Knowledge (XXG)

Orientability

Source 📝

58: 419:: a decomposition into triangles such that each edge on a triangle is glued to at most one other edge. Each triangle is oriented by choosing a direction around the perimeter of the triangle, associating a direction to each edge of the triangle. If this is done in such a way that, when glued together, neighboring edges are pointing in the opposite direction, then this determines an orientation of the surface. Such a choice is only possible if the surface is orientable, and in this case there are exactly two different orientations. 3559: 3342: 3580: 3548: 3617: 3590: 3570: 236:) is orientable if a consistent concept of clockwise rotation can be defined on the surface in a continuous manner. That is to say that a loop going around one way on the surface can never be continuously deformed (without overlapping itself) to a loop going around the opposite way. This turns out to be equivalent to the question of whether the surface contains no subset that is 425: 217: 140: 223: 149: 46: 852:
At the heart of all the above definitions of orientability of a differentiable manifold is the notion of an orientation preserving transition function. This raises the question of what exactly such transition functions are preserving. They cannot be preserving an orientation of the manifold because
2670:
manifold is space orientable if, whenever two right-handed observers head off in rocket ships starting at the same spacetime point, and then meet again at another point, they remain right-handed with respect to one another. If a spacetime is time-orientable then the two observers will always agree
2415: 428:
can be consistently positioned at all points of the surface without turning into its mirror image, then this will induce an orientation in the above sense on each of the triangles of the triangulation by selecting the direction of each of the triangles based on the order red-green-blue of colors of
326:
Note that locally an embedded surface always has two sides, so a near-sighted ant crawling on a one-sided surface would think there is an "other side". The essence of one-sidedness is that the ant can crawl from one side of the surface to the "other" without going through the surface or flipping
188:
In this animation, a simple analogy is made using a gear that rotates according to the right-hand rule on a surface's normal vector. The orientation of the curves given by the boundaries is given by the direction in which the dots move as they are pushed by the moving gear. On a non-orientable
74: 860:
corresponds to a choice of left and right near that point. On a two-dimensional manifold, it corresponds to a choice of clockwise and counter-clockwise. These two situations share the common feature that they are described in terms of top-dimensional behavior near
282:
surface is subtle and frequently blurred. An orientable surface is an abstract surface that admits an orientation, while an oriented surface is a surface that is abstractly orientable, and has the additional datum of a choice of one of the two possible orientations.
2509:
Another way to construct this cover is to divide the loops based at a basepoint into either orientation-preserving or orientation-reversing loops. The orientation preserving loops generate a subgroup of the fundamental group which is either the whole group or of
2186: 185: 2082: 824:. A transition function is orientation preserving if and only if it sends right-handed bases to right-handed bases. The existence of a volume form implies a reduction of the structure group of the tangent bundle or the frame bundle to 2514:
two. In the latter case (which means there is an orientation-reversing path), the subgroup corresponds to a connected double covering; this cover is orientable by construction. In the former case, one can simply take two copies of
2422: 2420: 2417: 2416: 2421: 1230: 2951: 2777: 2868: 959: 1496: 1384: 1114: 1048: 159:
Various equivalent formulations of orientability can be given, depending on the desired application and level of generality. Formulations applicable to general topological manifolds often employ methods of
2419: 710:
of positive determinant matrices, or equivalently if there exists an atlas whose transition functions determine an orientation preserving linear transformation on each tangent space, then the manifold
1307: 698:. That is, the transition functions of the manifold induce transition functions on the tangent bundle which are fiberwise linear transformations. If the structure group can be reduced to the group 1629:
pushes forward to the fixed generator. Conversely, an oriented atlas determines such a generator as compatible local orientations can be glued together to give a generator for the homology group
1760: 1962: 2094: 2671:
on the direction of time at both points of their meeting. In fact, a spacetime is time-orientable if and only if any two observers can agree which of the two meetings preceded the other.
1827: 1671: 1623: 1563: 844:
is orientable, then local volume forms can be patched together to create a global volume form, orientability being necessary to ensure that the global form is nowhere vanishing.
375: 1502:
is related to the first chart by an orientation preserving transition function, and this implies that the two charts yield the same generator, whence the generator is unique.
1979: 2603: 853:
an orientation of the manifold is an atlas, and it makes no sense to say that a transition function preserves or does not preserve an atlas of which it is a member.
4475: 405: 3666: 3620: 2617:, this reduction is always possible if the underlying base manifold is orientable and in fact this provides a convenient way to define the orientability of a 4470: 718:
is orientable if and only if the structure group of the tangent bundle can be reduced in this way. Similar observations can be made for the frame bundle.
3757: 2418: 3781: 3976: 315:
are non-orientable. They, as visualized in 3-dimensions, all have just one side. The real projective plane and Klein bottle cannot be embedded in
3123: 172:. A generalization of the notion of orientability of a space is that of orientability of a family of spaces parameterized by some other space (a 1160: 3150: 3846: 3019: 176:) for which an orientation must be selected in each of the spaces which varies continuously with respect to changes in the parameter values. 4072: 2883: 2704: 2803: 4125: 3653: 895: 2394:
is positively oriented if and only if it, when combined with the inward pointing normal vector, defines a positively oriented basis of
1435: 1323: 1053: 987: 330:
In general, the property of being orientable is not equivalent to being two-sided; however, this holds when the ambient space (such as
4409: 3254: 3051: 3226: 2790:
is the determinant, which gives the orientation character. A space-orientation of a pseudo-Riemannian manifold is identified with a
3608: 3603: 3133: 3099: 4174: 2563: 856:
This question can be resolved by defining local orientations. On a one-dimensional manifold, a local orientation around a point
3766: 4157: 3598: 3219: 1245: 4518: 2528: 1830: 4369: 3500: 3158: 117:
if such a consistent definition exists. In this case, there are two possible definitions, and a choice between them is an
1691: 4354: 4077: 3851: 2181:{\displaystyle \{{\text{Image of }}\alpha {\text{ in }}H_{n}\left(M,M\setminus \{p\};\mathbf {Z} \right)\colon p\in U\}} 1911: 39: 4399: 3119: 189:
surface, such as the Möbius strip, the boundary would have to move in both directions at once, which is not possible.
30:"Orientation (mathematics)" and "Orientation (space)" redirect here. For the orientation of a shape in a space, see 4404: 4374: 4082: 4038: 4019: 3786: 3730: 3508: 3091: 3043: 1309:, so the geometric significance of the choice of generator is that it distinguishes charts from their reflections. 35: 2877:) is the bundle of pseudo-orthogonal frames. Similarly, a time orientation is a section of the associated bundle 1686: 3941: 3806: 259:. For surfaces embedded in Euclidean space, an orientation is specified by the choice of a continuously varying 1885:. The set of local orientations can therefore be given a topology, and this topology makes it into a manifold. 775:
is an oriented atlas. The existence of a volume form is therefore equivalent to orientability of the manifold.
