Knowledge (XXG)

Sonoporation

Source 📝

20: 327: 233: 248:
molecules showed that membrane permeability mechanisms differ depending on the size of dextran molecules. Microinjection of dextran molecules from 3 to 70 kDa was reported to have crossed the cellular membrane via transient pores. In contrast, dextran molecules of 155 and 500 kDa were predominantly
210:
produced by ultrasound stimulation may push and pull on the membrane to produce a membrane opening. These rapid oscillations are also responsible for adjacent fluid flow called microstreaming which increases pressure on surrounding cells producing further sonoporation to whole cell populations. The
317:
Following sonoporation-mediated membrane permeabilization, cells can automatically repair the membrane openings through a phenomenon called "reparable sonoporation." The membrane resealing process has been shown to be calcium-dependent. This property may suggest that the membrane repair process
23:
Schematic of Sonoporation Mechanism. This figure depicts the general understanding of sonoporation where a dedicated sonoporator applies ultrasound to induce microbubble cavitation and eventually pore formation. The therapeutic gene or drug of interest thus may translocate within the
93:, in a medical treatment scenario whereby a patient is given modified DNA, and an ultrasonic transducer might target this modified DNA into specific regions of the patient's body. The bioactivity of this technique is similar to, and in some cases found superior to, 219:
The mechanism by which molecules cross cellular membrane barriers during sonoporation remains unclear. Different theories exist that may potentially explain barrier permeabilization and molecular delivery. The dominant hypotheses include pore formation,
367:
In vivo ultrasound mediated drug delivery was first reported in 1991 and many other preclinical studies involving sonoporation have followed. This method is being used to deliver therapeutic drugs or genes to treat a variety of diseases including:
154:
The microbubbles used today are composed of a gas core and a surrounding shell. The makeup of these elements may vary depending on the preferred physical and chemical properties. Microbubble shells have been formed with
197:
relative to their liquid environment, making them highly responsive to acoustic application. As a result of ultrasound stimulation, microbubbles undergo expansion and contraction, a phenomenon called stable
240:
Pore formation following ultrasound application was first reported in 1999 in a study that observed cell membrane craters following ultrasound application at 255 kHz. Later, sonoporation mediated
289:
seen in traditional endocytosis pathways. Other work reported sonoporation induced the formation of hydrogen peroxide, a cellular reaction that is also known to be involved with endocytosis.
75:
to enhance delivery of these large molecules. The exact mechanism of sonoporation-mediated membrane translocation remains unclear, with a few different hypotheses currently being explored.
1067:
Alter J, Sennoga CA, Lopes DM, Eckersley RJ, Wells DJ (2009). "Microbubble stability is a major determinant of the efficiency of ultrasound and microbubble mediated in vivo gene transfer".
146:
applications to enhance the acoustic impact of ultrasound. For sonoporation specifically, microbubbles are used to significantly enhance membrane translocation of molecular therapeutics.
236:
Schematic representation of molecular translocation via endocytosis. The second representation from the left illustrates the endocytotic mechanism involving clathrin-coated pits.
253:. This variability in membrane behavior has led to other studies investigating membrane rupture and resealing characteristics depending on ultrasound amplitude and duration. 388:
is coupled with ultrasound-mediated microbubble vascular disruption. This increase in delivery efficiency could allow for the appropriate reduction in therapeutic dosing.
384:... The preclinical utility of sonoporation is well illustrated through past tumor radiation treatments which have reported a more than 10-fold cellular destruction when 211:
physical mechanisms supposedly involved with microbubble-enhanced sonoporation have been referred to as push, pull, microstreaming, translation, and jetting.
