusion principle 1325:Mesopredator release hypothesis 960:Oxford University Press. 1999. 57:in 1969 to describe a model of 1618:Consumerā€“resource interactions 428:viability of their populations 269: 257: 190:. Additionally, 1 āˆ’  1: 2464:Biological data visualization 2291:Environmental niche modelling 2018:Population viability analysis 548:Population viability analysis 1949:Density-dependent inhibition 202:generation from each of the 2418:Liebig's law of the minimum 2253:Resource selection function 1144:Metabolic theory of ecology 612:, Academic Press, New York. 302:, with a carrying capacity 135:in the 1930s, based on the 123:The first experiments with 69:consequence of demographic 2958: 2318:Niche apportionment models 2038:Relative species abundance 1242:Primary nutritional groups 1139:List of feeding behaviours 119:Predation and oscillations 2567: 2499:Ecosystem based fisheries 2111:Interspecific competition 2003:Minimum viable population 1861:Maximum sustainable yield 1846:Intraspecific competition 1841:Effective population size 1721:Anti-predator adaptations 1232:Photosynthetic efficiency 922:Journal of Animal Ecology 900:10.1007/s10682-006-9149-1 2489:Ecological stoichiometry 2454:Alternative stable state 538:Lotkaā€“Volterra equations 387:{\displaystyle r=c-e.\,} 41:between the populations. 2333:Ontogenetic niche shift 2196:Ideal free distribution 2106:Ecological facilitation 1856:Malthusian growth model 1826:Consumer-resource model 1683:Paradox of the plankton 1648:Energy systems language 1368:Chemoorganoheterotrophy 1335:Optimal foraging theory 1310:Heterotrophic nutrition 976:The American Naturalist 846:10.1073/pnas.0607971103 768:The American Naturalist 658:10.3733/hilg.v27n14p343 503:amphibian metamorphosis 137:Lotkaā€“Volterra equation 2479:Ecological forecasting 2423:Marginal value theorem 2221:Landscape epidemiology 2156:Cross-boundary subsidy 2091:Biological interaction 1441:Microbial intelligence 1129:Green world hypothesis 958:Metapopulation Ecology 610:Marine metapopulations 493:Life history evolution 474: 388: 343: 289: 185:extinction probability 113:University of Helsinki 42: 2484:Ecological humanities 2383:Ecological energetics 2328:Niche differentiation 2191:Habitat fragmentation 1959:Ecological extinction 1906:Small population size 1658:Feed conversion ratio 1638:Ecological succession 1570:San Francisco Estuary 1484:Ecological efficiency 1426:Microbial cooperation 594:10.1093/besa/15.3.237 558:Spatial heterogeneity 523:Competition (biology) 472: 448:habitat fragmentation 444:percolation threshold 389: 344: 290: 160:spatial heterogeneity 129:spatial heterogeneity 35: 2509:Evolutionary ecology 2474:Ecological footprint 2469:Ecological economics 2393:Ecological threshold 2388:Ecological indicator 2258:Sourceā€“sink dynamics 2211:Land change modeling 2206:Insular biogeography 2058:Species distribution 1797:Modelling ecosystems 1456:Microbial metabolism 1295:Intraguild predation 1084:Biogeochemical cycle 1050:Modelling