Knowledge (XXG)

Nanocrystalline material

Source đź“ť

1206:), the grain size of the samples was observed to double from 10 to 20 nm after 24 hours of exposure to ambient temperatures. Although materials with higher melting points are more stable at room temperatures, consolidating nanocrystalline feedstock into a macroscopic component often requires exposing the material to elevated temperatures for extended periods of time, which will result in coarsening of the nanocrystalline microstructure. Thus, thermally 361: 373: 33: 686:, as grain boundaries are extremely effective at blocking the motion of dislocations. Yielding occurs when the stress due to dislocation pileup at a grain boundary becomes sufficient to activate slip of dislocations in the adjacent grain. This critical stress increases as the grain size decreases, and these physics are empirically captured by the Hall-Petch relationship, 146: 864:
Hall-Petch regime, any further decrease in the grain size weakens the material because an increase in grain boundary area results in increased grain boundary sliding. Chandross & Argibay modeled grain boundary sliding as viscous flow and related the yield strength of the material in this regime to material properties as
567:
amorphous grain boundary phase. For example, the elastic modulus has been shown to decrease by 30% for nanocrystalline metals and more than 50% for nanocrystalline ionic materials. This is because the amorphous grain boundary regions are less dense than the crystalline grains, and thus have a larger volume per atom,
1219:
While the mechanical behavior of ceramics is often dominated by flaws, i.e. porosity, instead of grain size, grain-size strengthening is also observed in high-density ceramic specimens. Additionally, nanocrystalline ceramics have been shown to sinter more rapidly than bulk ceramics, leading to higher
566:
Nanocrystalline materials show exceptional mechanical properties relative to their coarse-grained varieties. Because the volume fraction of grain boundaries in nanocrystalline materials can be as large as 30%, the mechanical properties of nanocrystalline materials are significantly influenced by this
1270:
While the synthesis of nanocrystalline feedstocks in the form of foils, powders, and wires is relatively straightforward, the tendency of nanocrystalline feedstocks to coarsen upon extended exposure to elevated temperatures means that low-temperature and rapid densification techniques are necessary
863:
As the grain size continues to decrease, a critical grain size is reached at which intergranular deformation, i.e. grain boundary sliding, becomes more energetically favorable than intragranular dislocation motion. Below this critical grain size, often referred to as the “reverse” or “inverse”
1261:
and linearly with the grain boundary diffusivity, refining the grain size from 10 μm to 10 nm can increase the diffusional creep rate by approximately 11 orders of magnitude. This superplasticity could prove invaluable for the processing of ceramic components, as the material may be
1210:
are of considerable engineering interest. Experiments have shown that traditional microstructural stabilization techniques such as grain boundary pinning via solute segregation or increasing solute concentrations have proven successful in some alloy systems, such as Pd-Zr and Ni-W.
972: 1170: is the grain boundary thickness and typically on the order of 1 nm. The maximum strength of a metal is given by the intersection of this line with the Hall-Petch relationship, which typically occurs around a grain size of 1610:
Wollmershauser, James; Feigelson, Boris; Gorzkowski, Edward; Ellis, Chase; Gosami, Ramasis; Qadri, Syed; Tischler, Joseph; Kub, Fritz; Everett, Richard (May 2014). "An extended hardness limit in bulk nanoceramics".
1193:
Due to the large amount of interfacial energy associated with a large volume fraction of grain boundaries, nanocrystalline metals are thermally unstable. In nanocrystalline samples of low-melting point metals (i.e.
1220:
densities and improved mechanical properties, although extended exposure to the high pressures and elevated temperatures required to sinter the part to full density can result in coarsening of the nanostructure.
668: 1390:
Jiang, Jie; Zhu, Liping; Wu, Yazhen; Zeng, Yujia; He, Haiping; Lin, Junming; Ye, Zhizhen (February 2012). "Effects of phosphorus doping in ZnO nanocrystals by metal organic chemical vapor deposition".
757: 856:
is the average grain size. Additionally, because nanocrystalline grains are too small to contain a significant number of dislocations, nanocrystalline metals undergo negligible amounts of
1417:
Giallonardo, J.D.; Erb, U.; Aust, K.T.; Palumbo, G. (21 December 2011). "The influence of grain size and texture on the Young's modulus of nanocrystalline nickel and nickel–iron alloys".
1148: 870: 1538:
Cordero, Zachary; Knight, Braden; Schuh, Christopher (November 2016). "Six decades of the Hall–Petch effect – a survey of grain-size strengthening studies on pure metals".