4326: 4191: 3883: 3725: 3579: 3307: 1581:
of this group. This generator determines an oriented atlas by fixing a generator of the infinite cyclic group
416: 274:. More generally, an orientable surface admits exactly two orientations, and the distinction between an orient 165: 675:
Orientability and orientations can also be expressed in terms of the tangent bundle. The tangent bundle is a
436:-manifold having a triangulation. However, some 4-manifolds do not have a triangulation, and in general for 220:) cannot be moved around the surface and back to where it started so that it looks like its own mirror image ( 1780: 1232:. A choice of generator therefore corresponds to a decision of whether, in the given chart, a sphere around 247:
For an orientable surface, a consistent choice of "clockwise" (as opposed to counter-clockwise) is called an
4023: 3993: 3917: 3907: 3863: 3693: 3646: 3593: 3083: 2675: 320: 211: 3791: 1849:
there are two local orientations. Intuitively, there is a way to move from a local orientation at a point
1632: 1584: 1524: 4364: 3983: 3878: 3698: 3528: 3523: 3449: 3326: 3314: 3287: 3247: 3177: 2791: 569: 464: 31: 2987: 2651: 4013: 4008: 3370: 3297: 2655: 308: 3558: 2077:{\displaystyle H_{n}(M,M\setminus U;\mathbf {Z} )\to H_{n}\left(M,M\setminus \{p\};\mathbf {Z} \right)} 778:
Volume forms and tangent vectors can be combined to give yet another description of orientability. If
340: 4344: 4282: 4130: 3834: 3824: 3796: 3771: 3681: 3518: 3470: 3444: 3292: 2629:
is orientable (as a vector bundle). Note that as a manifold in its own right, the tangent bundle is
2606: 616: 3182: 4482: 4455: 4164: 4042: 4027: 3956: 3715: 3569: 3365: 2647: 2511: 2084:. The codomain of this group has two generators, and α maps to one of them. The topology on 1150: 296: 4424: 4379: 4276: 4147: 3951: 3776: 3639: 3563: 3513: 3434: 3424: 3302: 3282: 3167: 2663: 2281:
is defined to be an orientation of its interior. Such an orientation induces an orientation of ∂
506: 106: 66: 3961: 3533: 57: 2569: 244:. Thus, for surfaces, the Möbius strip may be considered the source of all non-orientability. 4523: 4359: 4339: 4334: 4241: 4152: 3966: 3946: 3801: 3740: 3551: 3417: 3375: 3240: 3129: 3095: 3047: 3015: 2967: 2962: 2795: 2471: 1154: 266:
at every point. If such a normal exists at all, then there are always two ways to select it:
169: 98: 94: 4497: 4291: 4246: 4169: 4140: 3998: 3931: 3926: 3921: 3911: 3703: 3686: 3331: 3277: 3187: 3079: 2687: 2659: 1829:
parametrizes the choices of orientations. This characterization of orientability extends to
981: 487: 3207: 2470:
is either smooth so we can choose an orientation on the tangent space at a point or we use
1424:
at each point. This is made precise by noting that any chart in the oriented atlas around
383: 73: 4440: 4349: 4179: 4135: 3901: 3390: 3385: 3115: 2618: 2559: 2551: 684: 198: 161: 134: 130: 102: 2427: 304: 241: 153: 62: 607:
be a differentiable manifold. This means that the transition functions in the atlas of
4306: 4231: 4201: 4099: 4092: 4032: 4003: 3873: 3868: 3829: 3480: 3412: 3213: 3003: 2626: 2614: 2435: 1386:. From here, the relevant definitions are the same as in the differentiable case. An 545: 260: 3191: 587:
must be made into a special case. When more than one of these definitions applies to
4512: 4492: 4316: 4311: 4296: 4286: 4236: 4213: 4087: 4047: 3936: 3735: 3400: 3380: 3035: 3011: 2540: 676: 595:
is orientable under one definition if and only if it is orientable under the others.
78: 3583: 1120:
is contractible, so its homology groups vanish except in degree zero, and the space
619:. When the Jacobian determinant is positive, the transition function is said to be 4419: 4414: 4256: 4223: 4196: 4104: 3745: 3475: 3395: 3341: 680: 312: 237: 184: 173: 144: 113:
that allows a consistent definition of "clockwise" and "anticlockwise". A space is
4262: 4251: 4208: 4109: 3710: 3573: 3485: 2610: 2534: 2478:
we consider the corresponding set of pairs and define that to be an open set of
722: 86: 4487: 4445: 4271: 4184: 3816: 3720: 3429: 3360: 3319: 380:
can be one-sided, and a Klein bottle in the same space can be two-sided; here
129:
if "clockwise" is changed into "counterclockwise" after running through some
27:
Possibility of a consistent definition of "clockwise" in a mathematical space
4301: 4266: 3971: 3858: 3454: 2667: 631:
is an atlas for which all transition functions are orientation preserving.
721:
Another way to define orientations on a differentiable manifold is through
1225:{\displaystyle H_{n-1}\left(S^{n-1};\mathbf {Z} \right)\cong \mathbf {Z} } 17: 4465: 4460: 4450: 3841: 3662: 3439: 3407: 3356: 3263: 2622: 233: 110: 3172: 2229:
mentioned above are homeomorphic to the disjoint union of two copies of
771:
for which the standard volume form pulls back to a positive multiple of
3631: 2368:
is described by the inward pointing normal vector. The orientation of
1766:/2 coefficients is zero, then the manifold is orientable. Moreover, if 964:
To see the geometric significance of this group, choose a chart around
2310:, is in the chosen oriented atlas. The restriction of this chart to ∂ 2225:
is even a local homeomorphism, because the preimages of the open sets
1390:
is one for which all transition functions are orientation preserving,
424: 216: 139: 4057: 292: 122: 2946:{\displaystyle \operatorname {O} (M)\times _{\sigma _{-}}\{-1,+1\}.} 2772:{\displaystyle \sigma _{\pm }:\operatorname {O} (p,q)\to \{-1,+1\}.} 143:, that moves continuously along such a loop is changed into its own 2863:{\displaystyle \operatorname {O} (M)\times _{\sigma _{+}}\{-1,+1\}} 2548: 2494:
is then a 2-to-1 covering map. This covering space is called the
2413: 954:{\displaystyle H_{n}\left(M,M\setminus \{p\};\mathbf {Z} \right).} 300: 183: 72: 56: 50: 44: 1872:, that coordinate chart defines compatible local orientations at 1505:
Purely homological definitions are also possible. Assuming that
1491:{\displaystyle H_{n}\left(M,M\setminus \{p\};\mathbf {Z} \right)} 1379:{\displaystyle H_{n}\left(M,M\setminus \{p\};\mathbf {Z} \right)} 1109:{\displaystyle H_{n}\left(B,B\setminus \{O\};\mathbf {Z} \right)} 1043:{\displaystyle H_{n}\left(M,M\setminus \{p\};\mathbf {Z} \right)} 291:
Most surfaces encountered in the physical world are orientable.
2474:
to define orientation. Then for every open, oriented subset of
222: 148: 133:
in it, and coming back to the starting point. This means that a
45: 3635: 3236: 580:
has extra structure, like being differentiable. Occasionally,
572:. There are several possible definitions of what it means for 1968:. Assume that α is a generator of this group. For each 168:
more structure is present, allowing a formulation in terms of
1762:
vanishes. In particular, if the first cohomology group with
3232: 3220:
Orientation of manifolds in generalized cohomology theories
576:
to be orientable. Some of these definitions require that
1138:-sphere, so its homology groups vanish except in degrees 2519:, each of which corresponds to a different orientation. 1302:{\displaystyle H_{n-1}\left(S^{n-1};\mathbf {Z} \right)} 334:
above) is orientable. For example, a torus embedded in
121:
of the space. Real vector spaces, Euclidean spaces, and
2625:: a smooth manifold is defined to be orientable if its 1862:: when the two points lie in the same coordinate chart 444:-manifolds have triangulations that are inequivalent. 2886: 2806: 2707: 2572: 2097: 1982: 1914: 1783: 1694: 1635: 1625:
and taking the oriented charts to be those for which
1587: 1527: 1438: 1326: 1248: 1163: 1157:
shows that the above homology group is isomorphic to
1056: 990: 898: 386: 343: 2277:
is a manifold with boundary, then an orientation of
1312:
On a topological manifold, a transition function is
739:, the top exterior power of the cotangent bundle of 429:
any of the figures in the interior of the triangle.
