Knowledge

Nanocomposite

Source 📝

614:
matrix at low concentrations (~0.2 weight %) cause significant improvements in the compressive and flexural mechanical properties of polymeric nanocomposites. Potentially, these nanocomposites may be used as a novel, mechanically strong, light weight composite as bone implants. The results suggest that mechanical reinforcement is dependent on the nanostructure morphology, defects, dispersion of nanomaterials in the polymer matrix, and the cross-linking density of the polymer. In general, two-dimensional nanostructures can reinforce the polymer better than one-dimensional nanostructures, and inorganic nanomaterials are better reinforcing agents than carbon based nanomaterials. In addition to mechanical properties, polymer nanocomposites based on carbon nanotubes or graphene have been used to enhance a wide range of properties, giving rise to functional materials for a wide range of high added value applications in fields such as energy conversion and storage, sensing and biomedical tissue engineering. For example, multi-walled carbon nanotubes based polymer nanocomposites have been used for the enhancement of the electrical conductivity.
567:, which is an emerging new material that is being developed to take advantage of the high tensile strength and electrical conductivity of carbon nanotube materials. Critical to the realization of CNT-MMC possessing optimal properties in these areas are the development of synthetic techniques that are (a) economically producible, (b) provide for a homogeneous dispersion of nanotubes in the metallic matrix, and (c) lead to strong interfacial adhesion between the metallic matrix and the carbon nanotubes. In addition to carbon nanotube metal matrix composites, boron nitride reinforced metal matrix composites and carbon nitride metal matrix composites are the new research areas on metal matrix nanocomposites. 654:
as a magnetic, electrical, or mechanical field. Specifically, magnetic nanocomposites are useful for use in these applications due to the nature of magnetic material's ability to respond both to electrical and magnetic stimuli. The penetration depth of a magnetic field is also high, leading to an increased area that the nanocomposite is affected by and therefore an increased response. In order to respond to a magnetic field, a matrix can be easily loaded with nanoparticles or nanorods The different morphologies for magnetic nanocomposite materials are vast, including matrix dispersed nanoparticles, core-shell nanoparticles, colloidal crystals, macroscale spheres, or Janus-type nanostructures.
571:
suggest that tungsten disulfide nanotubes reinforced PPF nanocomposites possess significantly higher mechanical properties and tungsten disulfide nanotubes are better reinforcing agents than carbon nanotubes. Increases in the mechanical properties can be attributed to a uniform dispersion of inorganic nanotubes in the polymer matrix (compared to carbon nanotubes that exist as micron sized aggregates) and increased crosslinking density of the polymer in the presence of tungsten disulfide nanotubes (increase in crosslinking density leads to an increase in the mechanical properties). These results suggest that inorganic
666:
great potential for improving the efficiency of power electronic devices by providing relatively high permeability and low losses. For example, As Iron oxide nano particles embedded in Ni matrix enables us to mitigate those losses at high frequency. The high resistive iron oxide nanoparticles helps to reduce the eddy current losses where as the Ni metal helps in attaining high permeability. DC magnetic properties such as Saturation magnetization lies between each of its constituent parts indicating that the physical properties of the materials can be altered by creating these nanocomposites.
606:). This strategy is particularly effective in yielding high performance composites, when uniform dispersion of the filler is achieved and the properties of the nanoscale filler are substantially different or better than those of the matrix. The uniformity of the dispersion is in all nanocomposites is counteracted by thermodynamically driven phase separation. Clustering of nanoscale fillers produces aggregates that serve as structural defects and result in failure. Layer-by-layer (LbL) assembly when nanometer scale layers of 645:
range of natural and synthetic polymers are used to design polymeric nanocomposites for biomedical applications including starch, cellulose, alginate, chitosan, collagen, gelatin, and fibrin, poly(vinyl alcohol) (PVA), poly(ethylene glycol) (PEG), poly(caprolactone) (PCL), poly(lactic-co-glycolic acid) (PLGA), and poly(glycerol sebacate) (PGS). A range of nanoparticles including ceramic, polymeric, metal oxide and carbon-based nanomaterials are incorporated within polymeric network to obtain desired property combinations.