1034: 814: 787: 487:
Solid-state processes do not involve melting or evaporating the material and are typically done at relatively low temperatures. Examples of solid state processes include
614: 463:, or more sophisticated methods such as the Warren-Averbach method or computer modeling of the diffraction pattern. The crystallite size can be measured directly using 1168: 585: 1259: 1207: 1088: 1061: 1188: 995: 854: 834: 182: 172: 50: 455:. In materials with very small grain sizes, the diffraction peaks will be broadened. This broadening can be related to a crystallite size using the 403: 1223:
The large volume fraction of grain boundaries associated with nanocrystalline materials causes interesting behavior in ceramic systems, such as
177: 1231:, analogous to the grain boundary sliding deformation mechanism in nanocrystalline metals. Because the diffusional creep rate scales as 1638:
Cha, Seung; Hong, Soon; Kim, Byung (June 2003). "Spark plasma sintering behavior of nanocrystalline WC–10Co cemented carbide powders".
97: 220: 69: 1583:
Detor, Andrew; Schuh, Christopher (November 2007). "Microstructural evolution during the heat treatment of nanocrystalline alloys".
1276: 1227:
in otherwise brittle ceramics. The large volume fraction of grain boundaries allows for a significant diffusional flow of atoms via
116: 619: 464: 76: 294: 1317: 54: 1307: 314: 162: 83: 692: 683: 254: 187: 1271:
to consolidate these feedstocks into bulk components. A variety of techniques show potential in this respect, such as
836:
is a material-specific constant that describes the magnitude of the metal's response to grain size strengthening, and
396: 65: 492: 444:
and conventional coarse-grained materials. Definitions vary, but nanocrystalline material is commonly defined as a
43: 1341:"Low temperature synthesis and characterization of single phase multi-component fluorite oxide nanoparticle sols" 516: 448:(grain) size below 100 nm. Grain sizes from 100 to 500 nm are typically considered "ultrafine" grains. 269: 167: 299: 1093: 1262:
converted back into a conventional, coarse-grained material via additional thermal treatment after forming.
289: 967:{\displaystyle \tau ={\bigg (}L{\frac {\rho _{L}}{M}}{\bigg )}{\bigg (}1-{\frac {T}{T_{m}}}{\bigg )}f_{g},} 816: is a material-specific constant that accounts for the effects of all other strengthening mechanisms, 1709: 1272: 512: 475:
Nanocrystalline materials can be prepared in several ways. Methods are typically categorized based on the
389: 304: 90: 1279:, although the synthesis of bulk nanocrystalline components on a commercial scale remains untenable. 342: 264: 225: 205: 511:. This often produces an amorphous metal, which can be transformed into an nanocrystalline metal by 1714: 488: 309: 274: 215: 1565: 1434: 1004: 998: 792: 765: 460: 244: 590: 674:, a nanocrystalline material will have a lower elastic modulus than its bulk crystalline form. 1704: 1478: 1362: 1313: 456: 452: 377: 284: 1153: 570: 1678: 1647: 1620: 1592: 1555: 1547: 1518: 1468: 1426: 1399: 1370: 1352: 1234: 857: 671: 531: 441: 1066: 1039: 1224: 476: 425: 153: 1309:
Amorphous and nanocrystalline materials : preparation, properties, and applications
1375: 1340: 1173: 980: 860:, and nanocrystalline materials can thus be assumed to behave with perfect plasticity. 839: 819: 670:, will be smaller in the grain boundary regions than in the bulk grains. Thus, via the 555: 504: 365: 279: 1651: 616:, is the same within the grain boundaries as in the bulk grains, the elastic modulus, 1698: 1683: 1666: 1569: 1523: 1506: 1438: 551: 508: 332: 323: 259: 210: 137: 1473: 1456: 1339:
Anandkumar, Mariappan; Bhattacharya, Saswata; Deshpande, Atul Suresh (2019-08-23).
1288: 1090:
is the volume fraction of material in the grains vs the grain boundaries, given by
479:
the material transitions through before forming the nanocrystalline final product.
360: 235: 1624: 1551: 1430: 1403: 1665:
Ward, Austin; French, Matthew; Leonard, Donovan; Cordero, Zachary (April 2018).