4433: 4392: 4325: 4222: 4118: 4065: 4056: 3892: 3815: 3754: 3674: 3499: 3463: 3349: 3270: 1755:{\displaystyle w_{1}(M)\in H^{1}(M;\mathbf {Z} /2)} 848:
Homology and the orientability of general manifolds
2945: 2862: 2771: 2597: 2180: 2076: 1957:{\displaystyle H_{n}(M,M\setminus U;\mathbf {Z} )} 1956: 1821: 1754: 1665: 1617: 1557: 1490: 1378: 1301: 1224: 1108: 1042: 953: 399: 369: 1900:we will specify a subbase for its topology. Let 327:over an edge, but simply by crawling far enough. 2426:Animation of the orientable double cover of the 836:. As before, this implies the orientability of 725:. A volume form is a nowhere vanishing section 232:. An abstract surface (i.e., a two-dimensional 2633:orientable, even over nonorientable manifolds. 1420:ought to define a unique local orientation of 3647: 3248: 544:factor is generated by the middle curve in a 34:. For the orientation of a vector space, see 8: 2937: 2919: 2857: 2839: 2763: 2745: 2381:is defined by the condition that a basis of 2175: 2147: 2141: 2098: 2058: 2052: 1472: 1466: 1432:, and this sphere determines a generator of 1360: 1354: 1090: 1084: 1024: 1018: 968:. In that chart there is a neighborhood of 932: 926: 603:The most intuitive definitions require that 3225:The Encyclopedia of Mathematics article on 2337:, the restriction of the tangent bundle of 2318:. Such charts form an oriented atlas for ∂ 2257:is connected and orientable. The manifold 4062: 3654: 3640: 3632: 3616: 3589: 3255: 3241: 3233: 2434:A closely related notion uses the idea of 2306:which, when restricted to the interior of 2285:. Indeed, suppose that an orientation of 1320:in its domain, it fixes the generators of 1236:is positive or negative. A reflection of 65:is a non-orientable surface. Note how the 3181: 3171: 2911: 2906: 2885: 2831: 2826: 2805: 2712: 2706: 2694:and the time orientation character σ 2580: 2571: 2153: 2118: 2109: 2101: 2096: 2064: 2029: 2014: 1987: 1981: 1946: 1919: 1913: 1855:to a local orientation at a nearby point 1808: 1803: 1788: 1782: 1741: 1736: 1721: 1699: 1693: 1655: 1640: 1634: 1607: 1592: 1586: 1547: 1532: 1526: 1478: 1443: 1437: 1428:can be used to determine a sphere around 1398:if it admits an oriented atlas, and when 1366: 1331: 1325: 1289: 1274: 1253: 1247: 1217: 1204: 1189: 1168: 1162: 1096: 1061: 1055: 1030: 995: 989: 938: 903: 897: 796:is a basis of tangent vectors at a point 599:Orientability of differentiable manifolds 391: 385: 361: 348: 342: 156:is an example of a non-orientable space. 2690:: the space orientation character σ 2650:, there are two kinds of orientability: 1892:be the set of all local orientations of 3125:The Large Scale Structure of Space-Time 3066: 2978: 2782:Their product σ = σ 2486:a topology and the projection sending ( 2245:is the disjoint union of two copies of 2138: 2049: 2005: 1937: 1831:orientability of general vector bundles 1822:{\displaystyle H^{0}(M;\mathbf {Z} /2)} 1685:is orientable if and only if the first 1463: 1351: 1242:through the origin acts by negation on 1081: 1015: 923: 889:is a choice of generator of the group 639:if it admits an oriented atlas. When 615:-functions. Such a function admits a 2241:itself is one of these open sets, so 1666:{\displaystyle H_{n}(M;\mathbf {Z} )} 1618:{\displaystyle H_{n}(M;\mathbf {Z} )} 1558:{\displaystyle H_{n}(M;\mathbf {Z} )} 214:two-dimensional figure (for example, 7: 1498:. Moreover, any other chart around 747:has a standard volume form given by 654:is a maximal oriented atlas. (When 2213:. It is clear that every point of 2887: 2807: 2721: 2302:be a chart at a boundary point of 2217:has precisely two preimages under 2205:that sends a local orientation at 1976:, there is a pushforward function 303:are orientable, for example. But 25: 2662:of spacetime. In the context of 2253:is non-orientable, however, then 432:This approach generalizes to any 370:{\displaystyle K^{2}\times S^{1}} 3615: 3588: 3578: 3568: 3557: 3547: 3546: 3340: 3151:"The Orientability of Spacetime" 2989:Modern multidimensional calculus 2154: 2065: 2015: 1947: 1804: 1737: 1656: 1608: 1548: 1479: 1367: 1290: 1218: 1205: 1097: 1031: 939: 423: 221: 215: 147: 138: 2986:Munroe, Marshall Evans (1963). 1837:, not just the tangent bundle. 1416:Intuitively, an orientation of 800:, then the basis is said to be 761:, the collection of all charts 3694:Differentiable/Smooth manifold 3128:. Cambridge University Press. 2992:. Addison-Wesley. p. 263. 2899: 2893: 2819: 2813: 2742: 2739: 2727: 2592: 2586: 2529:Orientation of a vector bundle 2022: 2019: 1993: 1951: 1925: 1816: 1794: 1749: 1727: 1711: 1705: 1660: 1646: 1612: 1598: 1565:is isomorphic to the integers 1552: 1538: 1: 3159:Classical and Quantum Gravity 3069:, p. 236 Theorem 3.26(a) 2523:Orientation of vector bundles 1413:is a maximal oriented atlas. 869:. For the general case, let 475:is orientable if and only if 2658:. These play a role in the 2502:is connected if and only if 1841:The orientation double cover 714:is orientable. Conversely, 411:Orientation by triangulation 407:refers to the Klein bottle. 253:, and the surface is called 226:). Otherwise the surface is 40:Orientation (disambiguation) 4400:Classification of manifolds 3192:10.1088/0264-9381/19/17/308 2438:. For a connected manifold 564:be a connected topological 125:are orientable. A space is 4540: 3509:Banach fixed-point theorem 3094:. p. 79 Theorem 1.2. 