Knowledge

Polyamorphism

Source đź“ť

270:
form the amorphous phase. Mannitol is the first pharmaceutical substance featuring polyamorphism. In addition to the regular amorphous phase, a second amorphous phase can be prepared at room temperature and pressure. This new phase has substantially lower energy, lower density and higher glass transition temperature. Since mannitol is widely used in pharmaceutical tablet formulations, mannitol polyamorphism offers a powerful tool to engineer the property and behavior of tablets.
64: 71:, which exhibits the ordinary liquid–gas critical point. The red line is a double well type potential, which is proposed for polyamorphous systems. The grey line, is a representative of the soft core square well potentials, which in atomisitc simulations exhibit liquid–liquid transitions and a second critical point. The numbers 1 and 2 correspond to the 1st and second minima in the potentials. 31: 210:
high-density amorphous ice is warmed up to 165 K not at low pressures but keeping the 1.6 GPa compression, and then cooled back to 77 K, then another amorphous ice is produced, which has even higher density of 1.25 g/cm at 1 bar. All those amorphous forms have very different vibrational lattice spectra and intermolecular distances. A similar abrupt liquid-amorphous
142:
The stable liquid state unlike most glasses and amorphous solids, is a thermodynamically stable equilibrium state. Thus new liquid–liquid or fluid-fluid transitions in the stable liquid (or fluid) states are more easily analysed than transitions in amorphous solids where arguments are complicated by
138:
Polyamorphism may apply to all amorphous states, i.e. glasses, other amorphous solids, supercooled liquids, ordinary liquids or fluids. A liquid–liquid transition however, is one that occurs only in the liquid state (red line in the phase diagram, top right). In this article liquid–liquid transitions
230:
melts are another system reported to exhibit polyamorphism. Observation of a liquid–liquid phase transition in the supercooled liquid has been reported. Though this is disputed in the literature. Polyamorphism has also been reported in Yttria-Alumina glasses. Yttria-Alumina melts quenched from about
209:
temperature (77 K) converts them to the high-density amorphous ice. Upon releasing the pressure, this phase is stable and has density of 1.17 g/cm at 77 K and 1 bar. Consequent warming to 127 K at ambient pressure transforms this phase to a low-density amorphous ice (0.94 g/cm at 1 bar). Yet, if the
160:
One physical explanation for polyamorphism is the existence of a double well inter-atomic pair potential (see lower right diagram). It is well known that the ordinary liquid–gas critical point appears when the inter-atomic pair potential contains a minimum. At lower energies (temperatures) particles
269:
Polyamorphism is also an important area in pharmaceutical science. The amorphous form of a drug typically has much better aqueous solubility (compared to the analogous crystalline form) but the actual local structure in an amorphous pharmaceutical can be different, depending on the method used to
214:
is predicted in liquid silicon when cooled under high pressures. This observation is based on first principles molecular dynamics computer simulations, and might be expected intuitively since tetrahedral amorphous carbon, silicon, and germanium are known to be structurally analogous to water.
50:
of crystalline materials, where different stable crystalline states (solid 1, 2 in diagram) of the same substance can exist (e.g. diamond and graphite are two polymorphs of carbon). Like the ordinary liquid–gas transition, the liquid–liquid transition is expected to end in a
151:
Liquid–liquid transitions were originally considered by Rapoport in 1967 in order to explain high pressure melting curve maxima of some liquid metals. Rapoport's theory requires the existence of a melting curve maximum in polyamorphic systems.
55:. At temperatures beyond these critical points there is a continuous range of fluid states, i.e. the distinction between liquids and gasses is lost. If crystallisation is avoided the liquid–liquid transition can be extended into the metastable 239:). The two phases have the same average composition but different density, molecular structure and hardness. However whether the second phase is glassy or crystalline is also debated. Continuous changes in density were observed upon cooling 139:
are defined as transitions between two liquids of the same chemical substance. Elsewhere the term liquid–liquid transition may also refer to the more common transitions between liquid mixtures of different chemical composition.
161:
trapped in this minimum condense into the liquid state. At higher temperatures however, these particles can escape the well and the sharp definition between liquid and gas is lost.