1293: 1228: 445: 429: 249: 32: 17: 372: 1366: 527: 437: 433: 196: 1482: 1596: 1560: 1195: 337: 1357: 547: 145: 682:
The exceptional yield strength of nanocrystalline metals is due to
1667:"Grain growth during ultrasonic welding of nanocrystalline alloys" 535: 1203: 1199: 26: 663:{\displaystyle E\propto \partial ^{2}U/\partial \Omega ^{2}} 1237: 1176: 1156: 1096: 1069: 1042: 1007: 983: 873: 842: 822: 795: 768: 695: 622: 593: 573: 451:
The grain size of a NC sample can be estimated using
1455:Chandross, Michael; Argibay, Nicolas (March 2020). 530:of nanocrystalline materials can be produced using 491:using a high-energy ball mill and certain types of 57:. Unsourced material may be challenged and removed. 1253: 1182: 1162: 1142: 1082: 1055: 1028: 989: 966: 848: 828: 808: 781: 752:{\displaystyle \sigma _{y}=\sigma _{0}+Kd^{-1/2},} 751: 662: 608: 579: 946: 916: 909: 882: 503:Nanocrystalline metals can be produced by rapid 554:, can be made into nanocrystalline foils using 1036:is the atomic volume in the amorphous phase, 397: 8: 1334: 1332: 1450: 1448: 1671:Journal of Materials Processing Technology 404: 390: 128: 1682: 1559: 1522: 1500: 1498: 1496: 1494: 1492: 1472: 1374: 1356: 1242: 1236: 1175: 1155: 1134: 1122: 1101: 1095: 1074: 1068: 1047: 1041: 1018: 1012: 1006: 982: 955: 945: 944: 936: 927: 915: 914: 908: 907: 896: 890: 881: 880: 872: 841: 821: 800: 794: 773: 767: 736: 729: 713: 700: 694: 654: 642: 633: 621: 592: 572: 117:Learn how and when to remove this message 507:from the liquid using a process such as 1328: 1143:{\displaystyle f_{g}=(1-\delta /d)^{3}} 436:. These materials fill the gap between 322: 233: 195: 152: 136: 587:. Assuming the interatomic potential, 1306:A. Inoue; K. Hashimoto, eds. (2001). 1190:= 10 nm for BCC and FCC metals. 7: 1640:Materials Science and Engineering: A 55:adding citations to reliable sources 651: 647: 630: 600: 574: 459:(applicable up to ~50 nm), a 25: 1277:ultrasonic additive manufacturing 1684:10.1016/j.jmatprotec.2017.11.049 1063:is the melting temperature, and 465:transmission electron microscopy 371: 359: 144: 31: 1540:International Materials Reviews 132:Part of a series of articles on 42:needs additional citations for 1474:10.1103/PhysRevLett.124.125501 1131: 1110: 603: 597: 1: 1652:10.1016/S0921-5093(02)00605-6 1625:10.1016/j.actamat.2014.01.030 1585:Journal of Materials Research 1552:10.1080/09506608.2016.1191808 1511:Progress in Materials Science 1457:"Ultimate strength of metals" 1208:stable nanocrystalline alloys 1524:10.1016/0079-6425(89)90001-7 1431:10.1080/14786435.2011.615350 1404:10.1016/j.matlet.2011.10.072 684:grain boundary strengthening 1507:"Nanocrystalline materials" 1029:{\displaystyle \rho _{L}/M} 809:{\displaystyle \sigma _{0}} 782:{\displaystyle \sigma _{y}} 517:crystallization temperature 1731: 609:{\displaystyle U(\Omega )} 546:Some metals, particularly 493:severe plastic deformation 66:"Nanocrystalline material" 1505:Gleiter, Herbert (1989). 