3092:Princeton University Press 3044:Cambridge University Press 2532: 2526: 1677:Orientation and cohomology 1149:. A computation with the 757:. Given a volume form on 556:Orientability of manifolds 467:group of a closed surface 448:Orientability and homology 36:Orientation (vector space) 29: 4476:over commutative algebras 3542: 3338: 2598:{\displaystyle GL^{+}(n)} 2329:is smooth, at each point 2194:There is a canonical map 1577:is a choice of generator 1509:is closed and connected, 536:is free abelian, and the 323:with nice intersections. 4192:Riemann curvature tensor 3208:Orientation of manifolds 3149:Hadley, Mark J. (2002). 3084:Michelsohn, Marie-Louise 2498:, as it is orientable. 2263:orientation double cover 166:differentiable manifolds 53:is an orientable surface 2676:pseudo-orthogonal group 2496:orientable double cover 2410:Orientable double cover 2269:Manifolds with boundary 3984:Manifold with boundary 3699:Differential structure 3564:Mathematics portal 3464:Metrics and properties 3450:Second-countable space 3222:at the Manifold Atlas. 3216:at the Manifold Atlas. 3210:at the Manifold Atlas. 2947: 2864: 2773: 2599: 2431: 2364:, where the factor of 2182: 2078: 1958: 1823: 1756: 1667: 1619: 1559: 1492: 1380: 1314:orientation preserving 1303: 1226: 1110: 1044: 972:which is an open ball 955: 621:orientation preserving 401: 371: 309:real projective planes 190: 93:is a property of some 82: 70: 69:flips with every loop. 54: 38:. For other uses, see 32:Orientation (geometry) 4519:Differential topology 3008:Calculus on Manifolds 2948: 2865: 2774: 2600: 2462:is an orientation at 2425: 2183: 2079: 1959: 1904:be an open subset of 1845:Around each point of 1824: 1757: 1687:Stiefel–Whitney class 1668: 1620: 1560: 1493: 1381: 1304: 1227: 1111: 1045: 956: 490:. More precisely, if 402: 400:{\displaystyle K^{2}} 372: 278:surface and an orient 187: 109:, and more generally 76: 60: 48: 4131:Covariant derivative 3682:Topological manifold 3519:Invariance of domain 3471:Euler characteristic 3445:Bundle (mathematics) 3214:Orientation covering 2884: 2804: 2705: 2570: 2446:, the set of pairs ( 2237:is orientable, then 2095: 1980: 1912: 1888:More precisely, let 1781: 1692: 1633: 1585: 1525: 1436: 1324: 1246: 1161: 1054: 988: 896: 661:, an orientation of 617:Jacobian determinant 463:) denotes the first 384: 341: 4165:Exterior derivative 3767:Atiyah–Singer index 3716:Riemannian manifold 3529:Tychonoff's theorem 3524:Poincaré conjecture 3278:General (point-set) 2652:space orientability 2648:Lorentzian geometry 2642:Lorentzian geometry 2506:is not orientable. 2088:is defined so that 1517:if and only if the 1151:long exact sequence 494:is orientable then 180:Orientable surfaces 4471:Secondary calculus 4425:Singularity theory 4380:Parallel transport 4148:De Rham cohomology 3787:Generalized Stokes 3514:De Rham cohomology 3435:Polyhedral complex 3425:Simplicial complex 3040:Algebraic Topology 2943: 2860: 2769: 2664:general relativity 2656:time orientability 2595: 2432: 2178: 2074: 1954: 1819: 1770:is orientable and 1752: 1663: 1615: 1555: 1521:th homology group 1488: 1376: 1316:if, at each point 1299: 1222: 1106: 1040: 976:around the origin 951: 840:. Conversely, if 509:, and if not then 507:free abelian group 415:Any surface has a 397: 367: 191: 170:differential forms 99:real vector spaces 95:topological spaces 83: 81:is non-orientable. 71: 55: 4506: 4505: 4388: 4387: 4153:Differential form 3807:Whitney embedding 3741:Differential form 3629: 3628: 3418:fundamental group 3080:Lawson, H. Blaine 3021:978-0-8053-9021-6 2968:Orientation sheaf 2963:Curve orientation 2796:associated bundle 2472:singular homology 2466:; here we assume 2450:, o) where 2423: 2345:is isomorphic to 2112: 2104: 1964:is isomorphic to 1908:chosen such that 1896:. To topologize 1155:relative homology 1050:is isomorphic to 879:local orientation 873:be a topological 16:(Redirected from 4531: 4498:Stratified space 4456:Fréchet manifold 4170:Interior product 4063: 3760: 3656: 3649: 3642: 3633: 3619: 3618: 3592: 3591: 3582: 3572: 3562: 3561: 3550: 3549: 3344: 3257: 3250: 3243: 3234: 3196: 3195: 3185: 3175: 3155: 3146: 3140: 3139: 3112: 3106: 3105: 3076: 3070: 3064: 3058: 3057: 3032: 3026: 3025: 3000: 2994: 2993: 2983: 2952: 2950: 2949: 2944: 2918: 2917: 2916: 2915: 2869: 2867: 2866: 2861: 2838: 2837: 2836: 2835: 2778: 2776: 2775: 2770: 2717: 2716: 2686:) has a pair of 2660:causal structure 2637:Related concepts 2604: 2602: 2601: 2596: 2585: 2584: 2424: 2363: 2301: 2224: 2220: 2204: 2187: 2185: 2184: 2179: 2162: 2158: 2157: 2123: 2122: 2113: 2110: 2105: 2102: 2083: 2081: 2080: 2075: 2073: 2069: 2068: 2034: 2033: 2018: 1992: 1991: 1963: 1961: 1960: 1955: 1950: 1924: 1923: 1884: 1877: 1871: 1861: 1854: 1828: 1826: 1825: 1820: 1812: 1807: 1793: 1792: 1761: 1759: 1758: 1753: 1745: 1740: 1726: 1725: 1704: 1703: 1672: 1670: 1669: 1664: 1659: 1645: 1644: 1628: 1624: 1622: 1621: 1616: 1611: 1597: 1596: 1580: 1564: 1562: 1561: 1556: 1551: 1537: 1536: 1497: 1495: 1494: 1489: 1487: 1483: 1482: 1448: 1447: 1404: 1385: 1383: 1382: 1377: 1375: 1371: 1370: 1336: 1335: 1308: 1306: 1305: 1300: 1298: 1294: 1293: 1285: 1284: 1264: 1263: 1241: 1231: 1229: 1228: 1223: 1221: 1213: 1209: 1208: 1200: 1199: 1179: 1178: 1148: 1144: 1137: 1129: 1115: 1113: 1112: 1107: 1105: 1101: 1100: 1066: 1065: 1049: 1047: 1046: 1041: 1039: 1035: 1034: 1000: 999: 982:excision theorem 960: 958: 957: 952: 947: 943: 942: 908: 907: 835: 823: 795: 770: 756: 743:. For example, 738: 709: 697: 671: 660: 645: 586: 488:torsion subgroup 486:) has a trivial 427: 406: 404: 403: 398: 396: 395: 376: 374: 373: 368: 366: 365: 353: 352: 225: 219: 151: 142: 103:Euclidean spaces 21: 4539: 4538: 4534: 4533: 4532: 4530: 4529: 4528: 4509: 4508: 4507: 4502: 4441:Banach manifold 4434:Generalizations 4429: 4384: 4321: 4218: 4180:Ricci curvature 4136:Cotangent space 4114: 4052: 3894: 3888: 3847:Exponential map 3811: 3756: 3750: 3670: 3660: 3630: 3625: 3556: 3538: 3534:Urysohn's lemma 3495: 3459: 3345: 3336: 3308:low-dimensional 3266: 3261: 3204: 3199: 3183:10.1.1.340.8125 3173:gr-qc/0202031v4 3166:(17): 4565–71. 