Knowledge (XXG)

Polykrikos

Source đź“ť

408:
planozygote had only one nucleus and had two developmental pathways depending on food availability. Under starvation conditions the planozygote disassembled into two 2-zooid with one lacking nucleus, but further fate was not examined. Under culture conditions most organisms undergone meiosis and directly entered vegetative cycle. Very few planozygotes went through a resting cyst stage. The cyst stage persisted for 1 month, which is considered as a relatively short period in comparison to other dinoflagellates, which obligate dormancy period may reach up to 6 month. The duration of encystment is associated with ecological foraging strategies. Short dormancy period could facilitate rapid cycling between life cycle stages that could be beneficial to heterotrophic species in case of fluctuating food availability. However, possibility of chemical signalling involved in cyst hatching for
566:, and G. catenatum, which are among prevalent agents of toxic algal blooms. Such heterothrophic polykrikoids may not only cut down on the toxicity levels induced by their prey in marine food webs, but can cease the toxic blooms and could be used in bioremediation. Thus, reduction in water toxicity may help regulate the balance of marine food webs and decrease mortality rates of finfish, marine mammals, and sea birds. Further studies on molecular mechanisms of detoxification by 318:
larger organelle and lies posterior to taeniocyst. Some recent research have shown that the work of two organelles is coupled, with the taeniocyst adhering to prey, followed by nematocyst discharge leading to prey puncturing and, lastly, retrieving the prey using a tow filament, located on the end of the nematocysts close to posterior vesicle. The tubule, embedded within nematocyst, discharges towards the prey and hypothesized to be used for prey puncturing.
65: 208: 322:
which forces stylet upon firing first to puncture the capsule from within to free the filament, and only later to pierce the prey. As the tubule passes through the nozzle, it opens the operculum and uncoils after. Ballistics in cnidarians nematocysts is driven by synthesis of osmotic propellant poly gamma glutamate synthase, PgsAA, while in
403:. Gamete formation was particular as pseudocolony produces 4 gametes of different sizes and morphologies than vegetative cells. Vegetative form doubled zooids and subsequently split into four gametes of a 2-zooid-1-nucleus form. Two gametes further paired up with their ventral sides and fused forming a planozygote. For 581:, which would return the toxins back into the food web. Some polykrikoid population monitoring and investigation of toxin dynamics inside the body of grazers could provide better understanding of plankton-based food webs, estimate degrees of poisoning in ecosystems and propose potential toxin elimination routes. 415:
Germling, a single zooid cell, emerging from the cyst, had a unique development that has never been documented for any free-living dinoflagellate. Its morphology clearly went from a 1-zooid-1-nucleus, over a 2-zooid-1-nucleus, and a 4-zooid-1-nucleus into the 4-zooid-2-nucleus stage. This data raises
287:
species have: 1) a slightly curved longitudinal furrow, sulcus, extending to posterior end of the organism 2) a loop-shaped acrobase, which is an anterior extension from the sulcus 3) a transverse furrow, cingulum, with the displacement 4) taeniocyst-nematocyst complexes 5) two or four times less the
371:
makes the organisms great predators, but increase in body size of single cells is known to result in increased self-shading of chloroplasts and decreased surface area to volume ratio, leading to decreased photosynthetic efficiency. Presence of specialised NTC and large cell size might have triggered
291:
The most distinctive trait of this genus is the formation of multinucleated pseudocolonies that consist of an even number of zooids. Each zooid has a pair of flagella (transverse and longitudinal flagella) and has its own transverse groove, cingulum, but zooid longitudinal furrows, sulci, are fused.