ecosystems 880:Evolutionary Ecology 528:Conservation biology 499:ecological stability 487:evolutionary ecology 455:conservation biology 362: 313: 225: 94:sourceā€“sink dynamics 2617:Domains and methods 2559:Theoretical ecology 2534:Natural environment 2398:Ecosystem diversity 2368:Ecological collapse 2358:Bateman's principle 2313:Limiting similarity 2226:Landscape limnology 2048:Species homogeneity 1886:Population modeling 1881:Population dynamics 1698:Trophic state index 934:1996JAnEc..65..465B 892:2007EvEco..21..751P 837:2006PNAS..10317290K 729:1987Natur.326..388K 100:occupying discrete 63:fragmented habitats 59:population dynamics 2932:Population ecology 2663:Meta-communication 2570:Outline of ecology 2519:Industrial ecology 2514:Functional ecology 2378:Ecological deficit 2323:Niche construction 2286:Ecosystem engineer 2063:Speciesā€“area curve 1984:Introduced species 1799:: Other components 1731:Deimatic behaviour 1633:Ecological network 1565:North Pacific Gyre 1550:hydrothermal vents 1489:Ecological pyramid 1436:Microbial food web 1247:Primary production 1192:Foundation species 695:10.1007/BF00048036 475: 384: 339: 285: 131:were conducted by 107:Finnish biologist 102:patches of habitat 43: 2937:Landscape ecology 2919: 2918: 2797:Meta-organization 2792:Meta-optimization 2576: 2575: 2459:Balance of nature 2216:Landscape ecology 2101:Community ecology 2043:Species diversity 1979:Indicator species 1974:Gradient analysis 1851:Logistic function 1759: 1758: 1716:Animal coloration 1693:Trophic mutualism 1431:Microbial ecology 1222:Photoheterotrophs 1207:Myco-heterotrophy 1119:Ecosystem ecology 1104:Carrying capacity 1069:Abiotic component 831:(46): 17290ā€“295. 723:(6111): 388ā€“390, 533:Landscape ecology 483:landscape ecology 336: 246: 146:population cycles 16:(Redirected from 2949: 2812:Metaepistemology 2629:Metabibliography 2603: 2596: 2589: 2580: 2276:Ecological niche 2248:selection theory 2068:Umbrella species 2053:Species richness 1989:Invasive species 1969:Flagship species 1876:Population cycle 1871:Overexploitation 1836:Ecological yield 1786: 1779: 1772: 1763: 1668:Mesotrophic soil 1608:Climax community 1540:Marine food webs 1479:Biomagnification 1280:Chemoorganotroph 1134:Keystone species 1094:Biotic component 1039: 1032: 1025: 1016: 999: 953: 912: 911: 875: 869: 868: 858: 848: 816: 810: 809: 791: 763: 757: 754: 748: 747: 737:10.1038/326388a0 712: 706: 705: 688: 668: 662: 661: 660: 651:(343): 343ā€“383, 640: 629: 622: 613: 606: 597: 596: 577: 393: 391: 390: 385: 352:and growth rate 348: 346: 345: 340: 337: 329: 294: 292: 291: 286: 247: 245: 237: 229: 167:The Levins model 21: 2957: 2956: 2952: 2951: 2950: 2948: 2947: 2946: 2922: 2921: 2920: 2915: 2881:Meta-regulation 2856:Metaprogramming 2837:Metametaphysics 2757:Metamathematics 2612: 2607: 2577: 2572: 2563: 2549:Systems ecology 2437: 2408:Extinction debt 2373:Ecological debt 2363:Bioluminescence 2344: 2337: 2306:marine habitats 2281:Ecological trap 2262: 2142: 2135: 2078: 2072: 2028:Rapoport's rule 2023:Priority effect 1964:Endemic species 1932: 1891:Population size 1807: 1800: 1790: 1760: 1755: 1708: 1702: 1688:Trophic cascade 1598:Bioaccumulation 1581: 1508: 1465: 1387: 1354: 1251: 1163: 1124:Ecosystem model 1057: 1043: 1006: 973: 919: 916: 915: 877: 876: 872: 818: 817: 813: 774:(5): 478ā€“4945. 