128:, which quantifies the likelihood that exposure to diagnostic ultrasound will produce an adverse biological effect by a non-thermal action based on pressure. 309:. Multiple studies examining membrane wounds note observing resealing behavior, a process dependent on recruitment of ATP and intracellular vesicles. 261:
Various cellular reactions to ultrasound indicate the mechanism of molecular uptake via endocytosis. These observed reactionary phenomena include
285:
opening in response to microbubble oscillations. These findings act as support for ultrasound application inducing calcium-mediated uncoating of
277:
for the role of endocytosis in sonoporation. Ultrasound application to cells and adjacent microbubbles was shown to produce marked cell membrane
762: 526:. 2nd IEEE International Symposium on Biomedical Imaging: Macro to Nano (IEEE Cat No. 04EX821). Vol. 2. New York: IEEE. pp. 29–32. 473: 835:
Hauser J, Ellisman M, Steinau HU, Stefan E, Dudda M, Hauser M (2009). "Ultrasound enhanced endocytotic activity of human fibroblasts".
301:. The nature of these wounds may vary based on the degree of acoustic cavitation leading to a spectrum of cell behavior, from membrane 326: 19: 539: 563:
Klibanov AL (2006). "Microbubble contrast agents: targeted ultrasound imaging and ultrasound-assisted drug-delivery applications".
788:"Ultrasound and microbubble-targeted delivery of macromolecules is regulated by induction of endocytosis and pore formation" 355:
ultimately led to further in vitro studies that hinted at the potential for sonoporation transfection of plasmid DNA and
143: 278: 745:
Bouakaz A, Zeghimi A, Doinikov AA (2016). "Sonoporation: Concept and Mechanisms". In Escoffre JM, Bouakaz A (eds.).
1113: 64: 339:
The first study reporting molecular delivery using ultrasound was a 1987 in vitro study attempting to transfer
113:
Sonoporation is performed with a dedicated sonoporator. Sonoporation may also be performed with custom-built
297:
Mechanically created wounds in the plasma membrane have been observed as a result of sonoporation-produced
1108: 381: 377: 699: 749:. Advances in Experimental Medicine and Biology. Vol. 880. Heidelberg: Springer. pp. 175–189. 356: 352: 114: 928: 871: 302: 101:) ultrasound has been demonstrated to result in complete cellular death (rupturing), thus cellular 606:
Lindner JR (2004). "Microbubbles in medical imaging: current applications and future directions".
817: 722: 631: 588: 545: 385: 274: 281:
along with progressive intracellular calcium increase, which is believed to be a consequence of
1084: 1049: 995: 946: 894: 852: 809: 786:
Meijering BD, Juffermans LJ, van Wamel A, Henning RH, Zuhorn IS, Emmer M, et al. (2009).
768: 758: 680: 623: 580: 535: 469: 436: 266: 44: 1076: 1039: 1029: 985: 977: 936: 886: 844: 799: 750: 714: 670: 662: 615: 572: 527: 502: 461: 426: 418: 125: 282: 194: 176: 94: 56: 872:"Effect of ultrasound-activated microbubbles on the cell electrophysiological properties" 318:
involves a cell's active repair mechanism in response to the cellular influx of calcium.
932: 848: 1080: 1044: 1017: 990: 965: 890: 675: 650: 576: 431: 406: 241: 139: 1102: 726: 203: 40: 821: 635: 592: 549: 348: 262: 87: 72: 60: 48: 981: 804: 787: 754: 330:
A study showing verified preclinical efficacy of acoustic targeted drug delivery.
1016:
Tomizawa M, Shinozaki F, Motoyoshi Y, Sugiyama T, Yamamoto S, Sueishi M (2013).
298: 270: 250: 221: 207: 187: 136: 651:"Mechanisms of microbubble-facilitated sonoporation for drug and gene delivery" 531: 344: 199: 118: 102: 68: 36: 966:"Effects of extracellular calcium on cell membrane resealing in sonoporation" 950: 405:
Song Y, Hahn T, Thompson IP, Mason TJ, Preston GM, Li G, et al. (2007).
117:
connected to bench-top function generators and acoustic amplifiers. Standard
160: 1088: 1053: 999: 898: 856: 813: 772: 718: 684: 627: 584: 440: 941: 916: 1034: 422: 286: 172: 168: 232: 124:
Measurement of the acoustics used in sonoporation is listed in terms of
340: 245: 164: 90: 666: 507: 490: 373: 369: 249:
found in vesicle-like structures, likely indicating the mechanism of
83: 619: 78:
Sonoporation is under active study for the introduction of foreign
306: 269:, and cell intracellular calcium concentration. Studies have used 156: 465: 870:
Tran TA, Roger S, Le Guennec JY, Tranquart F, Bouakaz A (2007).