317:
clade. Golgi-derived vacuoles are shared by both organelles and supply each with molecules needed for its growth along with participating in NTC articulation. Organelles are located in proximity, but lie within different membranes and are separated by a passage, called “chute”. The nematocyst is a
321:
Furthermore, Gavelis et al. deeply examined NTC morphology and ballistic mechanism that were shown to be fundamentally different from cnidarians, demonstrating nematocysts have evolved independently in single-celled dinoflagellates. Encasing coiled tubule capsule, unlike in cnidarians, is sealed,
541:
initially displayed looping swimming behaviour in close proximity to its prey followed by discharge of a nematocyst, pull of the prey into the body through posterior sulcus and final engulfment of the prey. PSP raises socio-economic-environmental concerns as it affects the health of both marine
326:
it is thought to occur due induced pressure as a result of capsular fibre contraction in the capsule wall. Nucleus is uniquely characterised by a double-layered fibrous cortex that underlines evaginated nuclear envelope; cortex is hypothesized to provide strength and shape to the nucleus, while
33: 308:
are known to produce ejectile organelles, the extrusomes. One of them is a nematocyst formed in zooids. Another extrusome found within the organism is rod-shaped taeniocyst which is distally located to nematocyst and was earlier mistakenly considered as a nematocyst-precursor. Together these
407:
two copulation finger-shaped structures were observed in gametes that are presumably involved in gamete contact and fusion, but more data is needed to confirm this. The ventrally fused gametes required a complex rearrangement of eight flagella and formation of sulci and cinguli. The 4-zooid
296:
have half the number of nuclei than zooids, and each pair of zooids shares a nucleus. Within the group there is some variation in which organelles are presented, but trichocysts, nematocysts, taeniocysts, mucocysts and plastids have been observed from different members within the taxon.
362:, phylogenetically nested among heterothropic polykrikoids, has plastids atypical of dinoflagellates. It has two membranes and contain the double-stacked thylakoids that are found in diatoms and haptophytes. However, molecular data analysis by Gavelis et al. has demonstrated that 366:
have peridinin-type plastids that were most likely acquired from ancestral polykrikoids. Transcriptomics analysis demonstrated multiple losses events in polykrikoids that might be explained from energetics and physiological restriction perspectives. Gradual increase in size of
398:
When organisms were well-fed, they appeared as 4-zooid-2-nuclei pseudocolonies, and during vegetative reproduction doubled number of zooids followed by nuclei division leading to 8-zooid-4-nuclei stage with further transverse binary division into two 4-zooid-2-nuclei
264:
was first seen in 1868 by Uljanin and was mistakenly considered as a metazoan larva of a turbellarian flatworms. In 1873 Butschili re-examined the specimen and concluded that the cell was an unusual ciliate, and Bergh later, in 1881, clarified
334:, well-defined fibrous ribbons are involved in nuclear-flagellar connections, and anchoring to flagellar apparatus might serve in orientation of the nucleus in relation to flagella during processes of movement, mitosis and cell division. 391:, whose life cycle resembles general dinoflagellate cycle as vegetative cells form gametes that fuse to form a diploid (2n) zygote that could encyst, but pseudocolonial nature adds a number of peculiarities to the 440:
that are found in benthic habitat. There is also variation in feeding ecology as some species have plastids and can use photosynthesis to obtain nutrients but often happen to be mixotrophs (
537:
is one of the species causing paralytic shellfish poisoning (PSP) and is found in waters of Australia, Japan, Mexico and Spain. Observations of feeding behaviour suggest
358:, have three-membrane plastids with triple stacked thylakoids that are indicative of secondary peridinin-type plastids common for dinoflagellates. However, mixothrophic 1479: 1279:
Lee, M. J.; Jeong, H. J.; Lee, K. H.; Jang, S. H.; Kim, J. H.; Kim, K. Y. (2015). "Mixotrophy in the nematocyst–taeniocyst complex-bearing phototrophic dinoflagellate
1607: 190: 253:
have been found to regulate algal blooms as they feed on toxic dinoflagellates. However, there is also some data available on Polykrikos being toxic to fish.
249:
are characterized by a sophisticated ballistic apparatus, named the nematocyst-taeniocyst complex, which allows species to prey on a variety of organisms.
32: 1581: 466:
feeds on algal species by engulfment after anchoring a prey using a nematocyst-taeniocyst complex (later referred to as NTC). Tang et al. observed
1689: 1620: 1394:
Matsuoka, K.; Cho, H. J.; Jacobson, D. M. (2000). "Observation of the feed ing behaviour and growth rates of the heterotrophic dinoflagellate,
1163:"Single-cell transcriptomics using spliced leader PCR: Evidence for multiple losses of photosynthesis in polykrikoid dinoflagellates" 517:
became a great topic of interest as some of the organisms graze on dinoflagellates that cause toxic blooms. High predation impact by
1656: 498:
species feeding revealed that species differ in their prey preference, and some are more specialized than the other, such that
1684: 748: 1625: 346:
species as some exclusively rely on photosynthesis, some are mixothrophs, while some are obligate heterotrophs which makes
292:
Transverse flagellum has the lateral projections, mastigonemes, and striated strand common to other dinoflagellates. Often
288:
number of nuclei than of zooids, and 6) ability to disassemble into pseudocolonies with fewer zooids and only one nucleus.