3153: 3148: 3147: 3143: 3136: 3114: 3113: 3109: 3102: 3078: 3077: 3073: 3065: 3061: 3054: 3034: 3033: 3029: 3022: 3004:Spivak, Michael 3002: 3001: 2997: 2985: 2984: 2980: 2976: 2959: 2907: 2902: 2882: 2881: 2827: 2822: 2802: 2801: 2789: 2785: 2708: 2703: 2702: 2697: 2693: 2644: 2639: 2605:, the group of 2576: 2568: 2567: 2560:structure group 2552:structure group 2537: 2531: 2525: 2414: 2412: 2402: 2389: 2376: 2354: 2346: 2314:is a chart of ∂ 2300: 2290: 2289:is fixed. Let 2271: 2222: 2218: 2195: 2128: 2124: 2114: 2093: 2092: 2039: 2035: 2025: 1983: 1978: 1977: 1915: 1910: 1909: 1879: 1873: 1863: 1856: 1850: 1843: 1784: 1779: 1778: 1777:vanishes, then 1776: 1717: 1695: 1690: 1689: 1679: 1636: 1631: 1630: 1626: 1588: 1583: 1582: 1578: 1528: 1523: 1522: 1453: 1449: 1439: 1434: 1433: 1399: 1341: 1337: 1327: 1322: 1321: 1270: 1269: 1265: 1249: 1244: 1243: 1237: 1185: 1184: 1180: 1164: 1159: 1158: 1146: 1139: 1131: 1121: 1071: 1067: 1057: 1052: 1051: 1005: 1001: 991: 986: 985: 913: 909: 899: 894: 893: 885:around a point 850: 825: 821: 812: 805: 794: 785: 779: 762: 748: 730: 699: 687: 685:structure group 666: 655: 640: 601: 581: 558: 515: 500: 481: 458: 450: 413: 387: 382: 381: 357: 344: 339: 338: 289: 199:Euclidean space 182: 162:homology theory 135:geometric shape 43: 28: 23: 22: 15: 12: 11: 5: 4537: 4535: 4527: 4526: 4521: 4511: 4510: 4504: 4503: 4501: 4500: 4495: 4490: 4485: 4480: 4479: 4478: 4468: 4463: 4458: 4453: 4448: 4443: 4437: 4435: 4431: 4430: 4428: 4427: 4422: 4417: 4412: 4407: 4402: 4396: 4394: 4390: 4389: 4386: 4385: 4383: 4382: 4377: 4372: 4367: 4362: 4357: 4352: 4347: 4342: 4337: 4331: 4329: 4323: 4322: 4320: 4319: 4314: 4309: 4304: 4299: 4294: 4289: 4279: 4274: 4269: 4259: 4254: 4249: 4244: 4239: 4234: 4228: 4226: 4220: 4219: 4217: 4216: 4211: 4206: 4205: 4204: 4194: 4189: 4188: 4187: 4177: 4172: 4167: 4162: 4161: 4160: 4150: 4145: 4144: 4143: 4133: 4128: 4122: 4120: 4116: 4115: 4113: 4112: 4107: 4102: 4097: 4096: 4095: 4085: 4080: 4075: 4069: 4067: 4060: 4054: 4053: 4051: 4050: 4045: 4035: 4030: 4016: 4011: 4006: 4001: 3996: 3994:Parallelizable 3991: 3986: 3981: 3980: 3979: 3969: 3964: 3959: 3954: 3949: 3944: 3939: 3934: 3929: 3924: 3914: 3904: 3898: 3896: 3890: 3889: 3887: 3886: 3881: 3876: 3874:Lie derivative 3871: 3869:Integral curve 3866: 3861: 3856: 3855: 3854: 3844: 3839: 3838: 3837: 3830:Diffeomorphism 3827: 3821: 3819: 3813: 3812: 3810: 3809: 3804: 3799: 3794: 3789: 3784: 3779: 3774: 3769: 3763: 3761: 3752: 3751: 3749: 3748: 3743: 3738: 3733: 3728: 3723: 3718: 3713: 3708: 3707: 3706: 3701: 3691: 3690: 3689: 3678: 3676: 3675:Basic concepts 3672: 3671: 3661: 3659: 3658: 3651: 3644: 3636: 3627: 3626: 3624: 3623: 3613: 3612: 3611: 3606: 3601: 3586: 3576: 3566: 3554: 3543: 3540: 3539: 3537: 3536: 3531: 3526: 3521: 3516: 3511: 3505: 3503: 3497: 3496: 3494: 3493: 3488: 3483: 3481:Winding number 3478: 3473: 3467: 3465: 3461: 3460: 3458: 3457: 3452: 3447: 3442: 3437: 3432: 3427: 3422: 3421: 3420: 3415: 3413:homotopy group 3405: 3404: 3403: 3398: 3393: 3388: 3383: 3373: 3368: 3363: 3353: 3351: 3347: 3346: 3339: 3337: 3335: 3334: 3329: 3324: 3323: 3322: 3312: 3311: 3310: 3300: 3295: 3290: 3285: 3280: 3274: 3272: 3268: 3267: 3262: 3260: 3259: 3252: 3245: 3237: 3231: 3230: 3223: 3217: 3211: 3203: 3202:External links 3200: 3198: 3197: 3141: 3134: 3107: 3100: 3071: 3059: 3053:978-0521795401 3052: 3036:Hatcher, Allen 3027: 3020: 2995: 2977: 2975: 2972: 2971: 2970: 2965: 2958: 2955: 2954: 2953: 2942: 2939: 2936: 2933: 2930: 2927: 2924: 2921: 2914: 2910: 2905: 2901: 2898: 2895: 2892: 2889: 2871: 2870: 2859: 2856: 2853: 2850: 2847: 2844: 2841: 2834: 2830: 2825: 2821: 2818: 2815: 2812: 2809: 2787: 2783: 2780: 2779: 2768: 2765: 2762: 2759: 2756: 2753: 2750: 2747: 2744: 2741: 2738: 2735: 2732: 2729: 2726: 2723: 2720: 2715: 2711: 2695: 2691: 2674:Formally, the 2643: 2640: 2638: 2635: 2627:tangent bundle 2615:tangent bundle 2609:with positive 2594: 2591: 2588: 2583: 2579: 2575: 2527:Main article: 2524: 2521: 2482:. This gives 2454:is a point of 2436:covering space 2411: 2408: 2398: 2385: 2372: 2350: 2298: 2270: 2267: 2261:is called the 2196:π : 2189: 2188: 2177: 2174: 2171: 2168: 2165: 2161: 2156: 2152: 2149: 2146: 2143: 2140: 2137: 2134: 2131: 2127: 2121: 2117: 2111: in  2108: 2103:Image of  2100: 2072: 2067: 2063: 2060: 2057: 2054: 2051: 2048: 2045: 2042: 2038: 2032: 2028: 2024: 2021: 2017: 2013: 2010: 2007: 2004: 2001: 1998: 1995: 1990: 1986: 1953: 1949: 1945: 1942: 1939: 1936: 1933: 1930: 1927: 1922: 1918: 1842: 1839: 1818: 1815: 1811: 1806: 1802: 1799: 1796: 1791: 1787: 1774: 1751: 1748: 1744: 1739: 1735: 1732: 1729: 1724: 1720: 1716: 1713: 1710: 1707: 1702: 1698: 1678: 1675: 1662: 1658: 1654: 1651: 1648: 1643: 1639: 1614: 1610: 1606: 1603: 1600: 1595: 1591: 1554: 1550: 1546: 1543: 1540: 1535: 1531: 1486: 1481: 1477: 1474: 1471: 1468: 1465: 1462: 1459: 1456: 1452: 1446: 1442: 1388:oriented atlas 1374: 1369: 1365: 1362: 1359: 1356: 1353: 1350: 1347: 1344: 1340: 1334: 1330: 1297: 1292: 1288: 1283: 1280: 1277: 1273: 1268: 1262: 1259: 1256: 1252: 1220: 1216: 1212: 1207: 1203: 1198: 1195: 1192: 1188: 1183: 1177: 1174: 1171: 1167: 1104: 1099: 1095: 1092: 1089: 1086: 1083: 1080: 1077: 1074: 1070: 1064: 1060: 1038: 1033: 1029: 1026: 1023: 1020: 1017: 1014: 1011: 1008: 1004: 998: 994: 962: 961: 950: 946: 941: 937: 934: 931: 928: 925: 922: 919: 916: 912: 906: 902: 877:-manifold. A 849: 