79: 455: 86:
cells. Sonoporation is also being studied for use in targeted
39:
in the ultrasonic range for increasing the permeability of the
190: 98: 52: 105:
must also be accounted for when employing this technique.
171:. The gas core can be made up of air or heavy gases like 698:
Postema M, Kotopoulis S, Delalande A, Gilja OH (2012).
121:
medical devices may also be used in some applications.
347:
cells using sonoporation. This successful plasmid DNA
51:
in order to allow uptake of large molecules such as
491:"Frequency, pulse length, and the mechanical index" 524:Microbubbles for ultrasound diagnosis and therapy 1011: 1009: 407:"Ultrasound-mediated DNA transfer for bacteria" 1018:"Sonoporation: Gene transfer using ultrasound" 740: 738: 736: 700:"Sonoporation: why microbubbles create pores" 8: 522:Fowlkes JB, Kripfgans OD, Carson PL (2004). 910: 908: 97:. Extended exposure to low-frequency (< 1043: 1033: 989: 940: 917:"Acoustic Streaming and Its Applications" 803: 674: 506: 430: 325: 231: 18: 397: 964:Zhou Y, Shi J, Cui J, Deng CX (2008). 202:. If a microbubble is attached to the 67:. Sonoporation employs the acoustic 7: 1069:Ultrasound in Medicine & Biology 879:Ultrasound in Medicine & Biology 837:Ultrasound in Medicine & Biology 82:in tissue culture cells, especially 43:. This technique is usually used in 849:10.1016/j.ultrasmedbio.2009.06.1090 1081:10.1016/j.ultrasmedbio.2008.12.015 891:10.1016/j.ultrasmedbio.2006.07.029 577:10.1097/01.rli.0000199292.88189.0f 14: 649:Fan Z, Kumon RE, Deng CX (2014). 495:Acoustics Research Letters Online 215:Membrane translocation mechanism 460:. Singapore: World Scientific. 457:Emerging Therapeutic Ultrasound 275:membrane potential ion exchange 16:Technique in molecular biology 1: 982:10.1016/j.jconrel.2007.11.007 970:Journal of Controlled Release 805:10.1161/CIRCRESAHA.108.183806 608:Nature Reviews Drug Discovery 1022:World Journal of Methodology 755:10.1007/978-3-319-22536-4_10 144:contrast-enhanced ultrasound 132:Microbubble contrast agents 1130: 707:Ultraschall in der Medizin 532:10.1109/isbi.2004.1398466 115:piezoelectric transducers 454:Wu J, Nyborg WL (2006). 565:Investigative Radiology 224:, and membrane wounds. 747:Therapeutic Ultrasound 719:10.1055/s-0031-1274749 411:Nucleic Acids Research 343:DNA to cultured mouse 331: 273:techniques to monitor 237: 142:are generally used in 25: 942:10.3390/fluids3040108 353:antibiotic resistance 329: 235: 22: 1035:10.5662/wjm.v3.i4.39 792:Circulation Research 655:Therapeutic Delivery 287:clathrin-coated pits 55:into the cell, in a 41:cell plasma membrane 933:2018Fluid...3..108W 322:Preclinical studies 183:Mechanism of action 33:cellular sonication 489:Church CC (2005). 423:10.1093/nar/gkm710 386:ionizing radiation 332: 313:Membrane resealing 238: 206:, the microbubble 26: 1114:Molecular biology 843:(12): 2084–2092. 