620:; Salzmann, Christoph; Kohl, Ingrid; Mayer, Erwin; et al. (2001). "A second distinct structural "state" of high-density amorphous ice at 77 K and 1 bar". 231:
1900 Â°C at a rate ~400 Â°C/s, can form glasses containing a second co-existing phase. This happens for certain Y/Al ratios (about 20–40 mol% Y
737:
Benmore, C. J.; Hart, R.; Mei, Q.; Price, D.; et al. (2004). "Intermediate range chemical ordering in amorphous and liquid water, Si, and Ge".
165:
has shown that addition of a second well produces an additional transition between two different liquids (or fluids) with a second critical point.
371:
Franzese, G.; Malescio, G; Skibinsky, A; Buldyrev, SV; et al. (2001). "Generic mechanism for generating a liquid–liquid phase transition".
586:
Schober, H; Koza, M.; Tölle, A.; Fujara, F.; et al. (1997). "Amorphous polymorphism in ice investigated by inelastic neutron scattering".
481:
Mishima, O.; Calvert, L. D.; Whalley, E. (1985). "An apparently 1st-order transition between two amorphous phases of ice induced by pressure".
1114: 678: 247:. Although continuous density changes do not constitute a first order transition, they may be indicative of an underlying abrupt transition. 1130:
Kurita, Rei; Tanaka, Hajime (2005-07-13). "On the abundance and general nature of the liquid–liquid phase transition in molecular systems".
931:
Skinner, LB; Barnes, AC; Salmon, PS; Crichton, WA (2008). "Phase separation, crystallization and polyamorphism in the Y2O3-Al2O3 system".
90:
materials. Many amorphous substances can exist with different amorphous characteristics (e.g. polymers). However, polyamorphism requires
118:). Different local structures can produce amorphous phases of the same chemical composition with different physical properties such as 98:
between them. When such a transition occurs between two stable liquid states, a polyamorphic transition may also be referred to as a
126:
is one important example (see also examples below). Several of these transitions (including water) are expected to end in a second
38:, including an illustration of the liquid–liquid transition line proposed for several polyamorphous materials. This liquid–liquid 300: 295: 115: 83: 47: 127: 122:. In several cases sharp transitions have been observed between two different density amorphous states of the same material. 52: 1173:
Syme, Christopher D.; Mosses, Joanna; González-Jiménez, Mario; Shebanova, Olga; Walton, Finlay; Wynne, Klaas (2017).
1041:
Ha, Alice; Cohen, Itai; Zhao, Xiaolin; Lee, Michelle; et al. (1996). "Supercooled Liquids and Polyamorphism†".
1351: 982:
Kurita, R. (2004-10-29). "Critical-Like Phenomena Associated with Liquid-Liquid Transition in a Molecular Liquid".
305: 114:
periodic atomic ordering, there is still significant and varied local structure at inter-atomic length scales (see
1361: 1356: 888:
Aasland, S.; McMillan, P. F. (1994). "Density-driven liquid–liquid phase separation in the system AI2O3–Y2O3".
772:
Greaves, G; Wilding, MC; Fearn, S; Langstaff, D; Kargl, F; Cox, S; Van, QV; MajĂ©rus, O; et al. (2008).
68: 773: 190: 1304: 1251: 1186: 991: 940: 897: 846: 788: 746: 703: 629: 591: 537: 490: 390: 334: 325:
Mishima, O.; Mishima, Osamu (1998). "The relationship between liquid, supercooled and glassy water".
256: 182: 162: 1155: 1085: 1023: 964: 913: 870: 812: 694:
Morishita, T. (2004). "High Density Amorphous Form and Polyamorphic Transformations of Silicon".