1633: 577:
pose a health risk to certain fishes, while the bloom-regulating ones are often preyed on by marine invertebrates, like
462:
is a phototrophic dinoflagellate and has been reported in waters of Canada, USA, Mexico, China, India, Japan, Korea,.
51: 558:
Predation of toxic microalgae by heterotrophic dinoflagellates is one of the factors controlling the algal blooms.
690:"Molecular phylogeny of ocelloid-bearing dinoflagellates (Warnowiaceae) as inferred from SSU and LSU rDNA sequences" 494:
is thought to have enzymes that detoxify toxins produced by these prey dinoflagellates. Also, a comparison of three
64: 786:"Microbial arms race: Ballistic "nematocysts" in dinoflagellates represent a new extreme in organelle complexity" 547: 189: 784:
Gavelis, G.; Wakeman, K.; Ripken, C.; Ozebek, S.; Holstein, T.; Herranz, M.; Keeling, P.; Leander, B. (2017).
594: 666: 327:
nuclear evaginations are thought to increase nuclear-cytoplasmic exchange area at cortex perforation sites.
280:
is a colony of zooids (units of a colonial organism) that carry out simultaneous functions of a whole cell.
199: 650: 626: 618: 1694: 1521: 642: 602: 1473: 610: 979:
Hoppenrath, M.; Leander, B.S. (2007b). "Morphology and phylogeny of the pseudocolonial dinoflagellates
902:
Tang, Y.Z.; Harke, M.J.; Gobler, C.J. (2013). "Morphology, phylogeny, dynamics, and ichthyotoxicity of
688:
Hoppenrath, Mona; Bachvaroff, Tsvetan R; Handy, Sara M; Delwiche, Charles F; Leander, Brian S (2009).
658: 1661: 1648: 1228: 1038: 915: 863: 797: 701: 216: 432:
species are found in marine environments. A majority of species are planktonic with theexception of
634: 46: 1415: 1252: 1054: 939: 879: 59: 1573: 1612: 1335: 1244: 1194: 1140: 1123:. Development of the nematocyst-taeniocyst complex and morphology of the site for extrusion". 1098: 1029:
Hoppenrath, M.; Leander, B. S. (2007a). "Character evolution in polykrikoid dinoflagellates".
1004: 931: 823: 729: 1119:
Westfall, J. A.; Bradbury, P. C.; Townsend, J. (1983). "Ultrastructure of the dinoflagellate
304:
is characterized by numerous rough endoplasmic reticulum nets, Golgi complexes and vacuoles.
1459: 1407: 1374: 1327: 1292: 1236: 1184: 1174: 1132: 1090: 1046: 996: 923: 871: 813: 805: 719: 709: 207: 41: 1559: 1077:
Bradbury, P.C.; Westfall, J.A.; Townsend, J. (1983). "Ultrastructure of the dinoflagellate
1310:
Hoppenrath, M.; Yubuki, N.; Bachvaroff, S.; Leander, B. S. (2010). "Re-classification of
241:(from Greek “poly” - many, and “krikos” – ring or circle) is one of the genera of family 1232: 1042: 919: 867: 801: 705: 1189: 1162: 818: 785: 724: 689: 135: 102: 89: 1215:
Tillmann, U.; Hoppenrath, M. (2013). "Life Cycle of the pseudocolonial dinoflagellate
1094: 1678: 1050: 242: 165: 155: 1419: 1256: 1058: 943: 883: 309:
organelles are forming taeniocyst-nematocyst complex that is thought to be the best
542:
mammals and humans, and the regulation mechanism of toxic microalgae population by
310: 875: 1411: 1161:
Gavelis, G.; White, R. A.; Suttle, C. A.; Keeling, P. J.; Leander, B. S. (2015).
1000: 1638: 1594: 1553: 1438:
Jeong, H.; Park, K.; Kim, J.; Kang, H.; Kim, C.; Choi, H.,...; Park, M. (2003).