1215:Nanocrystalline ceramics 348:Nanocrystalline material 324:Nanostructured materials 1461:Physical Review Letters 1163:{\displaystyle \delta } 580:{\displaystyle \Omega } 1419:Philosophical Magazine 1273:spark plasma sintering 1255: 1254:{\displaystyle d^{-3}} 1184: 1164: 1144: 1084: 1057: 1030: 991: 968: 850: 830: 810: 783: 753: 678:Nanocrystalline metals 664: 610: 581: 523:Vapor-phase processing 483:Solid-state processing 440:materials without any 1597:10.1557/JMR.2007.0403 1467:(12): 125501–125505. 1256: 1185: 1165: 1145: 1085: 1083:{\displaystyle f_{g}} 1058: 1056:{\displaystyle T_{m}} 1031: 992: 969: 851: 831: 811: 789:is the yield stress, 784: 754: 665: 611: 582: 562:Mechanical properties 378:Technology portal 173:Mechanical properties 1312:. Berlin: Springer. 1235: 1174: 1154: 1094: 1067: 1040: 1005: 981: 871: 840: 820: 793: 766: 693: 620: 591: 571: 461:Williamson-Hall plot 343:Nanoporous materials 206:Buckminsterfullerene 51:improve this article 1351:(46): 26825–26830. 542:Solution processing 489:mechanical alloying 432:size of only a few 245:Carbon quantum dots 1358:10.1039/C9RA04636D 1251: 1180: 1160: 1140: 1080: 1053: 1026: 999:enthalpy of fusion 987: 964: 846: 826: 806: 779: 749: 660: 606: 577: 534:processes such as 366:Science portal 178:Optical properties 1591:(11): 3233–3248. 1425:(36): 4594–4605. 1392:Materials Letters 1183:{\displaystyle d} 990:{\displaystyle L} 942: 905: 849:{\displaystyle d} 829:{\displaystyle K} 556:electrodeposition 499:Liquid processing 457:Scherrer equation 453:x-ray diffraction 414: 413: 226:Carbon allotropes 127: 126: 119: 101: 16:(Redirected from 1722: 1689: 1688: 1686: 1662: 1656: 1655: 1635: 1629: 1628: 1607: 1601: 1600: 1580: 1574: 1573: 1563: 1535: 1529: 1528: 1526: 1502: 1487: 1486: 1476: 1452: 1443: 1442: 1414: 1408: 1407: 1387: 1381: 1380: 1378: 1360: 1336: 1323: 1260: 1258: 1257: 1252: 1250: 1249: 1189: 1187: 1186: 1181: 1169: 1167: 1166: 1161: 1149: 1147: 1146: 1141: 1139: 1138: 1126: 1106: 1105: 1089: 1087: 1086: 1081: 1079: 1078: 1062: 1060: 1059: 1054: 1052: 1051: 1035: 1033: 1032: 1027: 1022: 1017: 1016: 996: 994: 993: 988: 973: 971: 970: 965: 960: 959: 950: 949: 943: 941: 940: 928: 920: 919: 913: 912: 906: 901: 900: 891: 886: 885: 858:strain-hardening 855: 853: 852: 847: 835: 833: 832: 827: 815: 813: 812: 807: 805: 804: 788: 786: 785: 780: 778: 777: 758: 756: 755: 750: 745: 744: 740: 718: 717: 705: 704: 672:rule of mixtures 669: 667: 666: 661: 659: 658: 646: 638: 637: 615: 613: 612: 607: 586: 584: 583: 578: 532:vapor deposition 442:long range order 428:material with a 424:) material is a 406: 399: 392: 376: 375: 364: 363: 315:Titanium dioxide 154:Carbon nanotubes 148: 129: 122: 115: 111: 108: 102: 100: 59: 35: 27: 21: 1730: 1729: 1725: 1724: 1723: 1721: 1720: 1719: 1695: 1694: 1693: 1692: 1664: 1663: 1659: 1637: 1636: 1632: 1613:Acta Materialia 1609: 1608: 1604: 1582: 1581: 1577: 1537: 1536: 1532: 1504: 1503: 1490: 1454: 1453: 1446: 1416: 1415: 1411: 1389: 1388: 1384: 1338: 1337: 1330: 1320: 1305: 1302: 1285: 1268: 1238: 1233: 1232: 1225:superplasticity 1217: 1172: 1171: 1152: 1151: 1130: 1097: 1092: 1091: 1070: 1065: 1064: 1043: 1038: 1037: 1008: 1003: 1002: 979: 978: 951: 932: 892: 869: 868: 838: 837: 818: 817: 796: 791: 790: 769: 764: 763: 725: 709: 696: 691: 690: 680: 650: 629: 618: 617: 589: 588: 569: 568: 564: 544: 525: 501: 485: 477:phase of matter 473: 426:polycrystalline 418:nanocrystalline 410: 370: 358: 255:Aluminium oxide 123: 112: 106: 103: 60: 58: 48: 36: 23: 22: 18:Nanocrystalline 15: 12: 11: 5: 1728: 1726: 1718: 1717: 1712: 1707: 1697: 1696: 1691: 1690: 1657: 1646:(1–2): 31–38. 