764:978-3-319-22536-4 667:10.4155/tde.14.10 508:10.1121/1.1901757 475:978-981-256-685-0 279:hyperpolarization 267:hydrogen peroxide 45:molecular biology 1121: 1093: 1092: 1064: 1058: 1057: 1047: 1037: 1013: 1004: 1003: 993: 961: 955: 954: 944: 912: 903: 902: 876: 867: 861: 860: 832: 826: 825: 807: 783: 777: 776: 742: 731: 730: 704: 695: 689: 688: 678: 646: 640: 639: 603: 597: 596: 560: 554: 553: 519: 513: 512: 510: 486: 480: 479: 451: 445: 444: 434: 402: 351:conferring G418 283:calcium channels 193:cores have high 150:General features 126:mechanical index 1129: 1128: 1124: 1123: 1122: 1120: 1119: 1118: 1099: 1098: 1097: 1096: 1066: 1065: 1061: 1015: 1014: 1007: 963: 962: 958: 914: 913: 906: 874: 869: 868: 864: 834: 833: 829: 785: 784: 780: 765: 744: 743: 734: 702: 697: 696: 692: 648: 647: 643: 620:10.1038/nrd1417 605: 604: 600: 562: 561: 557: 542: 521: 520: 516: 488: 487: 483: 476: 453: 452: 448: 404: 403: 399: 394: 365: 337: 324: 315: 295: 293:Membrane wounds 259: 230: 217: 195:compressibility 185: 177:perfluorocarbon 152: 140:contrast agents 134: 111: 95:electroporation 59:process called 57:cell disruption 17: 12: 11: 5: 1127: 1125: 1117: 1116: 1111: 1101: 1100: 1095: 1094: 1075:(6): 976–984. 1059: 1005: 956: 904: 885:(1): 158–163. 862: 827: 798:(5): 679–687. 778: 763: 732: 690: 661:(4): 467–486. 641: 614:(6): 527–532. 598: 571:(3): 354–362. 555: 540: 514: 501:(3): 162–168. 481: 474: 446: 396: 395: 393: 390: 364: 361: 336: 333: 323: 320: 314: 311: 294: 291: 271:patch clamping 258: 255: 242:microinjection 229: 228:Pore formation 226: 216: 213: 184: 181: 151: 148: 133: 130: 110: 107: 65:transformation 47:and non-viral 15: 13: 10: 9: 6: 4: 3: 2: 1126: 1115: 1112: 1110: 1109:Biotechnology 1107: 1106: 1104: 1090: 1086: 1082: 1078: 1074: 1070: 1063: 1060: 1055: 1051: 1046: 1041: 1036: 1031: 1027: 1023: 1019: 1012: 1010: 1006: 1001: 997: 992: 987: 983: 979: 975: 971: 967: 960: 957: 952: 948: 943: 938: 934: 930: 926: 922: 918: 915:Wu J (2018). 911: 909: 905: 900: 896: 892: 888: 884: 880: 873: 866: 863: 858: 854: 850: 846: 842: 838: 831: 828: 823: 819: 815: 811: 806: 801: 797: 793: 789: 782: 779: 774: 770: 766: 760: 756: 752: 748: 741: 739: 737: 733: 728: 724: 720: 716: 712: 708: 701: 694: 691: 686: 682: 677: 672: 668: 664: 660: 656: 652: 645: 642: 637: 633: 629: 625: 621: 617: 613: 609: 602: 599: 594: 590: 586: 582: 578: 574: 570: 566: 559: 556: 551: 547: 543: 541:0-7803-8388-5 537: 533: 529: 525: 518: 515: 509: 504: 500: 496: 492: 485: 482: 477: 471: 467: 463: 459: 458: 450: 447: 442: 438: 433: 428: 424: 420: 416: 412: 408: 401: 398: 391: 389: 387: 383: 379: 375: 371: 362: 360: 358: 354: 350: 346: 342: 334: 328: 321: 319: 312: 310: 308: 304: 300: 292: 290: 288: 284: 280: 276: 272: 268: 264: 256: 254: 252: 247: 243: 234: 227: 225: 223: 214: 212: 209: 205: 204:cell membrane 201: 196: 192: 189: 182: 180: 178: 174: 170: 166: 162: 158: 149: 147: 145: 141: 138: 131: 129: 127: 122: 120: 116: 108: 106: 104: 100: 96: 92: 89: 85: 81: 76: 74: 70: 66: 62: 58: 54: 50: 46: 42: 38: 34: 30: 21: 1072: 1068: 1062: 1028:(4): 39–44. 