753: 350:
a useful group to study for organellar evolution. Early-branching polykrikoids,
145: 1544: 1331: 1296: 1179: 221: 1568: 714: 225: 115: 76: 1339: 1248: 1198: 1008: 935: 827: 809: 733: 1144: 1102: 846:
Nagai, S.; Matsuyama, Y.; Takayama, H.; Kotani, Y. (2002). "Morphology of
387:, detailed data is available on reproduction of a type species (holotype) 1538: 1318:(Dinophyceae) based partly on the ultrastructure of complex extrusomes". 1136: 578: 229: 1586: 125: 1599: 1464: 1439: 1379: 1354: 1240: 927: 1515: 206: 188: 470:
bloom that caused 100% mortality in juvenile sheepshead minnows (
448:), while some lack the plastid and are completely heterotrophic ( 1519: 1210: 1208: 1081:. The Nucleus and Its Connections to the Flagellar Apparatus". 1024: 1022: 1020: 1018: 974: 972: 589:
Currently the following 10 species are accepted taxonomically:
570:
maybe helpful in biomedical and environment-monitoring fields.
245:
that includes athecate pseudocolony-forming dinoflagellates.
444:). Only one species is known to be exclusively autotrophic ( 1494: 957:
Taylor, F. J. R. (1987). "The Biology of Dinoflagellates".
490:
that are also known to cause fish mortality, and therefore
416:
the question whether such hatching pattern may reflect the
562:
are known to modulate populations of dinoflagellates like
854:(Dinophyceae, Polykrikaceae) cysts obtained in culture". 1114: 1112: 502:
preying is less diverse (fed on 2 prey species) than of
1156: 1154: 1072: 1070: 1068: 906:(Dinophyceae) isolates and blooms from New York, USA". 779: 777: 775: 773: 771: 749:"First Clear View of a One-Celled Harpooner in Action" 442:
P. barnegatensis, P. lebouriae, P tanit, P. hartmannii
1433: 1431: 1429: 1355:"Grazing impacts of the heterotrophic dinoflagellate 841: 839: 837: 1528: 1274: 1272: 1270: 1268: 1266: 897: 895: 893: 342:There is a variation in nutrient acquisition among 533:Graham in Portuguese and Japanese coastal waters. 1440:"Reduction in the toxicity of the dinoflagellate 525:(Lebour) Balech was reported in Argentina, while 1444:when fed on by the heterotrophic dinoflagellate 1353:Matsuyama, Y; Miyamoto, M; Kotani, Y (1999). 8: 1478:: CS1 maint: multiple names: authors list ( 510:, which fed on 14 different algal species. 1516: 1398:(Polykrikaceae. Dinophyceae) 39: 82- 86". 31: 20: 1463: 1378: 1188: 1178: 817: 723: 713: 680: 482:feeds on chain-forming dinoflagellates 1471: 450:P. grassei, P. herdmanae, P. kofoidii 7: 1649:0a29ffd2-723d-449f-9fff-f0f16378ad93 606:(F.SchĂĽtt) D.X.Qiu & Senjie Lin, 372:multiple losses of photosynthesis. 1219:(Gymnodiniales, Dinoflagellata)". 1083:Journal of Ultrastructure Research 521:Butschili on toxic dinoflagellate 478:is an ichthyotoxic, harmful alga. 14: 424:Habitat and ecology (niche, food) 1051:10.1111/j.1529-8817.2007.00319.x 63: 16:Genus of single-celled organisms 550:and health hazard elimination. 1690:Bioluminescent dinoflagellates 747:James Gorman (31 March 2017). 