1630: 1602: 1575: 1546:(8): 495–512. 1530: 1517:(4): 223–315. 1488: 1444: 1409: 1382: 1327: 1326: 1325: 1324: 1318: 1301: 1298: 1297: 1296: 1291: 1284: 1281: 1267: 1264: 1248: 1245: 1241: 1216: 1213: 1179: 1159: 1137: 1133: 1129: 1125: 1121: 1118: 1115: 1112: 1109: 1104: 1100: 1077: 1073: 1050: 1046: 1025: 1021: 1015: 1011: 986: 975: 974: 963: 958: 954: 948: 939: 935: 931: 926: 923: 918: 911: 904: 899: 895: 889: 884: 879: 876: 845: 825: 803: 799: 776: 772: 760: 759: 748: 743: 739: 735: 732: 728: 724: 721: 716: 712: 708: 703: 699: 679: 676: 657: 653: 649: 645: 641: 636: 632: 628: 625: 605: 602: 599: 596: 576: 563: 560: 543: 540: 524: 521: 505:solidification 500: 497: 484: 481: 472: 469: 412: 411: 409: 408: 401: 394: 386: 383: 382: 381: 380: 368: 353: 352: 351: 350: 345: 340: 335: 327: 326: 320: 319: 318: 317: 312: 307: 302: 297: 292: 287: 282: 277: 272: 267: 262: 257: 252: 247: 239: 238: 231: 230: 229: 228: 223: 218: 213: 208: 200: 199: 193: 192: 191: 190: 185: 180: 175: 170: 165: 157: 156: 150: 149: 141: 140: 134: 133: 125: 124: 39: 37: 30: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1727: 1716: 1713: 1711: 1710:Nanomaterials 1708: 1706: 1703: 1702: 1700: 1685: 1680: 1676: 1672: 1668: 1661: 1658: 1653: 1649: 1645: 1641: 1634: 1631: 1626: 1622: 1618: 1614: 1606: 1603: 1598: 1594: 1590: 1586: 1579: 1576: 1571: 1567: 1562: 1561:1721.1/112642 1557: 1553: 1549: 1545: 1541: 1534: 1531: 1525: 1520: 1516: 1512: 1508: 1501: 1499: 1497: 1495: 1493: 1489: 1484: 1480: 1475: 1470: 1466: 1462: 1458: 1451: 1449: 1445: 1440: 1436: 1432: 1428: 1424: 1420: 1413: 1410: 1405: 1401: 1397: 1393: 1386: 1383: 1377: 1372: 1368: 1364: 1359: 1354: 1350: 1346: 1342: 1335: 1333: 1329: 1321: 1315: 1311: 1310: 1304: 1303: 1299: 1295: 1292: 1290: 1287: 1286: 1282: 1280: 1278: 1274: 1265: 1263: 1246: 1243: 1239: 1230: 1226: 1221: 1214: 1212: 1209: 1205: 1201: 1197: 1191: 1177: 1157: 1135: 1127: 1123: 1119: 1116: 1113: 1107: 1102: 1098: 1075: 1071: 1048: 1044: 1023: 1019: 1013: 1009: 1000: 984: 961: 956: 952: 937: 933: 929: 924: 921: 902: 897: 893: 887: 877: 874: 867: 866: 865: 861: 859: 843: 823: 801: 797: 774: 770: 746: 741: 737: 733: 730: 726: 722: 719: 714: 710: 706: 701: 697: 689: 688: 687: 685: 677: 675: 673: 655: 643: 639: 634: 626: 623: 594: 561: 559: 557: 553: 552:nickel alloys 549: 541: 539: 537: 533: 529: 522: 520: 518: 514: 510: 509:melt spinning 506: 498: 496: 494: 490: 482: 480: 478: 470: 468: 466: 462: 458: 454: 449: 447: 443: 439: 435: 431: 427: 423: 419: 407: 402: 400: 395: 393: 388: 387: 385: 384: 379: 374: 369: 367: 362: 357: 356: 355: 354: 349: 346: 344: 341: 339: 336: 334: 333:Nanocomposite 331: 330: 329: 328: 325: 321: 316: 313: 311: 308: 306: 303: 301: 298: 296: 295:Iron–platinum 293: 291: 288: 286: 283: 281: 278: 276: 273: 271: 268: 266: 263: 261: 258: 256: 253: 251: 248: 246: 243: 242: 241: 240: 237: 236:nanoparticles 232: 227: 224: 222: 221:Health impact 219: 217: 214: 212: 211:C70 fullerene 209: 207: 204: 203: 202: 201: 198: 194: 189: 186: 