442:, especially for the most commonly used non-spherical, high aspect ratio fillers (e.g. nanometer-thin platelets, such as clays, or nanometer-diameter cylinders, such as carbon nanotubes). The orientation and arrangement of asymmetric nanoparticles, thermal property mismatch at the interface, interface density per unit volume of nanocomposite, and polydispersity of nanoparticles significantly affect the effective thermal conductivity of nanocomposites. 532: 397:. The reinforcing material can be made up of particles (e.g. minerals), sheets (e.g. exfoliated clay stacks) or fibres (e.g. carbon nanotubes or electrospun fibres). The area of the interface between the matrix and reinforcement phase(s) is typically an order of magnitude greater than for conventional composite materials. The matrix material properties are significantly affected in the vicinity of the reinforcement. Ajayan 687: 251: 701: 263: 332:, but is more usually taken to mean the solid combination of a bulk matrix and nano-dimensional phase(s) differing in properties due to dissimilarities in structure and chemistry. The mechanical, electrical, thermal, optical, electrochemical, catalytic properties of the nanocomposite will differ markedly from that of the component materials. Size limits for these effects have been proposed: 36: 466:
character. This is not an easily obeyed constraint because the preparation of the ceramic component generally requires high process temperatures. The safest measure thus is to carefully choose immiscible metal and ceramic phases. A good example of such a combination is represented by the ceramic-metal composite of
661:
Magnetic nanocomposites can also be utilized in the medical field, with magnetic nanorods embedded in a polymer matrix can aid in more precise drug delivery and release. Finally, magnetic nanocomposites can be used in high frequency/high-temperature applications. For example, multi-layer structures
653:
Nanocomposites that can respond to an external stimulus are of increased interest due to the fact that, because of the large amount of interaction between the phase interfaces, the stimulus response can have a larger effect on the composite as a whole. The external stimulus can take many forms, such
665:
In applications such as power micro-inductors where high magnetic permeability is desired at high operating frequencies. The traditional micro-fabricated magnetic core materials see both decrease in permeability and high losses at high operating frequency. In this case, magnetic nano composites have
401:
note that with polymer nanocomposites, properties related to local chemistry, degree of thermoset cure, polymer chain mobility, polymer chain conformation, degree of polymer chain ordering or crystallinity can all vary significantly and continuously from the interface with the reinforcement into the
644:
A range of polymeric nanocomposites are used for biomedical applications such as tissue engineering, drug delivery, cellular therapies. Due to unique interactions between polymer and nanoparticles, a range of property combinations can be engineered to mimic native tissue structure and properties. A
570:
A recent study, comparing the mechanical properties (Young's modulus, compressive yield strength, flexural modulus and flexural yield strength) of single- and multi-walled reinforced polymeric (polypropylene fumarate—PPF) nanocomposites to tungsten disulfide nanotubes reinforced PPF nanocomposites
624:
Nanoscale dispersion of filler or controlled nanostructures in the composite can introduce new physical properties and novel behaviors that are absent in the unfilled matrices. This effectively changes the nature of the original matrix (such composite materials can be better described by the term
465:
of the mixture should be considered in designing ceramic-metal nanocomposites and measures have to be taken to avoid a chemical reaction between both components. The last point mainly is of importance for the metallic component that may easily react with the ceramic and thereby lose its metallic
613:
Nanoparticles such as graphene, carbon nanotubes, molybdenum disulfide and tungsten disulfide are being used as reinforcing agents to fabricate mechanically strong biodegradable polymeric nanocomposites for bone tissue engineering applications. The addition of these nanoparticles in the polymer
657:
Magnetic nanocomposites can be utilized in a vast number of applications, including catalytic, medical, and technical. For example, palladium is a common transition metal used in catalysis reactions. Magnetic nanoparticle-supported palladium complexes can be used in catalysis to increase the
381:
mechanism. From the mid-1950s nanoscale organo-clays have been used to control flow of polymer solutions (e.g. as paint viscosifiers) or the constitution of gels (e.g. as a thickening substance in cosmetics, keeping the preparations in homogeneous form). By the 1970s
674:
In the recent years nanocomposites have been designed to withstand high temperatures by the addition of Carbon Dots (CDs) in the polymer matrix. Such nanocomposites can be utilized in environments wherein high temperature resistance is a prime criterion.
562:
Metal matrix nanocomposites can also be defined as reinforced metal matrix composites. This type of composites can be classified as continuous and non-continuous reinforced materials. One of the more important nanocomposites is
458:. Ideally both components are finely dispersed in each other in order to elicit particular optical, electrical and magnetic properties as well as tribological, corrosion-resistance and other protective properties. 405:
This large amount of reinforcement surface area means that a relatively small amount of nanoscale reinforcement can have an observable effect on the macroscale properties of the composite. For example, adding
496:
technique and is associated with high deposition rates up to some μm/s and the growth of nanoparticles in the gas phase. Nanocomposite layers in the ceramics range of composition were prepared from
1961:
Han, Kyu; Swaminathan, Madhavan; Pulugurtha, Raj; Sharma, Himani; Tummala, Rao; Yang, Songnan; Nair, Vijay (2016). "Magneto-Dielectric Nanocomposite for Antenna Miniaturization and SAR Reduction".
600:
to a polymer matrix can enhance its performance, often dramatically, by simply capitalizing on the nature and properties of the nanoscale filler (these materials are better described by the term
1233:
Janeta, Mateusz; John, Łukasz; Ejfler, Jolanta; Szafert, Sławomir (2014-11-24). "High-Yield Synthesis of Amido-Functionalized Polyoctahedral Oligomeric Silsesquioxanes by Using Acyl Chlorides".
578:
Another kind of nanocomposite is the energetic nanocomposite, generally as a hybrid sol–gel with a silica base, which, when combined with metal oxides and nano-scale aluminum powder, can form
1500:
Zeidi, Mahdi; Kim, Chun IL; Park, Chul B. (2021). "The role of interface on the toughening and failure mechanisms of thermoplastic nanocomposites reinforced with nanofibrillated rubbers".
450:
Ceramic matrix composites (CMCs) consist of ceramic fibers embedded in a ceramic matrix. The matrix and fibers can consist of any ceramic material, including carbon and carbon fibers. The
484:
that are solid layers of a few nm to some tens of μm thickness deposited upon an underlying substrate and that play an important role in the functionalization of technical surfaces.
2059:
Rimal, Vishal; Shishodia, Shubham; Srivastava, P.K. (2020). "Novel synthesis of high-thermal stability carbon dots and nanocomposites from oleic acid as an organic substrate".
610:
and a polymers are added one by one. LbL composites display performance parameters 10-1000 times better that the traditional nanocomposites made by extrusion or batch-mixing.
662:
can be fabricated for use in electronic applications. An electrodeposited Fe/Fe oxide multi-layered sample can be an example of this application of magnetic nanocomposites.