846: 817: 810: 790: 783: 665:is a function 625:oriented atlas 600: 597: 557: 554: 513: 498: 479: 456: 449: 446: 422:If the figure 412: 409: 394: 390: 378: 377: 364: 360: 356: 351: 347: 288: 285: 261:surface normal 229:non-orientable 181: 178: 164:, whereas for 127:non-orientable 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 4536: 4525: 4522: 4520: 4517: 4516: 4514: 4499: 4496: 4494: 4493:Supermanifold 4491: 4489: 4486: 4484: 4481: 4477: 4474: 4473: 4472: 4469: 4467: 4464: 4462: 4459: 4457: 4454: 4452: 4449: 4447: 4444: 4442: 4439: 4438: 4436: 4432: 4426: 4423: 4421: 4418: 4416: 4413: 4411: 4408: 4406: 4403: 4401: 4398: 4397: 4395: 4391: 4381: 4378: 4376: 4373: 4371: 4368: 4366: 4363: 4361: 4358: 4356: 4353: 4351: 4348: 4346: 4343: 4341: 4338: 4336: 4333: 4332: 4330: 4328: 4324: 4318: 4315: 4313: 4310: 4308: 4305: 4303: 4300: 4298: 4295: 4293: 4290: 4288: 4284: 4280: 4278: 4275: 4273: 4270: 4268: 4264: 4260: 4258: 4255: 4253: 4250: 4248: 4245: 4243: 4240: 4238: 4235: 4233: 4230: 4229: 4227: 4225: 4221: 4215: 4214:Wedge product 4212: 4210: 4207: 4203: 4200: 4199: 4198: 4195: 4193: 4190: 4186: 4183: 4182: 4181: 4178: 4176: 4173: 4171: 4168: 4166: 4163: 4159: 4158:Vector-valued 4156: 4155: 4154: 4151: 4149: 4146: 4142: 4139: 4138: 4137: 4134: 4132: 4129: 4127: 4124: 4123: 4121: 4117: 4111: 4108: 4106: 4103: 4101: 4098: 4094: 4091: 4090: 4089: 4088:Tangent space 4086: 4084: 4081: 4079: 4076: 4074: 4071: 4070: 4068: 4064: 4061: 4059: 4055: 4049: 4046: 4044: 4040: 4036: 4034: 4031: 4029: 4025: 4021: 4017: 4015: 4012: 4010: 4007: 4005: 4002: 4000: 3997: 3995: 3992: 3990: 3987: 3985: 3982: 3978: 3975: 3974: 3973: 3970: 3968: 3965: 3963: 3960: 3958: 3955: 3953: 3950: 3948: 3945: 3943: 3940: 3938: 3935: 3933: 3930: 3928: 3925: 3923: 3919: 3915: 3913: 3909: 3905: 3903: 3900: 3899: 3897: 3891: 3885: 3882: 3880: 3877: 3875: 3872: 3870: 3867: 3865: 3862: 3860: 3857: 3853: 3852:in Lie theory 3850: 3849: 3848: 3845: 3843: 3840: 3836: 3833: 3832: 3831: 3828: 3826: 3823: 3822: 3820: 3818: 3814: 3808: 3805: 3803: 3800: 3798: 3795: 3793: 3790: 3788: 3785: 3783: 3780: 3778: 3775: 3773: 3770: 3768: 3765: 3764: 3762: 3759: 3755:Main results 3753: 3747: 3744: 3742: 3739: 3737: 3736:Tangent space 3734: 3732: 3729: 3727: 3724: 3722: 3719: 3717: 3714: 3712: 3709: 3705: 3702: 3700: 3697: 3696: 3695: 3692: 3688: 3685: 3684: 3683: 3680: 3679: 3677: 3673: 3668: 3664: 3657: 3652: 3650: 3645: 3643: 3638: 3637: 3634: 3622: 3614: 3610: 3607: 3605: 3602: 3600: 3597: 3596: 3595: 3587: 3585: 3581: 3577: 3575: 3571: 3567: 3565: 3560: 3555: 3553: 3545: 3544: 3541: 3535: 3532: 3530: 3527: 3525: 3522: 3520: 3517: 3515: 3512: 3510: 3507: 3506: 3504: 3502: 3498: 3492: 3491:Orientability 3489: 3487: 3484: 3482: 3479: 3477: 3474: 3472: 3469: 3468: 3466: 3462: 3456: 3453: 3451: 3448: 3446: 3443: 3441: 3438: 3436: 3433: 3431: 3428: 3426: 3423: 3419: 3416: 3414: 3411: 3410: 3409: 3406: 3402: 3399: 3397: 3394: 3392: 3389: 3387: 3384: 3382: 3379: 3378: 3377: 3374: 3372: 3369: 3367: 3364: 3362: 3358: 3355: 3354: 3352: 3348: 3343: 3333: 3330: 3328: 3327:Set-theoretic 3325: 3321: 3318: 3317: 3316: 3313: 3309: 3306: 3305: 3304: 3301: 3299: 3296: 3294: 3291: 3289: 3288:Combinatorial 3286: 3284: 3281: 3279: 3276: 3275: 3273: 3269: 3265: 3258: 3253: 3251: 3246: 3244: 3239: 3238: 3235: 3228: 3224: 3221: 3218: 3215: 3212: 3209: 3206: 3205: 3201: 3193: 3189: 3184: 3179: 3174: 3169: 3165: 3161: 3160: 3152: 3145: 3142: 3137: 3135:0-521-20016-4 3131: 3127: 3126: 3121: 3120:Ellis, G.F.R. 3117: 3116:Hawking, S.W. 3111: 3108: 3103: 3101:0-691-08542-0 3097: 3093: 3089: 3088:Spin Geometry 3085: 3081: 3075: 3072: 3068: 3063: 3060: 3055: 3049: 3045: 3041: 3037: 3031: 3028: 3023: 3017: 3013: 3012:HarperCollins 3009: 3005: 2999: 2996: 2991: 2990: 2982: 2979: 2973: 2969: 2966: 2964: 2961: 2960: 2956: 2940: 2934: 2931: 2928: 2925: 2922: 2912: 2908: 2903: 2896: 2890: 2880: 2879: 2878: 2876: 2854: 2851: 2848: 2845: 2842: 2832: 2828: 2823: 2816: 2810: 2800: 2799: 2798: 2797: 2793: 2766: 2760: 2757: 2754: 2751: 2748: 2736: 2733: 2730: 2724: 2718: 2713: 2709: 2701: 2700: 2699: 2689: 2685: 2681: 2677: 2672: 2669: 2665: 2661: 2657: 2653: 2649: 2641: 2636: 2634: 2632: 2628: 2624: 2620: 2616: 2612: 2608: 2589: 2581: 2577: 2573: 2565: 2561: 2557: 2553: 2550: 2546: 2542: 2541:vector bundle 2536: 2530: 2522: 2520: 2518: 2513: 2507: 2505: 2501: 2497: 2493: 2490:, o) to 2489: 2485: 2481: 2477: 2473: 2469: 2465: 2461: 2457: 2453: 2449: 2445: 2441: 2437: 2429: 2409: 2407: 2405: 2401: 2397: 2393: 2388: 2384: 2380: 2375: 2371: 2367: 2362: 2358: 2353: 2349: 2344: 2340: 2336: 2332: 2328: 2323: 2321: 2317: 2313: 2309: 2305: 2297: 2293: 2288: 2284: 2280: 2276: 2268: 2266: 2264: 2260: 2256: 2252: 2248: 2244: 2240: 2236: 2232: 2228: 2216: 2212: 2208: 2203: 2199: 2192: 2172: 2169: 2166: 2163: 2159: 2150: 2144: 2135: 2132: 2129: 2125: 2119: 2115: 2106: 2091: 2090: 2089: 2087: 2070: 2061: 2055: 2046: 2043: 2040: 2036: 2030: 2026: 2011: 2008: 2002: 1999: 1996: 1988: 1984: 1975: 1971: 1967: 1943: 1940: 1934: 1931: 1928: 1920: 1916: 1907: 1903: 1899: 1895: 1891: 1886: 1882: 1876: 1870: 1866: 1859: 1853: 1848: 1840: 1838: 1836: 1832: 1813: 1809: 1800: 1797: 1789: 1785: 1773: 1769: 1765: 1746: 1742: 1733: 1730: 1722: 1718: 1714: 1708: 1700: 1696: 1688: 1684: 1676: 1674: 1652: 1649: 1641: 1637: 1604: 1601: 1593: 1589: 1576: 1572: 1568: 1544: 1541: 1533: 1529: 1520: 1516: 1512: 1508: 1503: 1501: 1484: 1475: 1469: 1460: 1457: 1454: 1450: 1444: 1440: 1431: 1427: 1423: 1419: 1414: 1412: 1408: 1402: 1397: 1393: 1389: 1372: 1363: 1357: 1348: 1345: 1342: 1338: 1332: 1328: 1319: 1315: 1310: 1295: 1286: 1281: 1278: 