645: 506: 463: 414: 380: 350: 56: 831: 774:"Detection of First-Order Liquid/Liquid Phase Transitions in Yttrium Oxide-Aluminum Oxide Melts" 1328: 1320: 1277: 1269: 1240:"Possible existence of two amorphous phases of d-mannitol related by a first-order transition" 1220: 1202: 1147: 1110: 1015: 1007: 956: 862: 804: 719: 674: 664: 455: 406: 244: 1104: 1312: 1259: 1210: 1194: 1139: 1077: 1050: 999: 948: 905: 854: 796: 754: 711: 637: 599: 545: 498: 445: 398: 342: 211: 111: 95: 39: 617: 290: 240: 206: 952: 46:
transition between low and high density liquids (labelled 1 and 2). This is analogous to
1308: 1255: 1190: 995: 944: 901: 850: 792: 750: 707: 633: 595: 541: 494: 394: 338: 1215: 1174: 1143: 603: 1345: 202: 123: 43: 35: 1159: 1089: 1027: 968: 816: 649: 565: 467: 917: 874: 858: 510: 418: 354: 715: 63: 1081: 758: 450: 433: 178: 1324: 1273: 1206: 1151: 1068:
Poole, P. H. (1997). "Polymorphic Phase Transitions in Liquids and Glasses".
1011: 173:
Polyamorphism has been experimentally observed or theoretically suggested in
1003: 800: 260: 79: 1332: 1281: 1224: 1019: 960: 866: 808: 723: 459: 410: 30: 255:
Polyamorphism has also been observed in organic compounds, such as liquid
17: 670: 385: 186: 27:
Ability of a substance to exist in more than one distinct amorphous state
227: 205:. Pressurizing conventional hexagonal ice crystals to about 1.6 GPa at 174: 119: 87: 1316: 1264: 1239: 1198: 1054: 830:
Barnes, AC; Skinner, LB; Salmon, PS; Bytchkov, A; et al. (2009).
550: 525: 909: 641: 502: 402: 285: 223: 67:
Schematic of interatomic pair potentials. The blue line is a typical
346: 280: 1238:
Zhu, Men; Wang, Jun-Qiang; Perepezko, John H.; Yu, Lian (2015).
143:
the non-equilibrium, non-ergodic nature of the amorphous state.
78:
is the ability of a substance to exist in several different
94:
amorphous states with a clear, discontinuous (first-order)
1295:
Zhu, Men; Yu, Lian (2017). "Polyamorphism of D-mannitol".
1175:"Frustration of crystallisation by a liquid–crystal phase" 434:"Polyamorphism: a pharmaceutical science perspective" 832:"Liquid/Liquid Phase Transitions in Yttria-Alumina" 526:"Model for melting curve maxima at high pressure" 432:Hancock, BC; Shalaev, EY; Shamblin, SL (2002). 259:at temperatures between 210 K and 226 K and 8: 110:Even though amorphous materials exhibit no 1263: 1214: 549: 449: 384: 266:at temperatures between 120 K and 140 K. 201:The most famous case of polyamorphism is 438:The Journal of Pharmacy and Pharmacology 62: 29: 317: 366: 364: 82:modifications. It is analogous to the 1106:Disordered materials: an introduction 7: 1132:Journal of Physics: Condensed Matter 622:Physical Chemistry Chemical Physics 25: 1043:The Journal of Physical Chemistry 301:polymorphism (materials science) 296:structure of liquids and glasses 116:structure of liquids and glasses 1297:The Journal of Chemical Physics 1244:The Journal of Chemical Physics 666:Structural chemistry of glasses 566:"Anomalous properties of water" 953:10.1088/0953-8984/20/20/205103 859:10.1103/PhysRevLett.103.225702 197:Water and