1926:
Markondeya Raj, P.; Sharma, Himani; Sitaraman, Srikrishna; Mishra, Dibyajat; Tummala, Rao (December 2017). "System Scaling With Nanostructured Power and RF Components".
1551:
Gatti, Teresa; Vicentini, Nicola; Mba, Miriam; Menna, Enzo (2016-02-01). "Organic Functionalized Carbon Nanostructures for Functional Polymer-Based Nanocomposites".
1402:
Lalwani, Gaurav; Henslee, Allan M.; Farshid, Behzad; Lin, Liangjun; Kasper, F. Kurtis; Yi-, Yi-Xian; Qin, Xian; Mikos, Antonios G.; Sitharaman, Balaji (2013).
72: 941:
F. E. Kruis, H. Fissan and A. Peled (1998). "Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications – a review".
434:
and resistance to wear and damage. In general, the nano reinforcement is dispersed into the matrix during processing. The percentage by weight (called
369:
and bone. The use of nanoparticle-rich materials long predates the understanding of the physical and chemical nature of these materials. Jose-Yacaman
62: 564: 293: 847:
Functional Polymer Composites with Nanoclays, Editors: Yuri Lvov, Baochun Guo, Rawil F Fakhrullin, Royal Society of Chemistry, Cambridge 2017,
67: 454:
occupying most of the volume is often from the group of oxides, such as nitrides, borides, silicides, whereas the second component is often a
1643: 883: 836: 1451:
Lalwani, Gaurav; Henslee, A. M.; Farshid, B; Parmar, P; Lin, L; Qin, Y. X.; Kasper, F. K.; Mikos, A. G.; Sitharaman, B (September 2013).
492:
technique turned out as a rather effective technique for the preparation of nanocomposite layers. The process operates as a vacuum-based
1813:
Behrens, Silke (2011). "Preparation of functional magnetic nanocomposites and hybrid materials: recent progress and future directions".
110: 621:, in which inorganic nanomaterials are grown within polymeric substrates using vapor-phase precursors that diffuse into the matrix. 618: 2004:
Smith, Connor S.; Savliwala, Shehaab; Mills, Sara C.; Andrew, Jennifer S.; Rinaldi, Carlos; Arnold, David P. (1 January 2020).
184: 2145: 903: 777:
Jose-Yacaman, M.; Rendon, L.; Arenas, J.; Serra Puche, M. C. (1996). "Maya Blue Paint: An Ancient Nanostructured Material".
1704:
Carrow, James K.; Gaharwar, Akhilesh K. (November 2014). "Bioinspired Polymeric Nanocomposites for Regenerative Medicine".
1326:
Rafiee, M.A.; et al. (December 3, 2009). "Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content".
204: 52: 144: 77: 1588:"Influence of Surface Modified MWCNTs on the Mechanical, Electrical and Thermal Properties of Polyimide Nanocomposites" 286: 1363:"Preparation and characterization of polyamide 6 nanocomposites using MWCNTs based on bimetallic Co-Mo/MgO catalyst" 159: 57: 237: 189: 2006:"Electro-infiltrated nickel/iron-oxide and permalloy/iron-oxide nanocomposites for integrated power inductors" 860: 313:(nm) or structures having nano-scale repeat distances between the different phases that make up the material. 1404:"Two-dimensional nanostructure-reinforced biodegradable polymeric nanocomposites for bone tissue engineering" 393:
due to the exceptionally high surface to volume ratio of the reinforcing phase and/or its exceptionally high
438:) of the nanoparticulates introduced can remain very low (on the order of 0.5% to 5%) due to the low filler 411: 179: 1733:"Developing hybrid carbon nanotube- and graphene-enhanced nanocomposite resins for the space launch system" 2140: 2005: 279: 1891:
Varga, L.K. (2007). "Soft magnetic nanocomposites for high-frequency and high-temperature applications".
309:
is a multiphase solid material where one of the phases has one, two or three dimensions of less than 100
968:
S. Zhang; D. Sun; Y. Fu; H. Du (2003). "Recent advances of superhard nanocomposite coatings: a review".
591: 489: 439: 431: 194: 2017: 1970: 1900: 1822: 1599: 1292: 915: 786: 493: 415: 232: 154: 115: 95: 477:, the mixtures of which were found immiscible over large areas in the Gibbs’ triangle of ' Cu-O-Ti. 199: 164: 105: 386:
composites were the topic of textbooks, although the term "nanocomposites" was not in common use.