1275: 1271: 1266: 1260: 1257: 1254: 1250: 1240: 1235: 1214: 1210: 1201: 1196: 1193: 1190: 1186: 1181: 1175: 1172: 1169: 1165: 1156: 1152: 1142: 1135: 1128: 1124: 1119: 1102: 1093: 1087: 1078: 1075: 1072: 1068: 1062: 1058: 1036: 1027: 1021: 1012: 1009: 1006: 1002: 996: 992: 983: 979: 975: 971: 967: 948: 944: 935: 929: 920: 917: 914: 910: 904: 900: 892: 891: 890: 888: 884: 880: 876: 872: 868: 864: 859: 854: 847: 845: 843: 839: 833: 829: 820: 816: 809: 803: 799: 793: 789: 782: 776: 774: 769: 765: 760: 755: 751: 746: 742: 737: 734: 728: 724: 719: 717: 713: 707: 703: 695: 691: 686: 682: 679:, so it is a 678: 677:vector bundle 673: 669: 664: 658: 653: 649: 643: 638: 634: 630: 626: 622: 618: 614: 610: 606: 598: 596: 594: 590: 584: 579: 575: 571: 567: 563: 555: 553: 551: 547: 543: 539: 535: 531: 527: 523: 519: 512: 508: 504: 497: 493: 489: 485: 478: 474: 470: 466: 462: 455: 447: 445: 443: 440:> 4 some 439: 435: 430: 426: 420: 418: 417:triangulation 410: 408: 392: 388: 362: 358: 354: 349: 345: 337: 336: 335: 333: 328: 324: 322: 318: 314: 313:Klein bottles 310: 306: 305:Möbius strips 302: 298: 294: 286: 284: 281: 277: 273: 269: 265: 262: 258: 257: 252: 251: 245: 243: 239: 235: 231: 230: 224: 218: 213: 209: 208: 203: 200: 196: 186: 179: 177: 175: 171: 167: 163: 157: 155: 150: 146: 141: 136: 132: 128: 124: 120: 116: 112: 108: 104: 100: 96: 92: 91:orientability 88: 80: 79:Roman surface 75: 68: 64: 59: 52: 47: 41: 37: 33: 19: 4420:Moving frame 4415:Morse theory 4405:Gauge theory 4197:Tensor field 4126:Closed/Exact 4105:Vector field 4073:Distribution 4014:Hypercomplex 4009:Quaternionic 3988: 3746:Vector field 3704:Smooth atlas 3621:Publications 3490: 3486:Chern number 3476:Betti number 3359: / 3350:Key concepts 3298:Differential 3163: 3157: 3144: 3124: 3110: 3087: 3074: 3067:Hatcher 2001 3062: 3039: 3030: 3007: 2998: 2988: 2981: 2874: 2872: 2781: 2683: 2679: 2673: 2645: 2630: 2555: 2554:, is called 2544: 2538: 2516: 2508: 2503: 2499: 2495: 2491: 2487: 2483: 2479: 2475: 2467: 2463: 2459: 2455: 2451: 2447: 2443: 2439: 2433: 2428:Möbius strip 2403: 2399: 2395: 2391: 2386: 2382: 2378: 2373: 2369: 2365: 2360: 2356: 2351: 2347: 2342: 2338: 2334: 2330: 2326: 2324: 2319: 2315: 2311: 2307: 2303: 2295: 2291: 2286: 2282: 2278: 2274: 2272: 2262: 2258: 2254: 2250: 2246: 2242: 2238: 2234: 2230: 2226: 2221:. In fact, 2214: 2210: 2206: 2201: 2197: 2193: 2190: 2085: 1973: 1969: 1965: 1905: 1901: 1897: 1893: 1889: 1887: 1880: 1874: 1868: 1864: 1857: 1851: 1846: 1844: 1834: 1771: 1767: 1763: 1682: 1680: 1574: 1570: 1566: 1518: 1514: 1510: 1506: 1504: 1499: 1429: 1425: 1421: 1417: 1415: 1410: 1406: 1400: 1395: 1391: 1387: 1317: 1313: 1311: 1238: 1233: 1140: 1133: 1126: 1122: 1117: 1116:. The ball 977: 973: 969: 965: 963: 886: 882: 878: 874: 870: 866: 862: 857: 855: 851: 841: 837: 831: 827: 818: 814: 807: 802:right-handed 801: 797: 791: 787: 780: 777: 772: 767: 763: 758: 753: 749: 744: 740: 735: 732: 726: 723:volume forms 720: 715: 711: 705: 701: 693: 689: 681:fiber bundle 674: 667: 662: 656: 651: 647: 641: 636: 632: 628: 624: 620: 612: 608: 604: 602: 592: 588: 582: 577: 573: 565: 561: 559: 549: 548:embedded in 541: 537: 533: 529: 525: 521: 517: 510: 502: 495: 491: 483: 476: 472: 468: 460: 453: 451: 441: 437: 433: 431: 421: 414: 379: 331: 329: 325: 316: 290: 279: 275: 271: 267: 263: 255: 254: 249: 248: 246: 242:Möbius strip 238:homeomorphic 228: 227: 206: 205: 201: 194: 192: 174:fiber bundle 158: 154:Möbius strip 145:mirror image 126: 118: 114: 90: 84: 63:Möbius strip 4365:Levi-Civita 4355:Generalized 4327:Connections 4277:Lie algebra 4209:Volume form 4110:Vector flow 4083:Pushforward 4078:Lie bracket 3977:Lie algebra 3942:G-structure 3731:Pushforward 3711:Submanifold 3584:Wikiversity 3501:Key results 3227:Orientation 2613:. For the 2611:determinant 2535:Euler class 1681:A manifold 1571:orientation 1407:orientation 865:but not at 648:orientation 546:Möbius band 250:orientation 119:orientation 87:mathematics 4513:Categories 4488:Stratifold 4446:Diffeology 4242:Associated 4043:Symplectic 4028:Riemannian 3957:Hyperbolic 3884:Submersion 3792:Hopf–Rinow 3726:Submersion 3721:Smooth map 3430:CW complex 3371:Continuity 3361:Closed set 3320:cohomology 2974:References 2688:characters 2556:orientable 2533:See also: 1515:orientable 1396:orientable 980:. By the 637:orientable 270:or − 207:orientable 193:A surface 137:, such as 115:orientable 18:Orientable 4370:Principal 4345:Ehresmann 4302:Subbundle 4292:Principal 4267:Fibration 4247:Cotangent 4119:Covectors 3972:Lie group 3952:Hermitian 3895:manifolds 3864:Immersion 3859:Foliation 3797:Noether's 3782:Frobenius 3777:De Rham's 3772:Darboux's 3663:Manifolds 3609:geometric 3604:algebraic 3455:Cobordism 3391:Hausdorff 3386:connected 3303:Geometric 3293:Continuum 3283:Algebraic 3178:CiteSeerX 2923:− 2913:− 2909:σ 2904:× 2891:⁡ 2843:− 2829:σ 2824:× 2811:⁡ 2749:− 2743:→ 2725:⁡ 2714:± 2710:σ 2668:spacetime 2558:when the 2191:is open. 2170:∈ 2164:: 2139:∖ 2107:α 2050:∖ 2023:→ 2006:∖ 1938:∖ 1715:∈ 1464:∖ 1352:∖ 1279:− 1258:− 1215:≅ 1194:− 1173:− 1082:∖ 1016:∖ 924:∖ 355:× 111:manifolds 4524:Surfaces 4466:Orbifold 4461:K-theory 4451:Diffiety 4175:Pullback 3989:Oriented 3967:Kenmotsu 3947:Hadamard 3893:Types of 3842:Geodesic 3667:Glossary 3574:Wikibook 3552:Category 3440:Manifold 3408:Homotopy 3366:Interior 3357:Open set 3315:Homology 3264:Topology 3122:(1973). 3086:(1989). 3038:(2001). 3006:(1965). 