765: 764: 760: 755: 751: 714: 713: 709: 686:10.1.1.330.8940 670: 669: 665: 642: 641: 632: 623: 616: 607: 600: 579: 578: 571: 566: 519: 495: 467: 436:contact process 412: 403: 360: 359: 311: 310: 238: 230: 223: 222: 169: 155: 121: 28: 23: 22: 18:Metapopulations 15: 12: 11: 5: 2955: 2953: 2945: 2944: 2939: 2934: 2924: 2923: 2917: 2916: 2914: 2913: 2908: 2903: 2898: 2893: 2888: 2883: 2878: 2876:Meta-reference 2873: 2868: 2866:Metapsychology 2863: 2861:Metapsychiatry 2858: 2853: 2851:Metapopulation 2848: 2843: 2842: 2841: 2840: 2839: 2829: 2824: 2819: 2814: 2807:Metaphilosophy 2804: 2799: 2794: 2789: 2784: 2779: 2777:Metamotivation 2774: 2769: 2764: 2759: 2754: 2749: 2748: 2747: 2742: 2740:Metapragmatics 2732: 2730:Meta-knowledge 2727: 2722: 2717: 2712: 2707: 2702: 2697: 2696: 2695: 2685: 2680: 2675: 2670: 2665: 2660: 2659: 2658: 2653: 2643: 2642: 2641: 2631: 2626: 2620: 2618: 2614: 2613: 2608: 2606: 2605: 2598: 2591: 2583: 2574: 2573: 2568: 2565: 2564: 2562: 2561: 2556: 2551: 2546: 2541: 2536: 2531: 2529:Microecosystem 2526: 2521: 2516: 2511: 2506: 2501: 2496: 2491: 2486: 2481: 2476: 2471: 2466: 2461: 2456: 2451: 2445: 2443: 2439: 2438: 2436: 2435: 2430: 2428:Thorson's rule 2425: 2420: 2415: 2410: 2405: 2400: 2395: 2390: 2385: 2380: 2375: 2370: 2365: 2360: 2355: 2353:Assembly rules 2349: 2347: 2339: 2338: 2336: 2335: 2330: 2325: 2320: 2315: 2310: 2309: 2308: 2298: 2293: 2288: 2283: 2278: 2272: 2270: 2264: 2263: 2261: 2260: 2255: 2250: 2238: 2236:Patch dynamics 2233: 2231:Metapopulation 2228: 2223: 2218: 2213: 2208: 2203: 2198: 2193: 2188: 2183: 2178: 2173: 2168: 2163: 2158: 2153: 2147: 2145: 2137: 2136: 2134: 2133: 2128: 2126:Storage effect 2123: 2118: 2113: 2108: 2103: 2098: 2093: 2088: 2082: 2080: 2074: 2073: 2071: 2070: 2065: 2060: 2055: 2050: 2045: 2040: 2035: 2030: 2025: 2020: 2015: 2010: 2008:Neutral theory 2005: 2000: 1995: 1993:Native species 1986: 1981: 1976: 1971: 1966: 1961: 1956: 1951: 1946: 1940: 1938: 1934: 1933: 1931: 1930: 1925: 1924: 1923: 1918: 1908: 1903: 1898: 1893: 1888: 1883: 1878: 1873: 1868: 1866:Overpopulation 1863: 1858: 1853: 1848: 1843: 1838: 1833: 1828: 1823: 1818: 1812: 1810: 1802: 1801: 1791: 1789: 1788: 1781: 1774: 1766: 1757: 1756: 1754: 1753: 1748: 1743: 1738: 1733: 1728: 1723: 1718: 1712: 1710: 1704: 1703: 1701: 1700: 1695: 1690: 1685: 1680: 1675: 1673:Nutrient cycle 1670: 1665: 1663:Feeding frenzy 1660: 1655: 1650: 1645: 1643:Energy quality 1640: 1635: 1630: 1625: 1620: 1615: 1610: 1605: 1603:Cascade effect 1600: 1595: 1589: 1587: 1583: 1582: 1580: 1579: 1578: 1577: 1572: 1567: 1562: 1557: 1552: 1547: 1537: 1532: 1527: 1522: 1516: 1514: 1510: 1509: 1507: 1506: 1501: 1496: 1491: 1486: 1481: 