2076: 2041: 1986: 1943: 1873: 1760: 1533: 1384: 810: 637:). Some examples of such new properties are fire resistance or flame retardancy, and accelerated 485: 390: 354: 134: 373:
investigated the origin of the depth of colour and the resistance to acids and bio-corrosion of
2119: 2033: 1838: 1795: 1752: 1686: 1639: 1568: 1525: 1517: 1482: 1433: 1343: 1308: 1258: 1250: 1126: 997:
Ternary Alloys. A Comprehensive Compendium of Evaluated Constitutional Data and Phase Diagrams
879: 832: 802: 706: 267: 174: 2115: 927: 2111: 2068: 2025: 1978: 1935: 1908: 1865: 1830: 1787: 1744: 1713: 1676: 1668: 1615: 1607: 1560: 1509: 1472: 1464: 1453:"Tungsten disulfide nanotubes reinforced biodegradable polymers for bone tissue engineering" 1423: 1415: 1374: 1335: 1300: 1242: 1213: 1116: 1108: 1097:"Tungsten disulfide nanotubes reinforced biodegradable polymers for bone tissue engineering" 1057: 1026: 1012:"Nanocomposite layers of ceramic oxides and metals prepared by reactive gas-flow sputtering" 977: 950: 923: 794: 752: 714: 638: 607: 597: 407: 347: 906:(2013). "A molecular dynamics study of effective thermal conductivity in nanocomposites". 848: 43: 2021: 1974: 1904: 1826: 1603: 1296: 1176:
Energetic nanocomposites with sol-gel chemistry: synthesis, safety, and characterization
919: 790: 1681: 1656: 1620: 1587: 1477: 1452: 1428: 1403: 1121: 1096: 1092: 692: 255: 169: 1030: 981: 954: 531: 2134: 2080: 2045: 1764: 1537: 1202:"Environmental anomalies at the World Trade Center: evidence for energetic materials" 572: 462: 383: 213: 149: 100: 27: 1877: 1388: 1379: 1362: 814: 1990: 1947: 899: 686: 394: 378: 317: 250: 125: 1079: 1856:
Zhu, Yinghuai (2010). "Magnetic Nanocomposites: A New Perspective in Catalysis".
1791: 1468: 1112: 798: 358: 139: 2072: 2029: 1939: 1912: 1748: 1173: 1145: 1045: 1982: 1655:
Gaharwar, Akhilesh K.; Peppas, Nicholas A.; Khademhosseini, Ali (March 2014).
1611: 1218: 1201: 700: 682: 423: 310: 262: 2037: 1756: 1732: 1572: 1521: 1254: 1091:
Lalwani, G; Henslee, AM; Farshid, B; Parmar, P; Lin, L; Qin, YX; Kasper, FK;
575:, in general, may be better reinforcing agents compared to carbon nanotubes. 516: 481: 427: 374: 337: 329: 86: 2123: 1869: 1842: 1799: 1717: 1690: 1564: 1529: 1486: 1437: 1347: 1312: 1262: 1246: 1130: 1011: 806: 757: 740: 719: 512: 508: 227: 365:
Nanocomposites are found in nature, for example in the structure of the
1834: 1513: 1061: 451: 366: 321: 1672: 1419: 1339: 1304: 504: 474: 419: 1046:"Copper matrix nanocomposites based on carbon nanotubes or graphene" 35: 2099: 455: 1586:
Singh, BP; Singh, Deepankar; Mathur, R. B.; Dhami, T. L. (2008).
480:
The concept of ceramic-matrix nanocomposites was also applied to
497: 467: 1778:
Behrens, Silke; Appel, Ingo (2016). "Magnetic nanocomposites".
1283:
Manias, Evangelos (2007). "Nanocomposites: Stiffer by design".
1737:
The International Journal of Advanced Manufacturing Technology
526: 325: 1076:
Carbon nanotube reinforced metal matrix composites - A Review
389:
In mechanical terms, nanocomposites differ from conventional
1200:
Ryan, Kevin R.; Gourley, James R.; Jones, Steven E. (2008).
2100:"Nanocomposites: Structure, Phase Behavior, and Properties" 1278: 1276: 1274: 1272: 418:. Other kinds of nanoparticulates may result in enhanced 849:
https://pubs.rsc.org/en/content/ebook/978-1-78262-672-5
617:
An alternative route to synthesis of nanocomposites is
543: 343:<20 nm for making a hard magnetic material soft 2104:
Annual Review of Chemical and Biomolecular Engineering