2957:See also 2873:where O( 2623:manifold 2607:matrices 2545:a priori 2543:, which 822:) > 0 570:manifold 465:homology 321:immersed 287:Examples 256:oriented 234:manifold 107:surfaces 97:such as 4410:History 4393:Related 4307:Tangent 4285:)  4265:)  4232:Adjoint 4224:Bundles 4202:density 4100:Torsion 4066:Vectors 4058:Tensors 4041:)  4026:)  4022:,  4020:Pseudo− 3999:Poisson 3932:Finsler 3927:Fibered 3922:Contact 3920:)  3912:Complex 3910:)  3879:Section 3599:general 3401:uniform 3381:compact 3332:Digital 2794:of the 2792:section 2788:− 2696:− 2564:reduced 2562:may be 2539:A real 1883:′ 1860:′ 806:ω( 591:, then 505:) is a 471:, then 319:, only 293:Spheres 240:to the 197:in the 123:spheres 4375:Vector 4360:Koszul 4340:Cartan 4335:Affine 4317:Vector 4312:Tensor 4297:Spinor 4287:Normal 4283:Stable 4237:Affine 4141:bundle 4093:bundle 4039:Almost 3962:Kähler 3918:Almost 3908:Almost 3902:Closed 3802:Sard's 3758:(list) 3594:Topics 3396:metric 3271:Fields 3180:  3132:  3098:  3050:  3018:  2786:σ 2631:always 2619:smooth 2547:has a 2249:. If 2233:. If 2223:π 2219:π 1627:α 1579:α 1569:. An 1403:> 0 1130:is an 773:ω 752:∧ ⋯ ∧ 727:ω 670:→ {±1} 644:> 0 623:. An 532:where 311:, and 299:, and 297:planes 212:chiral 4483:Sheaf 4257:Fiber 4033:Rizza 4004:Prime 3835:Local 3825:Curve 3687:Atlas 3376:Space 3168:arXiv 3154:(PDF) 2621:real 2549:GL(n) 2512:index 2442:take 2325:When 1833:over 1405:, an 813:, …, 786:, …, 683:with 646:, an 210:if a 131:loops 51:torus 4350:Form 4252:Dual 4185:flow 4048:Tame 4024:Sub− 3937:Flat 3817:Maps 3130:ISBN 3096:ISBN 3048:ISBN 3016:ISBN 2666:, a 2654:and 2458:and 2341:to ∂ 2333:of ∂ 1878:and 1145:and 1136:− 1) 611:are 560:Let 520:) = 301:tori 280:able 152:. A 77:The 67:disk 61:The 4272:Jet 3188:doi 2646:In 2566:to 2273:If 2209:to 1972:in 1573:of 1513:is 1409:of 1394:is 1153:in 1143:− 1 881:of 826:GL( 804:if 729:of 700:GL( 688:GL( 672:.) 659:= 0 650:of 635:is 627:on 585:= 0 452:If 204:is 85:In 4515:: 4263:Co 3186:. 3176:. 3164:19 3162:. 3156:. 3118:; 3090:. 3082:; 3046:. 3042:. 3014:. 3010:. 2698:, 2678:O( 2406:. 2359:⊕ 2322:. 2294:→ 2265:. 2200:→ 1867:→ 1673:. 1125:\ 984:, 830:, 766:→ 754:dx 750:dx 731:⋀ 704:, 692:, 552:. 540:/2 528:/2 524:+ 307:, 295:, 276:ed 105:, 101:, 89:, 49:A 4281:( 4261:( 4037:( 4018:( 3916:( 3906:( 3669:) 3665:( 3655:e 3648:t 3641:v 3256:e 3249:t 3242:v 3229:. 3194:. 3190:: 3170:: 3138:. 3104:. 3056:. 3024:. 2941:. 2938:} 2935:1 2932:+ 2929:, 2926:1 2920:{ 2900:) 2897:M 2894:( 2888:O 2875:M 2858:} 2855:1 2852:+ 2849:, 2846:1 2840:{ 2833:+ 2820:) 2817:M 2814:( 2808:O 2784:+ 2767:. 2764:} 2761:1 2758:+ 2755:, 2752:1 2746:{ 2740:) 2737:q 2734:, 2731:p 2728:( 2722:O 2719:: 2692:+ 2684:q 2682:, 2680:p 2593:) 2590:n 2587:( 2582:+ 2578:L 2574:G 2517:M 2504:M 2500:M 2492:x 2488:x 2484:M 2480:M 2476:M 2468:M 2464:x 2460:o 2456:M 2452:x 2448:x 2444:M 2440:M 2430:. 2404:M 2400:p 2396:T 2392:M 2390:∂ 2387:p 2383:T 2379:M 2377:∂ 2374:p 2370:T 2366:R 2361:R 2357:M 2355:∂ 2352:p 2348:T 2343:M 2339:M 2335:M 2331:p 2327:M 2320:M 2316:M 2312:M 2308:M 2304:M 2299:+ 2296:R 2292:U 2287:M 2283:M 2279:M 2275:M 2259:O 2255:O 2251:M 2247:M 2243:O 2239:M 2235:M 2231:U 2227:U 2215:M 2211:p 2207:p 2202:M 2198:O 2176:} 2173:U 2167:p 2160:) 2155:Z 2151:; 2148:} 2145:p 2142:{ 2136:M 2133:, 2130:M 2126:( 2120:n 2116:H 2099:{ 2086:O 2071:) 2066:Z 2062:; 2059:} 2056:p 2053:{ 2047:M 2044:, 2041:M 2037:( 2031:n 2027:H 2020:) 2016:Z 2012:; 2009:U 2003:M 2000:, 1997:M 1994:( 1989:n 1985:H 1974:U 1970:p 1966:Z 1952:) 1948:Z 1944:; 1941:U 1935:M 1932:, 1929:M 1926:( 1921:n 1917:H 1906:M 1902:U 1898:O 1894:M 1890:O 1881:p 1875:p 1869:R 1865:U 1858:p 1852:p 1847:M 1835:M 1817:) 1814:2 1810:/ 1805:Z 1801:; 1798:M 1795:( 1790:0 1786:H 1775:1 1772:w 1768:M 1764:Z 1750:) 1747:2 1743:/ 1738:Z 1734:; 1731:M 1728:( 1723:1 1719:H 1712:) 1709:M 1706:( 1701:1 1697:w 1683:M 1661:) 1657:Z 1653:; 1650:M 1647:( 1642:n 1638:H 1613:) 1609:Z 1605:; 1602:M 1599:( 1594:n 1590:H 1575:M 1567:Z 1553:) 1549:Z 1545:; 1542:M 1539:( 1534:n 1530:H 1519:n 1511:M 1507:M 1500:p 1485:) 1480:Z 1476:; 1473:} 1470:p 1467:{ 1461:M 1458:, 1455:M 1451:( 1445:n 1441:H 1430:p 1426:p 1422:M 1418:M 1411:M 1401:n 1392:M 1373:) 1368:Z 1364:; 1361:} 1358:p 1355:{ 1349:M 1346:, 1343:M 1339:( 1333:n 1329:H 1318:p 1296:) 1291:Z 1287:; 1282:1 1276:n 1272:S 1267:( 1261:1 1255:n 1251:H 1239:R 1234:p 1219:Z 1211:) 1206:Z 1202:; 1197:1 1191:n 1187:S 1182:( 1176:1 1170:n 1166:H 1147:0 1141:n 1134:n 1132:( 1127:O 1123:B 1118:B 1103:) 1098:Z 1094:; 1091:} 1088:O 1085:{ 1079:B 1076:, 1073:B 1069:( 1063:n 1059:H 1037:) 1032:Z 1028:; 1025:} 1022:p 1019:{ 1013:M 1010:, 1007:M 1003:( 997:n 993:H 978:O 974:B 970:p 966:p 949:. 945:) 940:Z 936:; 933:} 930:p 927:{ 921:M 918:, 915:M 911:( 905:n 901:H 887:p 883:M 875:n 871:M 867:p 863:p 858:p 842:M 838:M 834:) 832:R 828:n 819:n 815:X 811:1 808:X 798:p 792:n 788:X 784:1 781:X 768:R 764:U 759:M 745:R 741:M 736:M 733:T 716:M 712:M 708:) 706:R 702:n 696:) 694:R 690:n 668:M 663:M 657:n 652:M 642:n 633:M 629:M 613:C 609:M 605:M 593:M 589:M 583:n 578:M 574:M 568:- 566:n 562:M 550:S 542:Z 538:Z 534:F 530:Z 526:Z 522:F 518:S 516:( 514:1 511:H 503:S 501:( 499:1 496:H 492:S 484:S 482:( 480:1 477:H 473:S 469:S 461:S 459:( 457:1 454:H 442:n 438:n 434:n 393:2 389:K 363:1 359:S 350:2 346:K 332:R 317:R 272:n 268:n 264:n 202:R 195:S 42:. 20:)

Index

Orientable
Orientation (geometry)
Orientation (vector space)
Orientation (disambiguation)

torus
Animation of a flat disk walking on the surface of a Möbius strip, flipping with each revolution.
Möbius strip
disk

Roman surface
mathematics
topological spaces
real vector spaces
Euclidean spaces
surfaces
manifolds
spheres
loops
geometric shape

mirror image

Möbius strip
homology theory
differentiable manifolds
differential forms
fiber bundle

Euclidean space

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.