196:, Illustration after Butschli. 1: 1095:10.1016/s0022-5320(83)90113-2 876:10.2216/i0031-8884-41-4-319.1 474:) within 24 hours suggesting 1412:10.2216/i0031-8884-39-1-82.1 1001:10.1016/j.protis.2006.12.001 1495:"Polykrikos Butschli, 1873" 513:Predation by heterotrophic 269:dinoflagellate affinities. 1711: 1332:10.1016/j.ejop.2009.08.003 484:Cochlodinium polykrikoides 420:pseudocolonies phylogeny. 1452:Aquatic Microbial Ecology 1312:Pheopolykrikos hartmannii 1297:10.1016/j.hal.2015.08.006 1180:10.1186/s12864-015-1636-8 904:Pheopolykrikos hartmannii 630:Hoppenrath & Leander, 412:is yet to be determined. 60:Scientific classification 58: 39: 30: 23: 694:BMC Evolutionary Biology 595:Polykrikos barnegatensis 548:environmental monitoring 529:Chatton was controlling 715:10.1186/1471-2148-9-116 667:Polykrikos tentaculatus 200:Encyclopedia Britannica 810:10.1126/sciadv.1602552 546:could be important in 233: 204: 1685:Dinoflagellate genera 1442:Gymnodinium catenatum 1361:Gymnodinium catenatum 1281:Polykrikos hartmannii 959:Biological Monographs 651:Polykrikos schwartzii 627:Polykrikos herdmaniae 619:Polykrikos hartmannii 564:Alexandrium tamarense 523:Alexandrium tamarense 519:Polykrikos schwartzii 488:Gymnodinium catenatum 472:Cyprinodon variegates 460:Polykrikos hartmannii 210: 192: 1221:Journal of Phycology 1137:10.1242/jcs.63.1.245 985:Polykrikos herdmanae 643:Polykrikos lebouriae 603:Polykrikos geminatus 554:Practical importance 438:Polykrikos herdmanae 434:Polykrikos lebouriae 352:Polykrikos geminatum 257:History of knowledge 54:. Scale bar = 10µm. 50:showing an extruded 1446:Polykrikos kofoidii 1396:Polykrikos kofoidii 1357:Polykrikos kofoidii 1233:2013JPcgy..49..298T 1217:Polykrikos kofoidii 1043:2007JPcgy..43..366H 981:Polykrikos lebourae 920:2013JPcgy..49.1084T 868:2002Phyco..41..319N 848:Polykrikos kofoidii 802:2017SciA....3E2552G 706:2009BMCEE...9..116H 635:Polykrikos kofoidii 531:Gymnodium catenatum 527:Polykrikos kofoidii 47:Polykrikos kofoidii 611:Polykrikos grassei 234: 205: 1672: 1671: 1522:Taxon identifiers 1465:10.3354/ame031307 1380:10.3354/ame017091 1367:Aquat Microb Ecol 1320:Eur. J. Protistol 1241:10.1111/jpy.12037 928:10.1111/jpy.12114 383:For the genus of 203: 187: 186: 183: 1702: 1665: 1664: 1652: 1651: 1642: 1641: 1639:NHMSYS0021057831 1629: 1628: 1616: 1615: 1603: 1602: 1590: 1589: 1577: 1576: 1564: 1563: 1562: 1549: 1548: 1547: 1517: 1510: 1509: 1507: 1505: 1490: 1484: 1483: 1477: 1469: 1467: 1435: 1424: 1423: 1391: 1385: 1384: 1382: 1350: 1344: 1343: 1307: 1301: 1300: 1276: 1261: 1260: 1212: 1203: 1202: 1192: 1182: 1158: 1149: 1148: 1116: 1107: 1106: 1074: 1063: 1062: 1026: 1013: 1012: 976: 967: 966: 954: 948: 947: 914:(6): 1084–1094. 