1657:"Nanocomposite hydrogels for biomedical applications" 1078:, International Materials Reviews, vol. 55, (2010), 507:by the hollow cathode technique that showed a high 426:, heat resistance or mechanical properties such as 1638:" A. B. Morgan, C. A. Wilkie (eds.), Wiley, 2007; 829:Formation and Properties of Clay Polymer Complexes 316:In the broadest sense this definition can include 357:, mechanical strengthening or restricting matrix 995:G. Effenberg, F. Aldinger & P. Rogl (2001). 1080:http://web.eng.fiu.edu/agarwala/PDF/2010/12.pdf 874:P.M. Ajayan; L.S. Schadler; P.V. Braun (2003). 741:"What can be improved by nanometer composites?" 1963:IEEE Antennas and Wireless Propagation Letters 1148:Making nanostructured pyrotechnics in a Beaker 1361:Hassani, A. J.; et al. (March 1, 2014). 1010:M. Birkholz; U. Albers & T. Jung (2004). 658:efficiency of the palladium in the reaction. 287: 8: 765:Concise encyclopedia of composites materials 2010:Journal of Magnetism and Magnetic Materials 1893:Journal of Magnetism and Magnetic Materials 999:. Materials Science-International Services. 596:In the simplest case, appropriately adding 294: 280: 18: 1680: 1619: 1476: 1427: 1378: 1217: 1120: 1074:S. R. Bakshi, D. Lahiri, and A. Argawal, 756: 2116:10.1146/annurev-chembioeng-073009-100856 2098:Kumar, S. K.; Krishnamoorti, R. (2010). 928:10.1016/j.ijheatmasstransfer.2013.02.023 16:Solid material with nano-scale structure 731: 565:Carbon nanotube metal matrix composites 212: 123: 85: 42: 26: 1636:Flame Retardant Polymer Nanocomposites 1044:Janas, Dawid; Liszka, Barbara (2017). 1553:European Journal of Organic Chemistry 7: 1706:Macromolecular Chemistry and Physics 876:Nanocomposite science and technology 863:. Coventive Composites. 2020-09-09. 1095:; Sitharaman, B (September 2013). 861:"What are Polymer Nanocomposites?" 14: 745:J. Jpn. Soc. Powder Powder Metall 619:sequential infiltration synthesis 1780:Current Opinion in Biotechnology 1731:Thomas, Daniel J. (2020-09-01). 1661:Biotechnology and Bioengineering 699: 685: 530: 261: 249: 34: 1380:10.3144/expresspolymlett.2014.2 22:Part of a series of articles on 353:<100 nm for achieving 1: 1235:Chemistry: A European Journal 1031:10.1016/S0257-8972(03)00865-X 982:10.1016/S0257-8972(02)00903-9 955:10.1016/S0021-8502(97)10032-5 670:Heat resistant nanocomposites 603:nanofilled polymer composites 586:Polymer-matrix nanocomposites 446:Ceramic-matrix nanocomposites 1792:10.1016/j.copbio.2016.02.005 1469:10.1016/j.actbio.2013.05.018 1113:10.1016/j.actbio.2013.05.018 799:10.1126/science.273.5272.223 767:, Elsevier Science Ltd, 1994 523:Metal-matrix nanocomposites 377:paint, attributing it to a 2162: 2073:10.1007/s13204-019-01178-z 2030:10.1016/j.jmmm.2019.165718 1940:10.1109/JPROC.2017.2748520 1913:10.1016/j.jmmm.2007.03.180 1749:10.1007/s00170-020-06038-7 1592:Nanoscale Research Letters 908:Int. J. Heat Mass Transfer 589: 1983:10.1109/LAWP.2015.2430284 1612:10.1007/s11671-008-9179-4 1219:10.1007/s10669-008-9182-4 513:coefficients of friction 238:Nanocrystalline material 214:Nanostructured materials 1928:Proceedings of the IEEE 1367:Express Polymer Letters 649:Magnetic nanocomposites 517:resistance to corrosion 1870:10.1002/cctc.200900314 1718:10.1002/macp.201400427 1565:10.1002/ejoc.201501411 1247:10.1002/chem.201404153 1178:, LLNL UCRL-JC-146739" 831:", Elsevier, NY 1979; 628:genuine nanocomposites 2146:Solid-state chemistry 739:Kamigaito, O (1991). 592:Polymer nanocomposite 440:percolation threshold 424:dielectric properties 268:Technology portal 63:Mechanical properties 1206:The Environmentalist 758:10.2497/jjspm.38.315 416:thermal conductivity 402:bulk of the matrix. 233:Nanoporous materials 96:Buckminsterfullerene 2061:Applied Nanoscience 2022:2020JMMM..49365718S 1975:2016IAWPL..15...72H 1934:(12): 2330 - 2346. 1905:2007JMMM..316..442V 1827:2011Nanos...3..877B 1604:2008NRL.....3..444S 1508:(47): 20248–20280. 1297:2007NatMa...6....9M 1241:(48): 15966–15974. 1019:Surf. Coat. Technol 970:Surf. Coat. Technol 920:2013IJHMT..61..577T 791:1996Sci...273..223J 509:mechanical hardness 486:Gas flow sputtering 391:composite materials 346:<50 nm for 135:Carbon quantum dots 1835:10.1039/C0NR00634C 1514:10.1039/D1NR07363J 1457:Acta Biomaterialia 1101:Acta Biomaterialia 1062:10.1039/C7QM00316A 1050:Mater. Chem. Front 542:. You can help by 420:optical properties 355:superparamagnetism 336:<5 nm for 256:Science portal 68:Optical properties 1673:10.1002/bit.25160 1644:978-0-471-73426-0 1420:10.1021/bm301995s 1408:Biomacromolecules 1340:10.1021/nn9010472 1334:(12): 3884–3890. 