structural analogues 100:liquid–liquid phase transition 1: 716:10.1103/PhysRevLett.93.055503 604:10.1016/S0921-4526(97)00749-7 1082:10.1126/science.275.5298.322 69:Lennard-Jones type potential 53:liquid-liquid critical point 1144:10.1088/0953-8984/17/27/L01 588:Physica B: Condensed Matter 1378: 759:10.1103/PhysRevB.72.132201 451:10.1211/002235702320266343 306:Pair distribution function 933:J. Phys.: Condens. Matter 219:Oxide liquids and glasses 169:Examples of polyamorphism 134:Liquid–liquid transitions 1109:. Springer. p. 65. 42:would be a first order, 1004:10.1126/science.1103073 839:Physical Review Letters 801:10.1126/science.1160766 1103:Paolo M. Ossi (2006). 156:Double well potentials 146: 72: 60: 524:Rapoport, E. (1967). 193:-forming substances. 66: 34:Pressure–temperature 33: 590:. 241–243: 897–902. 189:, and in some other 1309:2017JChPh.146x4503Z 1256:2015JChPh.142x4504Z 1191:2017NatSR...742439S 996:2004Sci...306..845K 945:2008JPCM...20t5103S 902:1994Natur.369..633A 851:2009PhRvL.103v5702B 793:2008Sci...322..566G 751:2005PhRvB..72m2201B 708:2004PhRvL..93e5503M 634:2001PCCP....3.5355L 596:1997PhyB..241..897S 542:1967JChPh..46.2891R 536:(2891): 2891–2895. 495:1985Natur.314...76M 395:2001Natur.409..692F 339:1998Natur.396..329M 257:triphenyl phosphite 183:triphenyl phosphate 163:Molecular modelling 1179:Scientific Reports 745:(132201): 132201. 663:K. J. Rao (2002). 73: 61: 57:supercooled liquid 1352:Phase transitions 1317:10.1063/1.4989961 1265:10.1063/1.4922543 1199:10.1038/srep42439 1138:(27): L293–L302. 1116:978-3-540-29609-6 1076:(5298): 322–323. 1055:10.1021/jp9530820 990:(5697): 845–848. 680:978-0-08-043958-7 551:10.1063/1.1841150 251:Organic materials 245:germanium dioxide 191:molecular network 147:Rapoport's theory 16:(Redirected from 1369: 1362:Amorphous solids 1357:Phases of matter 1337: 1336: 1292: 1286: 1285: 1267: 1235: 1229: 1228: 1218: 1170: 1164: 1163: 1127: 1121: 1120: 1100: 1094: 1093: 1065: 1059: 1058: 1038: 1032: 1031: 979: 973: 972: 928: 922: 921: 910:10.1038/369633a0 885: 879: 878: 836: 827: 821: 820: 787:(5901): 566–70. 778: 769: 763: 762: 734: 728: 727: 702:(55503): 55503. 691: 685: 684: 660: 654: 653: 642:10.1039/b108676f 618:Loerting, Thomas 614: 608: 607: 583: 577: 576: 574: 572: 562: 556: 555: 553: 521: 515: 514: 503:10.1038/314076a0 478: 472: 471: 453: 429: 423: 422: 403:10.1038/35055514 388: 386:cond-mat/0102029 368: 359: 358: 322: 212:phase transition 96:phase transition 40:phase transition 21: 1377: 1376: 1372: 1371: 1370: 1368: 1367: 1366: 1342: 1341: 1340: 1294: 1293: 1289: 1237: 1236: 1232: 1172: 1171: 1167: 1129: 1128: 1124: 1117: 1102: 1101: 1097: 1067: 1066: 1062: 1040: 1039: 1035: 981: 980: 976: 930: 929: 925: 887: 886: 882: 834: 829: 828: 824: 776: 771: 770: 766: 736: 735: 731: 696:Phys. Rev. Lett 693: 692: 688: 681: 673:. p. 120. 662: 661: 657: 616: 615: 611: 585: 584: 580: 570: 568: 564: 563: 559: 523: 522: 518: 480: 479: 475: 431: 430: 426: 379:(6821): 692–5. 