1025: 1021: 976:(1): 34–43. 973: 969: 959: 924: 920: 882: 878: 865: 840: 836: 830: 795: 791: 781: 746: 713:(1): 97–98. 710: 706: 693: 658: 654: 644: 611: 607: 601: 568: 564: 558: 523: 517: 498: 494: 484: 466:10.1142/6047 456: 449: 417:(19): e129. 414: 410: 400: 366: 349:transfection 338: 316: 299:shear forces 296: 263:ion exchange 260: 239: 218: 208:oscillations 186: 153: 135: 123: 112: 88:Gene therapy 77: 73:microbubbles 61:transfection 49:gene therapy 37:use of sound 32: 29:Sonoporation 28: 27: 382:Alzheimer's 378:Parkinson's 305:to instant 257:Endocytosis 251:endocytosis 222:endocytosis 188:Microbubble 137:Microbubble 1103:Categories 927:(4): 108. 392:References 345:fibroblast 307:cell lysis 200:cavitation 119:ultrasound 69:cavitation 951:2311-5521 727:260344222 359:in vivo. 161:galactose 109:Equipment 103:viability 84:mammalian 35:, is the 1089:19285783 1054:25237622 1000:18158198 899:17189059 857:19828232 822:23063345 814:19168443 773:26486338 685:24856171 636:29807146 628:15173842 593:27546582 585:16481920 550:29683103 441:17890732 335:In vitro 303:blebbing 173:nitrogen 169:polymers 1045:4145571 991:2270413 929:Bibcode 676:4116608 432:2095817 363:In vivo 341:plasmid 246:dextran 165:albumin 91:in vivo 1087:  1052:  1042:  998:  988:  949:  921:Fluids 897:  855:  820:  812:  771:  761:  725:  683:  673:  634:  626:  591:  583:  548:  538:  472:  439:  429:  374:Cancer 370:Stroke 157:lipids 875:(PDF) 818:S2CID 723:S2CID 703:(PDF) 632:S2CID 589:S2CID 546:S2CID 357:siRNA 167:, or 80:genes 31:, or 24:cell. 1085:PMID 1050:PMID 996:PMID 947:ISSN 895:PMID 853:PMID 810:PMID 769:PMID 759:ISBN 681:PMID 624:PMID 581:PMID 536:ISBN 470:ISBN 437:PMID 1077:doi 1040:PMC 1030:doi 986:PMC 978:doi 974:126 937:doi 887:doi 845:doi 800:doi 796:104 751:doi 715:doi 671:PMC 663:doi 616:doi 573:doi 528:doi 503:doi 462:doi 427:PMC 419:doi 244:of 191:gas 175:or 99:MHz 71:of 63:or 53:DNA 1105:: 1083:. 1073:35 1071:. 1048:. 1038:. 1024:. 1020:. 1008:^ 994:. 984:. 972:. 968:. 945:. 935:. 923:. 919:. 907:^ 893:. 883:33 881:. 877:. 851:. 841:35 839:. 816:. 808:. 794:. 790:. 767:. 757:. 735:^ 721:. 711:33 709:. 705:. 679:. 669:. 657:. 653:. 630:. 622:. 610:. 587:. 579:. 569:41 567:. 544:. 534:. 497:. 493:. 468:. 435:. 425:. 415:35 413:. 409:. 380:, 376:, 372:, 265:, 179:. 163:, 159:, 1091:. 1079:: 1056:. 1032:: 1026:3 1002:. 980:: 953:. 939:: 931:: 925:3 901:. 889:: 859:. 847:: 824:. 802:: 775:. 753:: 729:. 717:: 687:. 665:: 659:5 638:. 618:: 612:3 595:. 575:: 552:. 530:: 511:. 505:: 499:6 478:. 464:: 443:. 421::

Index


use of sound
cell plasma membrane
molecular biology
gene therapy
DNA
cell disruption
transfection
transformation
cavitation
microbubbles
genes
mammalian
Gene therapy
in vivo
electroporation
MHz
viability
piezoelectric transducers
ultrasound
mechanical index
Microbubble
contrast agents
contrast-enhanced ultrasound
lipids
galactose
albumin
polymers
nitrogen
perfluorocarbon

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.