885:978-3-527-30359-5 837:978-0-444-41706-0 707:Technology portal 560: 559: 304: 303: 116:Carbon allotropes 2153: 2127: 2085: 2084: 2056: 2050: 2049: 2001: 1995: 1994: 1958: 1952: 1951: 1923: 1917: 1916: 1888: 1882: 1881: 1853: 1847: 1846: 1810: 1804: 1803: 1775: 1769: 1768: 1743:(7): 2249–2255. 1728: 1722: 1721: 1701: 1695: 1694: 1684: 1652: 1646: 1632: 1626: 1625: 1623: 1583: 1577: 1576: 1559:(6): 1071–1090. 1548: 1542: 1541: 1497: 1491: 1490: 1480: 1463:(9): 8365–8373. 1448: 1442: 1441: 1431: 1399: 1393: 1392: 1382: 1358: 1352: 1351: 1323: 1317: 1316: 1305:10.1038/nmat1812 1285:Nature Materials 1280: 1267: 1266: 1230: 1224: 1223: 1221: 1197: 1191: 1190: 1188: 1187: 1182: 1169: 1163: 1162: 1160: 1159: 1154: 1141: 1135: 1134: 1124: 1088: 1082: 1072: 1066: 1065: 1041: 1035: 1034: 1025:(2–3): 279–285. 1016: 1007: 1001: 1000: 992: 986: 985: 976:(2–3): 113–119. 965: 959: 958: 949:(5–6): 511–535. 938: 932: 931: 896: 890: 889: 871: 865: 864: 857: 851: 845: 839: 825: 819: 818: 774: 768: 762: 760: 736: 715:Hybrid materials 709: 704: 703: 695: 690: 689: 639:biodegradability 608:nanoparticulates 598:nanoparticulates 555: 552: 534: 527: 408:carbon nanotubes 348:refractive index 296: 289: 282: 266: 265: 254: 253: 205:Titanium dioxide 44:Carbon nanotubes 38: 19: 2161: 2160: 2156: 2155: 2154: 2152: 2151: 2150: 2131: 2130: 2097: 2094: 2092:Further reading 2089: 2088: 2058: 2057: 2053: 2003: 2002: 1998: 1960: 1959: 1955: 1925: 1924: 1920: 1890: 1889: 1885: 1855: 1854: 1850: 1812: 1811: 1807: 1777: 1776: 1772: 1730: 1729: 1725: 1703: 1702: 1698: 1654: 1653: 1649: 1633: 1629: 1598:(11): 444–453. 1585: 1584: 1580: 1550: 1549: 1545: 1499: 1498: 1494: 1450: 1449: 1445: 1401: 1400: 1396: 1360: 1359: 1355: 1325: 1324: 1320: 1282: 1281: 1270: 1232: 1231: 1227: 1199: 1198: 1194: 1185: 1183: 1180: 1171: 1170: 1166: 1157: 1155: 1152: 1143: 1142: 1138: 1090: 1089: 1085: 1073: 1069: 1043: 1042: 1038: 1014: 1009: 1008: 1004: 994: 993: 989: 967: 966: 962: 940: 939: 935: 898: 897: 893: 886: 873: 872: 868: 859: 858: 854: 846: 842: 826: 822: 785:(5272): 223–5. 776: 775: 771: 738: 737: 733: 728: 705: 698: 691: 684: 681: 672: 651: 594: 588: 556: 550: 547: 540:needs expansion 525: 501: 471: 448: 300: 260: 248: 145:Aluminium oxide 17: 12: 11: 5: 2159: 2157: 2149: 2148: 2143: 2133: 2132: 2129: 2128: 2093: 2090: 2087: 2086: 2067:(2): 455–464. 2051: 1996: 1953: 1918: 1899:(2): 442–447. 1883: 1864:(4): 365–374. 1848: 1821:(3): 877–892. 1805: 1770: 1723: 1712:(3): 248–264. 1696: 1667:(3): 441–453. 1647: 1627: 1578: 1543: 1492: 1443: 1414:(3): 900–909. 1394: 1373:(3): 177–186. 1353: 1318: 1268: 1225: 1192: 1164: 1136: 1107:(9): 8365–73. 1083: 1067: 1036: 1002: 987: 960: 943:J. Aerosol Sci 933: 891: 884: 866: 852: 840: 827:B.K.G. Theng " 820: 769: 730: 729: 727: 724: 723: 722: 717: 711: 710: 696: 693:Science portal 680: 677: 671: 668: 650: 647: 590:Main article: 587: 584: 558: 557: 537: 535: 524: 521: 499: 490:hollow cathode 469: 447: 444: 363: 362: 351: 344: 341: 302: 301: 299: 298: 291: 284: 276: 273: 272: 271: 270: 258: 243: 242: 241: 240: 235: 230: 225: 217: 216: 210: 209: 208: 207: 202: 197: 192: 187: 182: 177: 172: 167: 162: 157: 152: 147: 142: 137: 129: 128: 121: 120: 119: 118: 113: 108: 103: 98: 90: 89: 83: 82: 81: 80: 75: 70: 65: 60: 55: 47: 46: 40: 39: 31: 30: 24: 23: 15: 13: 10: 9: 6: 4: 3: 2: 2158: 2147: 2144: 2142: 2141:Nanomaterials 2139: 2138: 2136: 2125: 2121: 2117: 2113: 2109: 2105: 2101: 2096: 2095: 2091: 2082: 2078: 2074: 2070: 2066: 2062: 2055: 2052: 2047: 2043: 2039: 2035: 2031: 2027: 2023: 2019: 2015: 2011: 2007: 2000: 1997: 1992: 1988: 1984: 1980: 1976: 1972: 1968: 1964: 1957: 1954: 1949: 1945: 1941: 1937: 1933: 1929: 1922: 1919: 1914: 1910: 1906: 1902: 1898: 1894: 1887: 1884: 1879: 1875: 1871: 1867: 1863: 1859: 1852: 1849: 1844: 1840: 1836: 1832: 1828: 