370: 369: 362: 324: 323: 319: 315: 310: 291:Amorphous solid 276: 253: 241:silicon dioxide 238: 234: 221: 207:liquid nitrogen 199: 171: 158: 149: 136: 108: 28: 23: 22: 15: 12: 11: 5: 1375: 1373: 1365: 1364: 1359: 1354: 1344: 1343: 1339: 1338: 1303:(24): 244503. 1287: 1250:(24): 244504. 1230: 1165: 1122: 1115: 1095: 1060: 1033: 974: 939:(20): 205103. 923: 880: 845:(22): 225702. 822: 764: 729: 686: 679: 655: 609: 578: 557: 516: 473: 424: 360: 316: 314: 311: 309: 308: 303: 298: 293: 288: 283: 277: 275: 272: 252: 249: 236: 232: 220: 217: 198: 195: 170: 167: 157: 154: 148: 145: 135: 132: 128:critical point 107: 104: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1374: 1363: 1360: 1358: 1355: 1353: 1350: 1349: 1347: 1334: 1330: 1326: 1322: 1318: 1314: 1310: 1306: 1302: 1298: 1291: 1288: 1283: 1279: 1275: 1271: 1266: 1261: 1257: 1253: 1249: 1245: 1241: 1234: 1231: 1226: 1222: 1217: 1212: 1208: 1204: 1200: 1196: 1192: 1188: 1184: 1180: 1176: 1169: 1166: 1161: 1157: 1153: 1149: 1145: 1141: 1137: 1133: 1126: 1123: 1118: 1112: 1108: 1107: 1099: 1096: 1091: 1087: 1083: 1079: 1075: 1071: 1064: 1061: 1056: 1052: 1048: 1044: 1037: 1034: 1029: 1025: 1021: 1017: 1013: 1009: 1005: 1001: 997: 993: 989: 985: 978: 975: 970: 966: 962: 958: 954: 950: 946: 942: 938: 934: 927: 924: 919: 915: 911: 907: 903: 899: 896:(6482): 633. 895: 891: 884: 881: 876: 872: 868: 864: 860: 856: 852: 848: 844: 840: 833: 826: 823: 818: 814: 810: 806: 802: 798: 794: 790: 786: 782: 775: 768: 765: 760: 756: 752: 748: 744: 740: 733: 730: 725: 721: 717: 713: 709: 705: 701: 697: 690: 687: 682: 676: 672: 668: 667: 659: 656: 651: 647: 643: 639: 635: 631: 627: 623: 619: 613: 610: 605: 601: 597: 593: 589: 582: 579: 567: 561: 558: 552: 547: 543: 539: 535: 531: 530:J. Chem. Phys 527: 520: 517: 512: 508: 504: 500: 496: 492: 488: 484: 477: 474: 469: 465: 461: 457: 452: 447: 444:(8): 1151–2. 443: 439: 435: 428: 425: 420: 416: 412: 408: 404: 400: 396: 392: 387: 382: 378: 374: 367: 365: 361: 356: 352: 348: 347:10.1038/24540 344: 340: 336: 333:(6709): 329. 332: 328: 321: 318: 312: 307: 304: 302: 299: 297: 294: 292: 289: 287: 284: 282: 279: 278: 273: 271: 267: 265: 263: 258: 250: 248: 246: 242: 229: 225: 218: 216: 213: 208: 204: 203:amorphous ice 196: 194: 192: 188: 184: 180: 176: 168: 166: 164: 155: 153: 144: 140: 133: 131: 129: 125: 124:Amorphous ice 121: 117: 113: 105: 103: 101: 97: 93: 89: 85: 81: 77: 76:Polyamorphism 70: 65: 58: 54: 49: 45: 44:discontinuous 41: 37: 36:phase diagram 32: 19: 1300: 1296: 1290: 1247: 1243: 1233: 1185:(1): 42439. 1182: 1178: 1168: 1135: 1131: 1125: 1105: 1098: 1073: 1069: 1063: 1046: 1042: 1036: 987: 983: 977: 936: 932: 926: 893: 889: 883: 842: 838: 825: 784: 780: 767: 742: 739:Phys. Rev. B 738: 732: 699: 695: 689: 665: 658: 628:(24): 5355. 625: 621: 612: 587: 581: 569:. Retrieved 560: 533: 529: 519: 489:(6006): 76. 