184: 181: 179: 176: 174: 171: 169: 166: 164: 161: 160: 159: 158: 155: 151: 147: 143: 142: 139: 138:Nanomaterials 135: 131: 130: 121: 118: 110: 107:December 2013 99: 96: 92: 89: 85: 82: 78: 75: 71: 68: â€“  67: 63: 62:Find sources: 56: 52: 46: 45: 40:This article 38: 34: 29: 28: 19: 1674: 1670: 1660: 1643: 1639: 1633: 1616: 1612: 1605: 1588: 1584: 1578: 1543: 1539: 1533: 1514: 1510: 1464: 1460: 1422: 1418: 1412: 1395: 1391: 1385: 1348: 1345:RSC Advances 1344: 1308: 1289:Nanoparticle 1269: 1222: 1218: 1192: 976: 862: 761: 681: 565: 545: 526: 502: 486: 474: 450: 421: 417: 415: 347: 270:Cobalt oxide 250:Quantum dots 183:Applications 113: 104: 94: 87: 80: 73: 61: 49:Please help 44:verification 41: 1677:: 373–382. 1398:: 258–260. 1294:Quantum dot 1229:Coble creep 495:processes. 446:crystallite 430:crystallite 1715:Metallurgy 1699:Categories 1319:3540672710 1300:References 1266:Processing 528:Thin films 515:above the 434:nanometers 290:Iron oxide 197:Fullerenes 77:newspapers 1570:138754677 1439:136571167 1367:2046-2069 1244:− 1158:δ 1120:δ 1117:− 1010:ρ 925:− 894:ρ 875:τ 798:σ 771:σ 731:− 711:σ 698:σ 652:Ω 648:∂ 631:∂ 627:∝ 601:Ω 575:Ω 513:annealing 471:Synthesis 438:amorphous 260:Cellulose 216:Chemistry 168:Chemistry 163:Synthesis 1705:Crystals 1619:: 9–16. 1483:32281861 1283:See also 1196:aluminum 1150:, where 338:Nanofoam 305:Platinum 188:Timeline 1376:9070433 997:is the 265:Ceramic 91:scholar 1568:  1481:  1437:  1373:  1365:  1316:  1202:, and 977:where 762:where 548:nickel 310:Silver 275:Copper 234:Other 93:  86:  79:  72:  64:  1566:S2CID 1435:S2CID 536:MOCVD 300:Lipid 98:JSTOR 84:books 1479:PMID 1363:ISSN 1314:ISBN 1204:lead 550:and 285:Iron 280:Gold 70:news 1679:doi 1675:254 1648:doi 1644:351 1621:doi 1593:doi 1556:hdl 1548:doi 1519:doi 1469:doi 1465:124 1427:doi 1400:doi 1371:PMC 1353:doi 1275:or 1200:tin 53:by 1701:: 1673:. 1669:. 1642:. 1617:69 1615:. 1589:22 1587:. 1564:. 1554:. 1544:61 1542:. 1515:33 1513:. 1509:. 1491:^ 1477:. 1463:. 1459:. 1447:^ 1433:. 1423:91 1421:. 1396:68 1394:. 1369:. 1361:. 1347:. 1343:. 1331:^ 1198:, 1001:, 558:. 538:. 519:. 467:. 422:NC 416:A 1687:. 1681:: 1654:. 1650:: 1627:. 1623:: 1599:. 1595:: 1572:. 1558:: 1550:: 1527:. 1521:: 1485:. 1471:: 1441:. 1429:: 1406:. 1402:: 1379:. 1355:: 1349:9 1322:. 1247:3 1240:d 1178:d 1136:3 1132:) 1128:d 1124:/ 1114:1 1111:( 1108:= 1103:g 1099:f 1076:g 1072:f 1049:m 1045:T 1024:M 1020:/ 1014:L 985:L 962:, 957:g 953:f 947:) 938:m 934:T 930:T 922:1 917:( 910:) 903:M 898:L 888:L 883:( 878:= 844:d 824:K 802:0 775:y 747:, 742:2 738:/ 734:1 727:d 723:K 720:+ 715:0 707:= 702:y 656:2 644:/ 640:U 635:2 624:E 604:) 598:( 595:U 420:( 405:e 398:t 391:v 120:) 114:( 109:) 105:( 95:· 88:· 81:· 74:· 47:. 20:)

Index

Nanocrystalline

verification
improve this article
adding citations to reliable sources
"Nanocrystalline material"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
Nanomaterials

Carbon nanotubes
Synthesis
Chemistry
Mechanical properties
Optical properties
Applications
Timeline
Fullerenes
Buckminsterfullerene
C70 fullerene
Chemistry
Health impact
Carbon allotropes
nanoparticles
Carbon quantum dots
Quantum dots

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