1824: 1820: 1816: 1809: 1806: 1801: 1797: 1793: 1789: 1785: 1781: 1774: 1771: 1766: 1762: 1758: 1754: 1750: 1746: 1742: 1738: 1734: 1727: 1724: 1719: 1715: 1711: 1707: 1700: 1697: 1692: 1688: 1683: 1678: 1674: 1670: 1666: 1662: 1658: 1651: 1648: 1645: 1641: 1637: 1631: 1628: 1622: 1617: 1613: 1609: 1605: 1601: 1597: 1593: 1589: 1582: 1579: 1574: 1570: 1566: 1562: 1558: 1554: 1547: 1544: 1539: 1535: 1531: 1527: 1523: 1519: 1515: 1511: 1507: 1503: 1496: 1493: 1488: 1484: 1479: 1474: 1470: 1466: 1462: 1458: 1454: 1447: 1444: 1439: 1435: 1430: 1425: 1421: 1417: 1413: 1409: 1405: 1398: 1395: 1390: 1386: 1381: 1376: 1372: 1368: 1364: 1357: 1354: 1349: 1345: 1341: 1337: 1333: 1329: 1322: 1319: 1314: 1310: 1306: 1302: 1298: 1294: 1290: 1286: 1279: 1277: 1275: 1273: 1269: 1264: 1260: 1256: 1252: 1248: 1244: 1240: 1236: 1229: 1226: 1220: 1215: 1211: 1207: 1203: 1196: 1193: 1179: 1177: 1168: 1165: 1151: 1149: 1140: 1137: 1132: 1128: 1123: 1118: 1114: 1110: 1106: 1102: 1098: 1094: 1087: 1084: 1081: 1077: 1071: 1068: 1063: 1059: 1055: 1051: 1047: 1040: 1037: 1032: 1028: 1024: 1020: 1013: 1006: 1003: 998: 991: 988: 983: 979: 975: 971: 964: 961: 956: 952: 948: 944: 937: 934: 929: 925: 921: 917: 913: 909: 905: 901: 900:Tian, Zhiting 895: 892: 887: 881: 877: 870: 867: 862: 856: 853: 850: 844: 841: 838: 834: 830: 824: 821: 816: 812: 808: 804: 800: 796: 792: 788: 784: 780: 773: 770: 766: 763:in Kelly, A, 759: 754: 751:(3): 315–21. 750: 746: 742: 735: 732: 725: 721: 718: 716: 713: 712: 708: 702: 697: 694: 688: 683: 678: 676: 669: 667: 663: 659: 655: 648: 646: 642: 640: 636: 635: 630: 629: 622: 620: 615: 611: 609: 605: 604: 599: 593: 585: 583: 581: 580:superthermite 576: 574: 573:nanomaterials 568: 566: 554: 551:November 2008 545: 541: 538:This section 536: 533: 529: 528: 522: 520: 518: 514: 510: 506: 502: 495: 491: 487: 483: 478: 476: 472: 464: 463:phase diagram 459: 457: 453: 445: 443: 441: 437: 436:mass fraction 433: 429: 425: 421: 417: 413: 410:improves the 409: 403: 400: 396: 392: 387: 385: 380: 376: 372: 368: 367:abalone shell 360: 356: 352: 349: 345: 342: 339: 335: 334: 333: 331: 327: 323: 319: 314: 312: 308: 307:Nanocomposite 297: 292: 290: 285: 283: 278: 277: 275: 274: 269: 264: 259: 257: 252: 247: 246: 245: 244: 239: 236: 234: 231: 229: 226: 224: 223:Nanocomposite 221: 220: 219: 218: 215: 211: 206: 203: 201: 198: 196: 193: 191: 188: 186: 185:Iron–platinum 183: 181: 178: 176: 173: 171: 168: 166: 163: 161: 158: 156: 153: 151: 148: 146: 143: 141: 138: 136: 133: 132: 131: 130: 127: 126:nanoparticles 122: 117: 114: 112: 111:Health impact 109: 107: 104: 102: 101:C70 fullerene 99: 97: 94: 93: 92: 91: 88: 84: 79: 76: 74: 71: 69: 66: 64: 61: 59: 56: 54: 51: 50: 49: 48: 45: 41: 37: 33: 32: 29: 28:Nanomaterials 25: 21: 20: 2107: 2103: 2064: 2060: 2054: 2013: 2009: 1999: 1966: 1962: 1956: 1931: 1927: 1921: 1896: 1892: 1886: 1861: 1857: 1851: 1818: 1814: 1808: 1783: 1779: 1773: 1740: 1736: 1726: 1709: 1705: 1699: 1664: 1660: 1650: 1635: 1630: 1595: 1591: 1581: 1556: 1552: 1546: 1505: 1501: 1495: 1460: 1456: 1446: 1411: 1407: 1397: 1370: 1366: 1356: 1331: 1327: 1321: 1288: 1284: 1238: 1234: 1228: 1209: 1205: 1195: 1184:. Retrieved 1175: 1167: 1156:. Retrieved 1147: 1139: 1104: 1100: 1086: 1075: 1070: 1053: 1049: 1039: 1022: 1018: 1005: 996: 990: 973: 969: 963: 946: 942: 936: 911: 907: 894: 875: 869: 855: 843: 828: 823: 782: 778: 772: 764: 748: 744: 734: 673: 664: 660: 656: 652: 643: 633: 632: 627: 626: 623: 616: 612: 602: 601: 595: 579: 577: 569: 561: 548: 544:adding to it 539: 479: 460: 449: 435: 404: 398: 395:aspect ratio 388: 379:nanoparticle 370: 364: 318:porous media 315: 306: 305: 222: 160:Cobalt oxide 140:Quantum dots 73:Applications 1858:ChemCatChem 1291:(1): 9–11. 914:: 577–582. 902:; Hu, Han; 582:materials. 515:and a high 461:The binary 359:dislocation 2135:Categories 2016:: 165718. 1186:2008-09-28 1172:Gash, AE. 1158:2008-09-28 1144:Gash, AE. 726:References 494:deposition 482:thin films 412:electrical 330:copolymers 311:nanometers 180:Iron oxide 87:Fullerenes 2110:: 37–58. 