1475: 1473: 1467: 1466: 1464: 1463: 1458: 1453: 1448: 1446:Microbial loop 1443: 1438: 1433: 1428: 1423: 1418: 1413: 1411:Lithoautotroph 1408: 1403: 1397: 1395: 1393:Microorganisms 1389: 1388: 1386: 1385: 1380: 1375: 1370: 1364: 1362: 1356: 1355: 1353: 1352: 1350:Prey switching 1347: 1342: 1337: 1332: 1327: 1322: 1317: 1312: 1307: 1302: 1297: 1292: 1287: 1282: 1277: 1272: 1267: 1261: 1259: 1253: 1252: 1250: 1249: 1244: 1239: 1234: 1229: 1227:Photosynthesis 1224: 1219: 1214: 1209: 1204: 1199: 1194: 1189: 1184: 1182:Chemosynthesis 1179: 1173: 1171: 1165: 1164: 1162: 1161: 1156: 1151: 1146: 1141: 1136: 1131: 1126: 1121: 1116: 1111: 1106: 1101: 1096: 1091: 1086: 1081: 1076: 1074:Abiotic stress 1071: 1065: 1063: 1059: 1058: 1044: 1042: 1041: 1034: 1027: 1019: 1013: 1012: 1005: 1004:External links 1002: 1001: 1000: 988:10.1086/282900 971: 968: 954: 928:(4): 465ā€“473, 914: 913: 886:(6): 751ā€“764, 870: 811: 780:10.1086/303407 758: 749: 707: 663: 630: 614: 598: 588:(3): 237ā€“240, 568: 567: 565: 562: 561: 560: 555: 550: 545: 540: 535: 530: 525: 518: 515: 494: 491: 479:nanotechnology 466: 463: 440:patch dynamics 411: 408: 402: 399: 395: 394: 382: 379: 376: 373: 370: 367: 350: 349: 335: 332: 327: 324: 321: 318: 300:logistic model 296: 295: 283: 280: 277: 274: 271: 268: 265: 262: 259: 256: 253: 250: 244: 241: 236: 233: 168: 165: 154: 151: 120: 117: 55:Richard Levins 47:metapopulation 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2954: 2943: 2940: 2938: 2935: 2933: 2930: 2929: 2927: 2912: 2909: 2907: 2904: 2902: 2899: 2897: 2894: 2892: 2891:Metasociology 2889: 2887: 2884: 2882: 2879: 2877: 2874: 2872: 2869: 2867: 2864: 2862: 2859: 2857: 2854: 2852: 2849: 2847: 2844: 2838: 2835: 2834: 2833: 2830: 2828: 2827:Meta-ontology 2825: 2823: 2820: 2818: 2815: 2813: 2810: 2809: 2808: 2805: 2803: 2802:Metaphenomics 2800: 2798: 2795: 2793: 2790: 2788: 2785: 2783: 2782:Metanarrative 2780: 2778: 2775: 2773: 2772:Metamodernism 2770: 2768: 2765: 2763: 2760: 2758: 2755: 2753: 2752:Metamaterials 2750: 2746: 2745:Metasemantics 2743: 2741: 2738: 2737: 2736: 2735:Meta-language 2733: 2731: 2728: 2726: 2723: 2721: 2718: 2716: 2715:Metaheuristic 2713: 2711: 2708: 2706: 2703: 2701: 2698: 2694: 2691: 2690: 2689: 2686: 2684: 2683:Metadiscourse 2681: 2679: 2676: 2674: 2671: 2669: 2668:Metacomputing 2666: 2664: 2661: 2657: 2654: 2652: 2651:Meta-learning 2649: 2648: 2647: 2646:Metacognition 2644: 2640: 2637: 2636: 2635: 2632: 2630: 2627: 2625: 2624:Meta-analysis 2622: 2621: 2619: 2615: 2611: 2604: 2599: 2597: 2592: 2590: 2585: 2584: 2581: 2571: 2566: 2560: 2557: 2555: 2554:Urban ecology 2552: 2550: 2547: 2545: 2542: 2540: 2537: 2535: 2532: 2530: 2527: 2525: 2522: 2520: 2517: 2515: 2512: 2510: 2507: 2505: 2502: 2500: 2497: 2495: 2492: 2490: 2487: 2485: 2482: 2480: 2477: 2475: 2472: 2470: 2467: 2465: 2462: 2460: 2457: 2455: 2452: 2450: 2447: 2446: 2444: 2440: 2434: 2431: 2429: 2426: 2424: 2421: 2419: 2416: 2414: 2413:Kleiber's law 2411: 2409: 2406: 2404: 2401: 2399: 2396: 2394: 