899: 888: 887: 843: 832: 831: 821: 790:Science Advances 781: 766: 765: 763: 761: 744: 738: 737: 727: 717: 685: 659:Polykrikos tanit 198: 181: 68: 67: 42:light micrograph 35: 21: 1710: 1709: 1705: 1704: 1703: 1701: 1700: 1699: 1675: 1674: 1673: 1668: 1660: 1655: 1647: 1645: 1637: 1632: 1624: 1619: 1611: 1606: 1598: 1593: 1585: 1580: 1572: 1567: 1558: 1557: 1552: 1543: 1542: 1537: 1524: 1514: 1513: 1503: 1501: 1492: 1491: 1487: 1470: 1437: 1436: 1427: 1393: 1392: 1388: 1352: 1351: 1347: 1309: 1308: 1304: 1278: 1277: 1264: 1214: 1213: 1206: 1160: 1159: 1152: 1118: 1117: 1110: 1076: 1075: 1066: 1028: 1027: 1016: 978: 977: 970: 956: 955: 951: 901: 900: 891: 845: 844: 835: 796:(3): e1602552. 783: 782: 769: 759: 757: 746: 745: 741: 687: 686: 682: 677: 587: 585:List of species 556: 426: 381: 340: 275: 259: 197: 180: 62: 17: 12: 11: 5: 1708: 1706: 1698: 1697: 1692: 1687: 1677: 1676: 1670: 1669: 1667: 1666: 1653: 1643: 1630: 1617: 1604: 1591: 1578: 1565: 1550: 1534: 1532: 1526: 1525: 1520: 1512: 1511: 1485: 1425: 1386: 1359:on a bloom of 1345: 1302: 1262: 1227:(2): 298–317. 1204: 1150: 1108: 1064: 1037:(2): 366–377. 1014: 995:(2): 209–227. 968: 949: 889: 833: 767: 739: 679: 678: 676: 673: 672: 671: 663: 655: 647: 639: 631: 623: 615: 607: 599: 586: 583: 573:However, some 555: 552: 425: 422: 380: 376:Life cycle of 374: 339: 336: 274: 271: 258: 255: 224:, right) from 185: 184: 182:BĂĽtschli, 1873 173: 169: 168: 163: 159: 158: 153: 149: 148: 143: 139: 138: 136:Dinoflagellata 133: 129: 128: 123: 119: 118: 113: 106: 105: 100: 93: 92: 90:Diaphoretickes 87: 80: 79: 74: 70: 69: 56: 55: 37: 36: 28: 27: 15: 13: 10: 9: 6: 4: 3: 2: 1707: 1696: 1695:Gymnodiniales 1693: 1691: 1688: 1686: 1683: 1682: 1680: 1663: 1658: 1654: 1650: 1644: 1640: 1635: 1631: 1627: 1622: 1618: 1614: 1609: 1605: 1601: 1596: 1592: 1588: 1583: 1579: 1575: 1570: 1566: 1561: 1555: 1551: 1546: 1540: 1536: 1535: 1533: 1531: 1527: 1523: 1518: 1500: 1496: 1493:Guiry, M. D. 1489: 1486: 1481: 1475: 1466: 1461: 1457: 1453: 1449: 1447: 1443: 1434: 1432: 1430: 1426: 1421: 1417: 1413: 1409: 1405: 1401: 1397: 1390: 1387: 1381: 1376: 1372: 1368: 1364: 1362: 1358: 1349: 1346: 1341: 1337: 1333: 1329: 1325: 1321: 1317: 1313: 1306: 1303: 1298: 1294: 1290: 1286: 1285:Harmful Algae 1282: 1275: 1273: 1271: 1269: 1267: 1263: 1258: 1254: 1250: 1246: 1242: 1238: 1234: 1230: 1226: 1222: 1218: 1211: 1209: 1205: 1200: 1196: 1191: 1186: 1181: 1176: 1172: 1168: 1164: 1157: 1155: 1151: 1146: 1142: 1138: 1134: 1130: 1126: 1122: 1115: 1113: 1109: 1104: 1100: 1096: 1092: 1088: 1084: 1080: 1073: 1071: 1069: 1065: 1060: 1056: 1052: 1048: 1044: 1040: 1036: 1032: 1025: 1023: 1021: 1019: 1015: 1010: 1006: 1002: 998: 994: 990: 986: 982: 975: 973: 969: 964: 960: 953: 950: 945: 941: 937: 933: 929: 925: 921: 917: 913: 909: 905: 898: 896: 894: 890: 885: 881: 877: 873: 869: 865: 861: 857: 853: 852:P. schwartzii 849: 842: 840: 838: 834: 829: 825: 820: 815: 811: 807: 803: 799: 795: 791: 787: 780: 778: 776: 774: 772: 768: 756: 755: 750: 743: 740: 735: 731: 726: 721: 716: 711: 707: 703: 699: 695: 691: 684: 681: 674: 669: 668: 664: 661: 660: 656: 653: 652: 648: 645: 644: 640: 637: 636: 632: 629: 628: 624: 622:W.Zimmermann, 621: 620: 616: 613: 612: 608: 605: 604: 600: 597: 596: 592: 591: 590: 584: 582: 580: 576: 571: 569: 565: 561: 553: 551: 549: 545: 540: 536: 532: 528: 524: 520: 516: 511: 509: 505: 501: 497: 493: 492:P. hartmannii 489: 485: 481: 477: 476:P. hartmannii 473: 469: 468:P. hartmannii 465: 461: 457: 455: 454:P. schwartzii 451: 447: 443: 439: 435: 431: 423: 421: 419: 413: 411: 406: 402: 396: 395:development. 