2081:203986488 2046:202137993 2038:0304-8853 1969:: 72–75. 1815:Nanoscale 1786:: 89–96. 1765:225292702 1757:1433-3015 1573:1099-0690 1538:244288401 1522:2040-3372 1502:Nanoscale 1255:1521-3765 1212:: 56–63. 1093:Mikos, AG 1056:: 22–35. 904:Sun, Ying 878:. Wiley. 428:stiffness 375:Maya blue 338:catalytic 150:Cellulose 106:Chemistry 58:Chemistry 53:Synthesis 2124:22432572 1878:96894484 1843:21165500 1800:26938504 1691:24264728 1530:34851346 1487:23727293 1438:23405887 1389:97169049 1348:19957928 1328:ACS Nano 1313:17199118 1263:25302846 1131:23727293 815:34424830 720:Aquamelt 679:See also 511:, small 432:strength 382:polymer/ 361:movement 340:activity 322:colloids 228:Nanofoam 195:Platinum 78:Timeline 2018:Bibcode 1991:1335792 1971:Bibcode 1948:6587533 1901:Bibcode 1823:Bibcode 1682:3924876 1621:3244951 1600:Bibcode 1478:3732565 1429:3601907 1293:Bibcode 1122:3732565 916:Bibcode 807:8662502 787:Bibcode 779:Science 634:hybrids 488:by the 452:ceramic 350:changes 155:Ceramic 2122:  2079:  2044:  2036:  1989:  1946:  1876:  1841:  1798:  1763:  1755:  1689:  1679:  1642:  1618:  1571:  1536:  1528:  1520:  1485:  1475:  1436:  1426:  1387:  1346:  1311:  1261:  1253:  1129:  1119:  882:  835:  813:  805:  399:et al. 371:et al. 200:Silver 165:Copper 124:Other 2077:S2CID 2042:S2CID 1987:S2CID 1944:S2CID 1874:S2CID 1761:S2CID 1534:S2CID 1385:S2CID 1181:(PDF) 1153:(PDF) 1015:(PDF) 811:S2CID 456:metal 190:Lipid 2120:PMID 2034:ISSN 1839:PMID 1796:PMID 1753:ISSN 1687:PMID 1640:ISBN 1569:ISSN 1557:2016 1526:PMID 1518:ISSN 1483:PMID 1434:PMID 1344:PMID 1309:PMID 1259:PMID 1251:ISSN 1127:PMID 880:ISBN 833:ISBN 803:PMID 503:and 473:and 414:and 384:clay 328:and 326:gels 175:Iron 170:Gold 2112:doi 2069:doi 2026:doi 2014:493 1979:doi 1936:doi 1932:105 1909:doi 1897:316 1866:doi 1831:doi 1788:doi 1745:doi 1741:110 1714:doi 1710:216 1677:PMC 1669:doi 1665:111 1616:PMC 1608:doi 1561:doi 1510:doi 1473:PMC 1465:doi 1424:PMC 1416:doi 1375:doi 1336:doi 1301:doi 1243:doi 1214:doi 1117:PMC 1109:doi 1058:doi 1027:doi 1023:179 978:doi 974:167 951:doi 924:doi 795:doi 783:273 753:doi 631:or 546:. 498:TiO 468:TiO 2137:: 2118:. 2106:. 2102:. 2075:. 2065:10 2063:. 2040:. 2032:. 2024:. 2012:. 2008:. 1985:. 1977:. 1967:15 1965:. 1942:. 1930:. 1907:. 1895:. 1872:. 1860:. 1837:. 1829:. 1817:. 1794:. 1784:39 1782:. 1759:. 1751:. 1739:. 1735:. 1708:. 1685:. 1675:. 1663:. 1659:. 1614:. 1606:. 1594:. 1590:. 1567:. 1555:. 1532:. 1524:. 1516:. 1506:13 1504:. 1481:. 1471:. 1459:. 1455:. 1432:. 1422:. 1412:14 1410:. 1406:. 1383:. 1369:. 1365:. 1342:. 1330:. 1307:. 1299:. 1287:. 1271:^ 1257:. 1249:. 1239:20 1237:. 1210:29 1208:. 1204:. 1125:. 1115:. 1103:. 1099:. 1052:. 1048:. 1021:. 1017:. 972:. 947:29 945:. 922:. 912:61 910:. 809:. 801:. 793:. 781:. 749:38 747:. 743:. 641:. 519:. 505:Cu 475:Cu 430:, 422:, 324:, 320:, 2126:. 2114:: 2108:1 2083:. 2071:: 2048:. 2028:: 2020:: 1993:. 1981:: 1973:: 1950:. 1938:: 1915:. 1911:: 1903:: 1880:. 1868:: 1862:2 1845:. 1833:: 1825:: 1819:3 1802:. 1790:: 1767:. 1747:: 1720:. 1716:: 1693:. 1671:: 1634:" 1624:. 1610:: 1602:: 1596:3 1575:. 1563:: 1540:. 1512:: 1489:. 1467:: 1461:9 1440:. 1418:: 1391:. 1377:: 1371:8 1350:. 1338:: 1332:3 1315:. 1303:: 1295:: 1289:6 1265:. 1245:: 1222:. 1216:: 1189:. 1174:" 1161:. 1150:" 1146:" 1133:. 1111:: 1105:9 1064:. 1060:: 1054:2 1033:. 1029:: 984:. 980:: 957:. 953:: 930:. 926:: 918:: 888:. 817:. 797:: 789:: 761:. 755:: 553:) 549:( 500:2 470:2 295:e 288:t 281:v

Index

Nanomaterials

Carbon nanotubes
Synthesis
Chemistry
Mechanical properties
Optical properties
Applications
Timeline
Fullerenes
Buckminsterfullerene
C70 fullerene
Chemistry
Health impact
Carbon allotropes
nanoparticles
Carbon quantum dots
Quantum dots
Aluminium oxide
Cellulose
Ceramic
Cobalt oxide
Copper
Gold
Iron
Iron oxide
Iron–platinum
Lipid
Platinum
Silver

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.