2391: 2389: 2386: 2384: 2381: 2379: 2376: 2374: 2371: 2369: 2366: 2364: 2361: 2359: 2356: 2354: 2351: 2350: 2348: 2346: 2340: 2334: 2331: 2329: 2326: 2324: 2321: 2319: 2316: 2314: 2311: 2307: 2304: 2303: 2302: 2299: 2297: 2294: 2292: 2289: 2287: 2284: 2282: 2279: 2277: 2274: 2273: 2271: 2269: 2265: 2259: 2256: 2254: 2251: 2249: 2247: 2243: 2239: 2237: 2234: 2232: 2229: 2227: 2224: 2222: 2219: 2217: 2214: 2212: 2209: 2207: 2204: 2202: 2199: 2197: 2194: 2192: 2189: 2187: 2186:Foster's rule 2184: 2182: 2179: 2177: 2174: 2172: 2169: 2167: 2164: 2162: 2159: 2157: 2154: 2152: 2149: 2148: 2146: 2144: 2138: 2132: 2129: 2127: 2124: 2122: 2119: 2117: 2114: 2112: 2109: 2107: 2104: 2102: 2099: 2097: 2094: 2092: 2089: 2087: 2084: 2083: 2081: 2075: 2069: 2066: 2064: 2061: 2059: 2056: 2054: 2051: 2049: 2046: 2044: 2041: 2039: 2036: 2034: 2031: 2029: 2026: 2024: 2021: 2019: 2016: 2014: 2011: 2009: 2006: 2004: 2001: 1999: 1996: 1994: 1990: 1987: 1985: 1982: 1980: 1977: 1975: 1972: 1970: 1967: 1965: 1962: 1960: 1957: 1955: 1952: 1950: 1947: 1945: 1942: 1941: 1939: 1935: 1929: 1926: 1922: 1919: 1917: 1914: 1913: 1912: 1909: 1907: 1904: 1902: 1899: 1897: 1894: 1892: 1889: 1887: 1884: 1882: 1879: 1877: 1874: 1872: 1869: 1867: 1864: 1862: 1859: 1857: 1854: 1852: 1849: 1847: 1844: 1842: 1839: 1837: 1834: 1832: 1829: 1827: 1824: 1822: 1819: 1817: 1814: 1813: 1811: 1809: 1803: 1798: 1794: 1787: 1782: 1780: 1775: 1773: 1768: 1767: 1764: 1752: 1749: 1747: 1744: 1742: 1739: 1737: 1734: 1732: 1729: 1727: 1724: 1722: 1719: 1717: 1714: 1713: 1711: 1705: 1699: 1696: 1694: 1691: 1689: 1686: 1684: 1681: 1679: 1676: 1674: 1671: 1669: 1666: 1664: 1661: 1659: 1656: 1654: 1651: 1649: 1646: 1644: 1641: 1639: 1636: 1634: 1631: 1629: 1626: 1624: 1621: 1619: 1616: 1614: 1611: 1609: 1606: 1604: 1601: 1599: 1596: 1594: 1591: 1590: 1588: 1584: 1576: 1573: 1571: 1568: 1566: 1563: 1561: 1558: 1556: 1553: 1551: 1548: 1546: 1543: 1542: 1541: 1538: 1536: 1533: 1531: 1528: 1526: 1523: 1521: 1518: 1517: 1515: 1511: 1505: 1504:Trophic level 1502: 1500: 1497: 1495: 1492: 1490: 1487: 1485: 1482: 1480: 1477: 1476: 1474: 1472: 1468: 1462: 1461:Phage ecology 1459: 1457: 1454: 1452: 1451:Microbial mat 1449: 1447: 1444: 1442: 1439: 1437: 1434: 1432: 1429: 1427: 1424: 1422: 1419: 1417: 1414: 1412: 1409: 1407: 1406:Bacteriophage 1404: 1402: 1399: 1398: 1396: 1394: 1390: 1384: 1381: 1379: 1376: 1374: 1373:Decomposition 1371: 1369: 1366: 1365: 1363: 1361: 1357: 1351: 1348: 1346: 1343: 1341: 1338: 1336: 1333: 1331: 1328: 1326: 1323: 1321: 1320:Mesopredators 1318: 1316: 1313: 1311: 1308: 1306: 1303: 1301: 1298: 1296: 1293: 1291: 1288: 1286: 1283: 1281: 1278: 1276: 1273: 1271: 1268: 1266: 1265:Apex predator 1263: 1262: 1260: 1258: 1254: 1248: 1245: 1243: 1240: 1238: 1235: 1233: 1230: 1228: 1225: 1223: 1220: 1218: 1215: 1213: 1210: 1208: 1205: 1203: 1200: 1198: 1195: 1193: 1190: 1188: 1185: 1183: 1180: 1178: 1175: 1174: 1172: 1170: 1166: 1160: 1157: 1155: 1152: 1150: 1147: 1145: 1142: 1140: 1137: 1135: 1132: 