394: 390: 386: 379: 375: 373: 370: 365: 361: 357: 353: 349: 345: 337: 335: 333: 328: 325: 319: 316: 312: 307: 303: 300:Cytoplasm of 298: 295: 289: 286: 281: 279: 272: 270: 268: 263: 256: 254: 252: 248: 244: 243:Polykrikaceae 240: 239: 231: 227: 223: 219: 218: 213: 209: 201: 195: 191: 179: 178: 174: 171: 170: 167: 166:Polykrikaceae 164: 161: 160: 157: 156:Gymnodiniales 154: 151: 150: 147: 144: 141: 140: 137: 134: 131: 130: 127: 124: 121: 120: 117: 114: 111: 108: 107: 104: 101: 98: 95: 94: 91: 88: 85: 82: 81: 78: 75: 72: 71: 66: 61: 57: 53: 49: 48: 43: 38: 34: 29: 26: 22: 19: 1529: 1504:February 20, 1502:. Retrieved 1498: 1488: 1474:cite journal 1455: 1451: 1445: 1441: 1403: 1399: 1395: 1389: 1370: 1366: 1360: 1356: 1348: 1326:(1): 29–37. 1323: 1319: 1315: 1311: 1305: 1288: 1284: 1280: 1224: 1220: 1216: 1170: 1167:BMC Genomics 1166: 1128: 1124: 1120: 1089:(1): 24–32. 1086: 1082: 1078: 1034: 1030: 992: 988: 984: 980: 962: 958: 952: 911: 907: 903: 859: 855: 851: 847: 793: 789: 758:. Retrieved 752: 742: 697: 693: 683: 665: 657: 649: 641: 633: 625: 617: 609: 601: 593: 588: 574: 572: 567: 563: 559: 557: 543: 538: 535:G. catenatum 534: 530: 526: 522: 518: 514: 512: 508:P. lebouriae 507: 503: 500:P. hartmanii 499: 495: 491: 487: 483: 480:P.hartmannii 479: 475: 471: 467: 464:P. hartmanii 463: 459: 458: 453: 449: 446:P. geminatum 445: 441: 437: 433: 429: 427: 417: 414: 409: 404: 400: 397: 392: 388: 384: 382: 377: 368: 364:P. lebouriae 363: 360:P. lebouriae 359: 356:P. hartmanii 355: 351: 347: 343: 341: 331: 329: 323: 320: 314: 311:synapomorphy 305: 301: 299: 293: 290: 284: 282: 277: 276: 266: 261: 260: 250: 246: 237: 236: 235: 215: 211: 193: 176: 175: 132:Superclass: 109: 96: 83: 45: 24: 18: 1595:iNaturalist 1554:Wikispecies 1458:: 307–312. 1291:: 124–132. 1131:: 245–261. 760:26 December 754:NYTimes.com 598:G.W.Martin, 539:P. kofoidii 504:P. kofoidii 405:P. kofoidii 389:P. kofoidii 378:P. kofoidii 217:Strombidium 214:(left) and 146:Dinophyceae 1679:Categories 1560:Polykrikos 1530:Polykrikos 1400:Phycologia 1316:Polykrikos 1173:(1): 528. 1125:J Cell Sci 1121:Polykrikos 1079:Polykrikos 862:(4): 319. 856:Phycologia 675:References 575:Polykrikos 568:Polykrikos 560:Polykrikos 544:P.kofoidii 515:Polykrikos 496:Polykrikos 430:Polykrikos 428:All known 418:Polykrikos 410:Polykrikos 401:Polykrikos 393:Polykrikos 385:Polykrikos 369:Polykrikos 348:Polykrikos 344:Polykrikos 332:Polykrikos 324:Polykrikos 315:Polykrikos 306:Polykrikos 302:Polykrikos 294:Polykrikos 285:Polykrikos 278:Polykrikos 273:Morphology 267:Polykrikos 262:Polykrikos 251:Polykrikos 247:Polykrikos 238:Polykrikos 222:Ciliophora 212:Polykrikos 194:Polykrikos 177:Polykrikos 52:nematocyst 25:Polykrikos 1569:AlgaeBase 1499:Algaebase 1406:: 82–86. 