486: 482: 476: 441: 437: 427: 376: 372: 330: 326: 320: 268: 261: 254: 222: 200: 172: 159: 150: 141: 137: 109: 99: 92:two distinct 91: 84:polymorphism 75: 74: 48:polymorphism 88:crystalline 1346:Categories 313:References 179:phosphorus 112:long-range 18:Polyamorph 1325:0021-9606 1274:0021-9606 1207:2045-2322 1152:0953-8984 1012:0036-8075 571:30 August 177:, liquid 80:amorphous 1333:28668061 1282:26133438 1225:28209972 1160:94090829 1090:95734427 1028:29634533 1020:15514150 969:27352374 961:21694284 867:20366109 817:10368768 809:18948535 724:15323706 671:Elsevier 650:59485355 468:20047984 460:12195833 411:11217853 274:See also 264:-butanol 187:mannitol 106:Overview 1305:Bibcode 1252:Bibcode 1216:5314399 1187:Bibcode 1070:Science 1049:: 1–4. 992:Bibcode 984:Science 941:Bibcode 918:4325330 898:Bibcode 875:3493920 847:Bibcode 789:Bibcode 781:Science 747:Bibcode 704:Bibcode 630:Bibcode 592:Bibcode 538:Bibcode 511:4241205 491:Bibcode 419:4419993 391:Bibcode 355:4328846 335:Bibcode 228:alumina 175:silicon 120:density 59:regime. 1331:  1323:  1280:  1272:  1223:  1213:  1205:  1158:  1150:  1113:  1088:  1026:  1018:  1010:  967:  959:  916:  890:Nature 873:  865:  815:  807:  722:  677:  648:  509:  483:Nature 466:  458:  417:  409:  373:Nature 353:  327:Nature 286:Liquid 224:Yttria 1156:S2CID 1086:S2CID 1024:S2CID 965:S2CID 914:S2CID 871:S2CID 835:(PDF) 813:S2CID 777:(PDF) 646:S2CID 507:S2CID 464:S2CID 415:S2CID 381:arXiv 351:S2CID 281:Glass 1329:PMID 1321:ISSN 1278:PMID 1270:ISSN 1221:PMID 1203:ISSN 1148:ISSN 1111:ISBN 1016:PMID 1008:ISSN 957:PMID 863:PMID 805:PMID 720:PMID 675:ISBN 573:2015 456:PMID 407:PMID 1313:doi 1301:146 1260:doi 1248:142 1211:PMC 1195:doi 1140:doi 1078:doi 1074:275 1051:doi 1047:100 1000:doi 988:306 949:doi 906:doi 894:369 855:doi 843:103 797:doi 785:322 755:doi 712:doi 638:doi 600:doi 546:doi 499:doi 487:314 446:doi 399:doi 377:409 343:doi 331:396 243:or 86:of 1348:: 1327:. 1319:. 1311:. 1299:. 1276:. 1268:. 1258:. 1246:. 1242:. 1219:. 1209:. 1201:. 1193:. 1181:. 1177:. 1154:. 1146:. 1136:17 1134:. 1084:. 1072:. 1045:. 1022:. 1014:. 1006:. 998:. 986:. 963:. 955:. 947:. 937:20 935:. 912:. 904:. 892:. 869:. 861:. 853:. 841:. 837:. 811:. 803:. 795:. 783:. 779:. 753:. 743:72 741:. 718:. 710:. 700:93 698:. 669:. 644:. 636:. 624:. 598:. 544:. 534:46 532:. 528:. 505:. 497:. 485:. 462:. 454:. 442:54 440:. 436:. 413:. 405:. 397:. 389:. 375:. 363:^ 349:. 341:. 329:. 185:, 181:, 130:. 102:. 1335:. 1315:: 1307:: 1284:. 1262:: 1254:: 1227:. 1197:: 1189:: 1183:7 1162:. 1142:: 1119:. 1092:. 1080:: 1057:. 1053:: 1030:. 1002:: 994:: 971:. 951:: 943:: 920:. 908:: 900:: 877:. 857:: 849:: 819:. 799:: 791:: 761:. 757:: 749:: 726:. 714:: 706:: 683:. 652:. 640:: 632:: 626:3 606:. 602:: 594:: 575:. 554:. 548:: 540:: 513:. 501:: 493:: 470:. 448:: 421:. 401:: 393:: 383:: 357:. 345:: 337:: 262:n 237:3 235:O 233:2 226:- 20:)

Index

Polyamorph

phase diagram
phase transition
discontinuous
polymorphism
liquid-liquid critical point
supercooled liquid

Lennard-Jones type potential
amorphous
polymorphism
crystalline
phase transition
long-range
structure of liquids and glasses
density
Amorphous ice
critical point
Molecular modelling
silicon
phosphorus
triphenyl phosphate
mannitol
molecular network
amorphous ice
liquid nitrogen
phase transition
Yttria
alumina

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