1130: 1127: 1125: 1122: 1120: 1117: 1115: 1112: 1110: 1107: 1105: 1102: 1100: 1099:Biotic stress 1097: 1095: 1092: 1090: 1087: 1085: 1082: 1080: 1077: 1075: 1072: 1070: 1067: 1066: 1064: 1060: 1055: 1051: 1047: 1040: 1035: 1033: 1028: 1026: 1021: 1020: 1017: 1011: 1008: 1007: 1003: 997: 993: 989: 985: 981: 977: 972: 969: 967: 966:0-19-854065-5 963: 959: 955: 951: 947: 943: 939: 935: 931: 927: 923: 918: 917: 909: 905: 901: 897: 893: 889: 885: 881: 874: 871: 866: 862: 857: 852: 847: 842: 838: 834: 830: 826: 822: 815: 812: 807: 803: 799: 795: 790: 785: 781: 777: 773: 769: 762: 759: 753: 750: 746: 742: 738: 734: 730: 726: 722: 718: 711: 708: 704: 700: 696: 692: 687: 682: 678: 674: 673:Plant Ecology 667: 664: 659: 654: 650: 646: 639: 637: 635: 631: 627: 621: 619: 615: 611: 605: 603: 599: 595: 591: 587: 583: 576: 574: 570: 563: 559: 556: 554: 551: 549: 546: 544: 541: 539: 536: 534: 531: 529: 526: 524: 521: 520: 516: 514: 512: 508: 504: 500: 492: 490: 488: 484: 480: 471: 464: 462: 460: 459:probabilistic 456: 451: 449: 445: 442:. At a given 441: 437: 433: 429: 425: 421: 417: 416:deterministic 409: 407: 400: 398: 380: 377: 374: 371: 368: 365: 358: 357: 356: 355: 333: 330: 325: 322: 319: 316: 309: 308: 307: 305: 301: 281: 278: 275: 272: 266: 263: 260: 254: 251: 248: 242: 239: 234: 231: 221: 220: 219: 217: 213: 209: 205: 201: 197: 193: 189: 186: 182: 178: 173: 166: 164: 161: 150: 147: 142: 138: 134: 130: 126: 118: 116: 114: 110: 105: 103: 97: 95: 90: 88: 87:rescue effect 84: 83:rescue effect 78: 76: 72: 71:stochasticity 66: 64: 60: 56: 52: 48: 40: 34: 30: 19: 2850: 2846:Metapolitics 2767:Metamodeling 2710:Metagenomics 2688:Meta-emotion 2639:Semantic Web 2539:Regime shift 2524:Macroecology 2245: 2241: 2230: 2181:Edge effects 2151:Biogeography 2096:Commensalism 1944:Biodiversity 1821:Allee effect 1560:kelp forests 1513:Example webs 1378:Detritivores 1217:Organotrophs 1197:Kinetotrophs 1149:Productivity 982:(960): 207, 979: 975: 957: 942:10.2307/5781 925: 921: 883: 879: 873: 828: 824: 814: 789:10533/172124 771: 767: 761: 752: 720: 716: 710: 676: 672: 666: 648: 644: 625: 609: 585: 581: 507:vernal ponds 496: 476: 452: 413: 404: 396: 353: 351: 303: 297: 215: 211: 207: 203: 195: 191: 187: 180: 176: 174: 170: 156: 141:oscillations 122: 109:Ilkka Hanski 106: 98: 91: 82: 79: 67: 46: 44: 29: 2901:Metatheorem 2896:Meta-system 2886:Metascience 2832:Metaphysics 2787:Meta-object 2720:Metahistory 2700:Metafiction 2176:Disturbance 2079:interaction 1901:Recruitment 1831:Depensation 1623:Copiotrophs 1494:Energy flow 1416:Lithotrophy 1360:Decomposers 1340:Planktivore 1315:Insectivore 1305:Heterotroph 1270:Bacterivore 1237:Phototrophs 1187:Chemotrophs 1159:Restoration 1109:Competition 956:Hanski, I. 543:Oscillation 133:G. F. Gause 75:demographic 2942:Population 2926:Categories 2906:Metatheory 2871:Metapuzzle 2817:Metaethics 2705:Metagaming 2678:Metadesign 2656:Metamemory 2544:Sexecology 2121:Parasitism 2086:Antibiosis 1921:Resistance 1916:Resilience 1806:Population 