1373:: 91–98. 1031:J. Phycol 908:J. Phycol 654:BĂĽtschli, 579:amphipods 226:Tokyo bay 116:Alveolata 77:Eukaryota 1545:Q5550547 1539:Wikidata 1420:86293920 1340:19767184 1257:30674349 1249:27008517 1199:26183220 1059:16821791 1009:17241813 987:n. sp". 944:12140986 936:27007629 884:83728508 828:28435864 734:19467154 670:O.Wetzel 646:Herdman, 638:Chatton, 338:Plastids 230:Yokohama 162:Family: 122:Phylum: 73:Domain: 1613:1268461 1587:3207799 1229:Bibcode 1190:4504456 1145:6685130 1103:6686618 1039:Bibcode 989:Protist 916:Bibcode 864:Bibcode 819:5375639 798:Bibcode 725:2694157 702:Bibcode 700:: 116. 172:Genus: 152:Order: 142:Class: 126:Myzozoa 1662:109485 1646:NZOR: 1600:461544 1418:  1338:  1255:  1247:  1197:  1187:  1143:  1101:  1057:  1007:  942:  934:  882:  826:  816:  732:  722:  614:Lecal, 202:, 1911 1657:WoRMS 1626:10138 1608:IRMNG 1574:44680 1416:S2CID 1253:S2CID 1055:S2CID 940:S2CID 880:S2CID 662:Reñé, 110:Clade 97:Clade 84:Clade 1621:ITIS 1582:GBIF 1506:2017 1480:link 1336:PMID 1245:PMID 1195:PMID 1141:PMID 1099:PMID 1005:PMID 983:and 932:PMID 850:and 824:PMID 762:2017 730:PMID 506:and 486:and 456:),. 452:and 436:and 354:and 313:for 283:All 1634:NBN 1460:doi 1408:doi 1375:doi 1328:doi 1314:as 1293:doi 1283:". 1237:doi 1185:PMC 1175:doi 1133:doi 1091:doi 1047:doi 997:doi 993:158 924:doi 872:doi 814:PMC 806:doi 720:PMC 710:doi 330:In 103:SAR 44:of 1681:: 1659:: 1636:: 1623:: 1610:: 1597:: 1584:: 1571:: 1556:: 1541:: 1497:. 1476:}} 1472:{{ 1456:31 1454:. 1450:. 1428:^ 1414:. 1404:39 1402:. 1371:17 1369:. 1365:. 1334:. 1324:46 1322:. 1289:49 1287:. 1265:^ 1251:. 1243:. 1235:. 1225:49 1223:. 1207:^ 1193:. 1183:. 1171:16 1169:. 1165:. 1153:^ 1139:. 1129:63 1127:. 1111:^ 1097:. 1087:85 1085:. 1067:^ 1053:. 1045:. 1035:43 1033:. 1017:^ 1003:. 991:. 971:^ 963:21 961:. 938:. 930:. 922:. 912:49 910:. 892:^ 878:. 870:. 860:41 858:. 836:^ 822:. 812:. 804:. 792:. 788:. 770:^ 751:. 728:. 718:. 708:. 696:. 692:. 228:, 112:: 99:: 86:: 40:A 1508:. 1482:) 1468:. 1462:: 1448:" 1422:. 1410:: 1383:. 1377:: 1363:" 1342:. 1330:: 1299:. 1295:: 1259:. 1239:: 1231:: 1201:. 1177:: 1147:. 1135:: 1105:. 1093:: 1061:. 1049:: 1041:: 1011:. 999:: 965:. 946:. 926:: 918:: 886:. 874:: 866:: 830:. 808:: 800:: 794:3 764:. 736:. 712:: 704:: 698:9 232:. 220:(

Index

A light micrograph of a bullet-shaped cell with a large spiral filament (the extruded nematocyst).
light micrograph
Polykrikos kofoidii
nematocyst
Scientific classification
Edit this classification
Eukaryota
Diaphoretickes
SAR
Alveolata
Myzozoa
Dinoflagellata
Dinophyceae
Gymnodiniales
Polykrikaceae
Polykrikos

Encyclopedia Britannica

Strombidium
Ciliophora
Tokyo bay
Yokohama
Polykrikaceae
synapomorphy
environmental monitoring
amphipods
Polykrikos barnegatensis
Polykrikos geminatus
Polykrikos grassei

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