1726:Camouflage 1678:Oligotroph 1593:Ascendency 1555:intertidal 1545:cold seeps 1499:Food chain 1300:Herbivores 1275:Carnivores 1202:Mixotrophs 1177:Autotrophs 1056:components 679:(2): 107, 564:References 477:Combining 426:, and the 420:stochastic 85:). Such a 2911:Metaverse 2822:Metalogic 2762:Metamedia 2725:Metahumor 2634:Metaclass 2449:Allometry 2403:Emergence 2131:Symbiosis 2116:Mutualism 1911:Stability 1816:Abundance 1628:Dominance 1586:Processes 1575:tide pool 1471:Food webs 1345:Predation 1330:Omnivores 1257:Consumers 1212:Mycotroph 1169:Producers 1114:Ecosystem 1079:Behaviour 681:CiteSeerX 645:Hilgardia 553:Predation 505:in small 375:− 326:− 306:given by 273:− 264:− 200:propagule 125:predation 39:gene flow 2693:Metamood 2673:Metadata 2504:Endolith 2433:Xerosere 2345:networks 2161:Ecocline 1707:Defense, 1383:Detritus 1285:Foraging 1154:Resource 996:83630608 908:38832436 865:17090676 798:29587508 703:17101938 517:See also 511:neotenes 424:habitats 2494:Ecopath 2301:Habitat 2171:Ecotype 2166:Ecotone 2143:ecology 2141:Spatial 2077:Species 1937:Species 1808:ecology 1793:Ecology 1741:Mimicry 1709:counter 1653:f-ratio 1401:Archaea 1089:Biomass 1062:General 1054:Trophic 1046:Ecology 930:Bibcode 888:Bibcode 856:1635019 833:Bibcode 806:4385886 745:4335135 725:Bibcode 432:extinct 111:of the 51:species 1525:Rivers 1421:Marine 994:  964:  948:  906:  863:  853:  804:  796:  743:  717:Nature 701:  683:  2610:Meta- 2442:Other 2343:Other 2296:Guild 2268:Niche 1520:Lakes 992:S2CID 946:JSTOR 904:S2CID 802:S2CID 741:S2CID 699:S2CID 481:with 218:, is 216:dN/dt 1530:Soil 962:ISBN 950:5781 861:PMID 825:PNAS 794:PMID 453:For 212:cNdt 175:Let 127:and 984:doi 980:108 938:doi 896:doi 851:PMC 841:doi 829:103 784:hdl 776:doi 772:156 733:doi 721:326 691:doi 653:doi 590:doi 501:of 198:of 188:edt 2928:: 1991:/ 1795:: 1052:: 1048:: 990:, 978:, 944:, 936:, 926:65 924:, 902:, 894:, 884:21 882:, 859:. 849:. 839:. 827:. 823:. 800:. 792:. 782:. 770:. 739:, 731:, 719:, 697:, 689:, 677:80 675:, 649:27 647:, 633:^ 617:^ 601:^ 586:15 584:, 572:^ 489:. 446:, 208:dt 181:dt 45:A 2602:e 2595:t 2588:v 2246:K 2244:/ 2242:r 1785:e 1778:t 1771:v 1038:e 1031:t 1024:v 998:. 986:: 952:. 940:: 932:: 910:. 898:: 890:: 867:. 843:: 835:: 808:. 786:: 778:: 735:: 727:: 693:: 655:: 592:: 381:. 378:e 372:c 369:= 366:r 354:r 334:c 331:e 323:1 320:= 317:K 304:K 282:. 279:N 276:e 270:) 267:N 261:1 258:( 255:N 252:c 249:= 243:t 240:d 235:N 232:d 204:N 196:c 192:N 177:N 20:)

Index

Metapopulations

gene flow
species
Richard Levins
population dynamics
fragmented habitats
stochasticity
demographic
rescue effect
sourceā€“sink dynamics
patches of habitat
Ilkka Hanski
University of Helsinki
predation
spatial heterogeneity
G. F. Gause
Lotkaā€“Volterra equation
oscillations
population cycles
spatial heterogeneity
extinction probability
propagule
logistic model
deterministic
stochastic
habitats
viability of their populations
extinct
contact process

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

ā†‘